ERLANG

EDoc

Copyright © 2006-2020 Ericsson AB. All Rights Reserved.
EDoc 0.12

September 22, 2020

Copyright © 2006-2020 Ericsson AB. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance
with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless
required by applicable law or agreed to in writing, software distributed under the License is distributed on an
"AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See

the License for the specific language governing permissions and limitations under the License. Ericsson AB. All
Rights Reserved..

September 22, 2020

1.1 Welcome to EDoc

1 EDoc User's Guide

EDoc is the Erlang program documentation generator. Inspired by the Javadoc (TM) tool for the Java (TM)
programming language, EDoc is adapted to the conventions of the Erlang world, and has several features not found
in Javadoc.

1.1 Welcome to EDoc

EDoc is the Erlang program documentation generator. Inspired by the Javadoc(TM) tool for the Java(TM)
programming language, EDoc is adapted to the conventions of the Erlang world, and has several features not found
in Javadoc.

1.1.1 Contents

e Introduction

¢ Running EDoc

e Theoverview page
e Generictags

e Overview tags

e Moduletags

* Function tags

* References

* Noteson XHTML

e Wiki notation

e Macro expansion

* Type specifications
« Acknowledgements

1.1.2 Introduction

EDoc lets you write the documentation of an Erlang program as comments in the source code itself, using tags on the
form"@\ame . ..". A sourcefile does not haveto contain tags for EDoc to generate its documentation, but without
tags the result will only contain the basic available information that can be extracted from the module.

A tag must be the first thing on a comment line, except for leading '% characters and whitespace. The comment must
be between program declarations, and not on the same line as any program text. All the following text - including
consecutive comment lines - up until the end of the comment or the next tagged line, istaken asthe content of the tag.

Tags are associated with the nearest following program construct "of significance" (the module name declaration and
function definitions). Other constructs are ignored; e.g., in:

%% @doc Prints the value X.
-record(foo, {x, y, z}).
print(X) -> ...

the @loc tag is associated with the function pri nt / 1.

Ericsson AB. All Rights Reserved.: EDoc | 1

1.1 Welcome to EDoc

Note that in acomment such as:
% % @doc ...

thetag isignored, because only the first '% character is considered "leading". This allowstagsto be "commented out".

Some tags, such as @ ype, do not need to be associated with any program construct. These may be placed at the end
of thefile, in the "footer".

1.1.3 Running EDoc

The following are the main functions for running EDoc:

» edoc:application/2: Creates documentation for atypical Erlang application.
* edoc:files/2: Creates documentation for a specified set of source files.

e edoc:run/2: General interface function; the common back-end for the above functions. Options are documented
here.

Note that the function edoc:file/2 belongs to the old, deprecated interface (from EDoc version 0.1), and should not
be used.

1.1.4 The overview page

When documentation is generated for an entire application, an overview page, or "front page", is generated. (The
page you are now reading is an overview page.) This should contain the high-level description or user manual for
the application, leaving the finer details to the documentation for individual modules. By default, the overview page
is generated from the file over vi ew. edoc in the target directory (typically, this is the doc subdirectory of the
application directory); see edoc_doclet for details.

The format of the overview fileis the same as for EDoc documentation comments (see Introduction), except that the
lines do not have leading '% characters. Furthermore, all lines before the first tag line are ignored, and can be used
as acomment. All tags in the overview file, such as @oc, @ er si on, etc., refer to the application as awhole; see
Overview tags for details.

Here is an example of the contents of an overview file:
** this is the overview.doc file for the application 'frob' **

@author R. J. Hacker <rjh@acme.com>

@copyright 2007 R. J. Hacker

@version 1.0.0

@title Welcome to the “frob' application!

@doc “frob' is a highly advanced frobnicator with low latency,

1.1.5 Generic tags
The following tags can be used anywhere within amodule:

@l ear

This tag causes al tags above it (up to the previous program construct), to be discarded, including the @1 ear
tagitself. Thetext following thetagisasoignored. Thisistypically only useful in code containing conditional
compilation, when preprocessing isturned on. (Preprocessing is turned off by default.) E.g., in

2 | Ericsson AB. All Rights Reserved.: EDoc

1.1 Welcome to EDoc

-ifdef (DEBUG) .
%% @doc ...
foo(...) -> ...
-endif.

%% @clear

P
o°

@doc ...
bar(...) -> ...

the @I ear tag makes sure that EDoc does not seetwo @loc tags before the function bar , even if the code for
function f 0o is removed by preprocessing. (There is no way for EDoc to see what the first @loc tag "realy"
belongs to, since preprocessing strips away all such information.)

@locfil e

Reads a plain documentation file (on the same format as an overview file - see The overview page for details),
and uses the tags in that file asif they had been written in place of the @locf i | e tag. The content is the name
of thefile to be read; leading and trailing whitespace is ignored. See aso @headerfile.

@nd
The text following this tag is always ignored. Use this to mark the end of the previous tag, when necessary, as
eg.in:

to avoid including the last "ruler” line in the @loc tag.

Note: using someother " dummy" @-tag for the same purpose might work in a particular
implementation of EDoc, but isnot guaranteed to. Always use @end to ensur e future compatibility.
@eaderfile

Similar to the @docfile tag, but reads afile containing Erlang source code - generally this should be a header file
(withtheextension. hr |). If thefileturnsout to contain one or more function definitions or amodul e declaration,
all tagsthat occur above the last such definition or module declaration areignored, and EDoc will print awarning.
Thistag allows you to write documentation in a header file and insert it at a specific place in the documentation,
even if the header fileisused (i.e., included) by several modules. Thei ncl udes option can be used to specify
a search path (see edoc:read_source/2).

@ odo (or @oDO)

Attaches a To-Do note to a function, module or overview-page. The content can be any XHTML text describing
theissue, e.g.:

%% @TODO Finish writing the documentation.
or

%% @todo Implement RFC 2549.
These tags can also be written as"TODQ: ", e.g.:

%% TODO: call your mother

see Wiki notation for more information. To-Do notes are normally not shown unless thet odo option is turned
on (see edoc:get_doc/2).

Ericsson AB. All Rights Reserved.: EDoc | 3

1.1 Welcome to EDoc

@ype

Documents an abstract data type or type alias. The content consists of atype declaration or definition, optionally
followed by aperiod (. ') separator and XHTML text describing the type (i.e., its purpose, use, etc.). There must
be at | east one whitespace character between the'. ' and thetext. See Type specificationsfor syntax and examples.
All datatype descriptionsare placed in aseparate section of the documentation, regardless of wherethetags occur.

Instead of specifying the complete type alias in an EDoc documentation comment, type definitions from the
actual Erlang code can be re-used for documentation. See Type specifications for examples.

1.1.6 Overview tags
The following tags can be used in an overview file.
@ut hor

See the @author module tag for details.
@opyri ght

See the @copyright module tag for details.
@oc

See the @doc module tag for details.
@eference

See the @reference module tag for details.
@ee

See the @see module tag for details.
@i nce

See the @since module tag for details.
@itle

Specifies atitlefor the overview page. Thistag can only be used in an overview file. The content can be arbitrary
text.

@ersion
See the @version module tag for details.

1.1.7 Module tags

The following tags can be used before a modul e declaration:
@ut hor

Specifies the name of an author, along with contact information. An e-mail address can be given within
<...>delimiters, and aURI within[. . .] delimiters. Both e-mail and URI are optional, and any surrounding
whitespace is stripped from all strings.

The nameisthefirst nonempty string that isnot within<. . . >or[. ..], and does not contain only whitespace.
(In other words, the name can come before, between, or after the e-mail and URI, but cannot be split up; any
sections after the first areignored.) If an e-mail addressis given, but no name, the e-mail string will be used also
for the name. If no <. . . > section is present, but the name string contains an '@ character, it is assumed to be
an e-mail address. Not both name and e-mail may be left out.

Examples:

4 | Ericsson AB. All Rights Reserved.: EDoc

1.1 Welcome to EDoc

P

% @author Richard Carlsson

@author Richard Carlsson <carlsson.richard@gmail.com>
[http://example.net/richardc/]

o° o°

)
-6
)

-6

o°

% @author <carlsson.richard@gmail.com>

%% @author carlsson.richard@gmail.com [http://example.net/richardc/]

@opyri ght
Specifies the module copyrights. The content can be arbitrary text; for example:

%% @copyright 2001-2003 Richard Carlsson

@lepr ecat ed
Mark the module as deprecated, indicating that it should no longer be used. The content must be well-formed
XHTML, and should preferably includea{ @ i nk} referenceto areplacement; asin:

%% @deprecated Please use the module {@link foo} instead.

@loc

Describes the module, using well-formed XHTML text. The first sentence is used as a summary (see the @doc
function tag for details). For example.:

%% @doc This is a very useful module. It is ...
@i dden

Marks the module so that it will not appear in the documentation (even if "private" documentation is generated).
Useful for sample code, test modules, etc. The content can be used as a comment; it isignored by EDoc.

@rivate

Marks the module as private (i.e., not part of the public interface), so that it will not appear in the normal
documentation. (If "private" documentation is generated, the module will be included.) The content can be used
asacomment; it isignored by EDaoc.

@ ef erence

Specifies areference to some arbitrary external resource, such as an article, book, or web site. The content must
be well-formed XHTML text. Examples:

@reference Pratchett, T., Interesting Times,
Victor Gollancz Ltd, 1994.

o of

)
"6
)

"6

@reference See Google for
more information.

o° o°

o
6
o

6

@Gee
See the @see function tag for details.

@i nce

Specifies when the module was introduced, with respect to the application, release or distribution it is part of.
The content can be arbitrary text.

Ericsson AB. All Rights Reserved.: EDoc | 5

1.1 Welcome to EDoc

@ersion

Specifies the module version. The content can be arbitrary text.

1.1.8 Function tags
The following tags can be used before a function definition:
@lepr ecat ed

See the @deprecated module tag for details.

@loc

XHTML text describing the function. The first sentence of the text is used as a quick summary; this ends at the
first period character (. *) or exclamation mark (*! *) that is followed by a whitespace character, a line break, or
the end of the tag text, and is not within XML markup. (As an exception, the first sentence may be within an
initial paragraph element)

@qui v

Specify equivalence to another function call/expression. The content must be a proper Erlang expression. If the
expression is afunction call, a cross-reference to the called function is created automatically. Typically, thistag
isused instead of @loc.

@i dden

Marksthe function so that it will not appear in the documentation (even if "private" documentation is generated).
Useful for debug/test functions, etc. The content can be used as a comment; it isignored by EDoc.

@ar am

Provide more information on a single parameter of the enclosing function. The content consists of a parameter
name, followed by one or more whitespace characters, and XHTML text.

@rivate

Marks the function as private (i.e., not part of the public interface), so that it will not appear in the normal
documentation. (If "private" documentation is generated, the function will beincluded.) Only useful for exported
functions, e.g. entry points for spawn. (Non-exported functions are aways "private".) The content can be used
asacomment; it isignored by EDaoc.

@ eturns
Specify additional information about the value returned by the function. Content consists of XHTML text.
Gee

Make a reference to a module, function, datatype, or application. (See References.) The content consists of a
reference, optionally followed by a period ('.), one or more whitespace characters, and XHTML text to be used
for the label; for example"@ee edoc" or "@ee edoc. EDoc</ b>".If nolabel text is specified, the
reference itself is used as the label.

@i nce

Specifies in what version of the module the function was introduced; cf. the @version module tag. The content
can be arbitrary text.

@pec

Used to specify the function type; see Type specificationsfor syntax details. If the function nameisincludedinthe
specification, it must match the namein the actual code. When parameter names are not given in the specification,
suitable names will be taken from the source code if possible, and otherwise synthesized.

6 | Ericsson AB. All Rights Reserved.: EDoc

1.1 Welcome to EDoc

Instead of specifying the complete function type in an EDoc documentation comment, specifications from the
actual Erlang code can be re-used for documentation. See Type specifications for examples.
@ hr ows

Specifies which types of terms may be thrown by the function, if its execution terminates abruptly dueto acall to
erl ang: t hr ow(Ter m) . The content is atype expression (see Type specifications), and can be a union type.

Note that exceptions of typeexi t (ascaused by callstoer | ang: exi t (Term) anderr or (run-time
errors such asbadar g or badar i t h) are not viewed as part of the normal interface of the function, and
cannot be documented with the @ hr ows tag.

@ype
See the @type generic tag for details. Placing a @ y pe tag by afunction definition may be convenient, but does
not affect where the description is placed in the generated documentation.

1.1.9 References

In several contexts (@ ee tags, @ i nk macros, etc.), EDoc letsyou refer to the generated documentation for modules,
functions, datatypes, and applications, using a simple and compact syntax. The possible formats for references are:

Reference syntax Example Scope
Modul e edoc run,erl .l ang.list Global
Function/ Arity filel2 Within module
Modul e: Function/ Arity edoc:application/2 Global
Type() fil ename() Within module
Modul e: Type() edoc:edoc_modul&() Global
/1 Application edoc Global
/1 Appl i cation/ Mdul e edoc_doclet(3) Global
AL N iy [stocntien
{\//tJQﬁlplel Frf/‘tjle?)n ! edoc:edoc_modul&() Global

Table 1.1: reference syntax

EDoc will resolve references using the information it findsin edoc- i nf o-files at the locations specified with the
doc_pat h option. EDoc will automatically (and somewhat intelligently) try tofind any local edoc- i nf o-filesusing
the current code path, and add them to the end of thedoc__pat h list. The target doc-directory is also searched for an
existing info file; this allows documentation to be built incrementally. (Use the newoption to ignore any old infofile.)

Note that if the name of a module, function or datatype is explicitly qualified with an application (asin "/ / edoc/
edoc_run"), this overrides any other information about that name, and the reference will be made relative to the
location of the application (if it can be found). This makes it possible to refer to e.g. amodule "f r ed" as™/ / f oo/
f r ed" without accidentally getting areferenceto”/ / bar / f r ed". Y ou should not usethisform of explicit references
for names that are local to the application you are currently creating - they will always be resolved correctly.

Ericsson AB. All Rights Reserved.: EDoc | 7

1.1 Welcome to EDoc

Note that module-local references such asfi | e/ 2 only work properly within a module. In an overview-page like
this (i.e., the one you are currently reading), no module context is available.

1.1.10 Notes on XHTML

In several places, XHTML markup can be used in the documentation text, in particular in @oc tags. The main
differences from HTML are the following:

e All elements must have explicit start and end tags, and be correctly nested. This means that you cannot e.g. write
a<l i > tag without also writing a corresponding </ | i > tag in the right place. This could be an annoyance at
times, but has the great advantage that EDoc can report all malformed XHTML in your source code, rather than
propagate the errors to the generated documentation.

* XHTML tag and attribute names should always be lower-case.
« Attributes must be quoted, asine.g. .

To write an element like the HTML
, which has no actual content, you can write either the full
</ br >,
or better, use the XHTML abbreviated form <br / >.

Since the purpose of EDoc isto document programs, thereisalso alimited form of "wiki"-syntax available for making
program code easier to write inline (and to make the doc-comments easier to read). See Wiki notation for details.

TheHTML headingtagsh1 and h2 arereserved for use by EDoc. Headingsin documentation source code should start
at h3. Thereis however a special syntax for writing headings which avoids using specific level numbers altogether;
see Headings for details.

EDoc uses XMerL to parse and export XML markup.

1.1.11 Wiki notation

When EDoc parses XHTML, it does additional pre- and post-processing of the text in order to expand certain notation
specific to EDoc into proper XHTML markup. This"wiki" (http://en.wikipedia.or g/wiki/Wiki) notation is intended
to make it easier to write source code documentation.

Empty lines separate paragraphs

Leaving anempty linein XHTML text (i.e., alinewhich except for any leading start-of -comment '% characters contains
only whitespace), will make EDoc split the text before and after the empty line into separate paragraphs. For example:

@doc This will all be part of the first paragraph.
It can stretch over several lines and contain any
XHTML markup.

This is the second paragraph. The above line is
regarded as "empty" by EDoc, even though it ends with
a space.

d® o o o of o° of
o® o® o° o° o° o° o°

will generate the following text:

Thiswill all be part of the first paragraph. It can stretch over several lines and contain any XHTML markup.
Thisisthe second paragraph. The above line isregarded as "empty" by EDoc, even though it ends with a space.
Paragraph splitting takes place after the actual XHTML parsing. It only affects block-level text, and not e.g., text
within <pr e> markup, or text that is already within <p> markup.

Headings

Section headings, sub-headings, and sub-sub-headings, can be written using the following notation:

8 | Ericsson AB. All Rights Reserved.: EDoc

href

1.1 Welcome to EDoc

== Heading ==
=== Sub-heading ===
==== Sub-sub-heading ====

Such a heading must be alone on aline, except for whitespace, and cannot be split over several lines. A link target is
automatically created for the heading, by replacing any whitespace within the text by a single underscore character.
E.g.,

== Concerning Hobbits ==
isequivalent to
<h3>Concerning Hobbits</h3>
Thus, headings using this notation should not contain characters that may not be part of URL labels, except for

whitespace. If you need to create such headings, you have to use the explicit XHTML markup.

A hypertext link to a heading written this way can be created using the @ ect i on macro, which transforms the
argument text into alabel as described above. E.g.,

{@section Concerning Hobbits}
is equivalent to writing

Concerning Hobbits
The above expansions take place before XML parsing.

External links

Writing a URL within brackets, as in "[htt p://wwv. w3c. org/]", will generate a hyperlink such as
http://www.w3c.org/, using the URL both for the destination and the label of the reference, equivalent to
writing "<tt>http://ww. w3c. org/ </tt>". This short-
hand keeps external URL references short and readable. The recognized protocolsarehtt p, ft p,andfi | e. This
expansion takes place before XML parsing.

TODO-notes

Lines that begin with the text "TODO: " (the colon is required) are recognized as tags, as if they had been written as
"@odo ..." (see@todo tagsfor further details).

Verbatim quoting

In XHTML text, the " ' character (Unicode 000060, known as "grave accent" or "back-quote") can be used for
verbatim quoting. This expansion takes place before XML parsing.

(Rl ny N [T

e A character sequence " . .. or will be expanded to "<code>. .. </ code>", where all
occurrences of the special XML characters'<' and '&' (and for completeness, also '>") in the quoted text have been
escapedto"& t; ", "&anp; ", and "> ; ", respectively. All whitespace is stripped from the beginning and end
of the quoted text.

Doubleback-quotes™™ ™ . . . can beused to quotetext containing single" ' characters. The automatic stripping
of any surrounding whitespace makes it possible to write thingslike"™ ~ ' f oo@ar' "' ".

To quote text containing verbatim, explicit <code> markup or similar must be used.

e A character sequence """ ..."' """ will be expanded to "<pre><![CDATA[. ..]]></pre>", which
disables all XML markup within the quoted text, and displays the result in fixed-font with preserved indentation.
Whitespaceis stripped from the end of the quoted text, but not from the beginning, except for whole leading lines
of whitespace. Thisis useful for multi-line code examples, or displayed one-liners.

Ericsson AB. All Rights Reserved.: EDoc | 9

href

1.1 Welcome to EDoc

* Toproduceasingle" '-character in XML without beginning a new quote, you can write"™ ' " (no space between
the” "and the" "). You can of course also use the XML character entity "` ".

Examples:

o

% @doc ...where the variable ‘Foo' refers to...

P

% @doc ...returns the atom " 'foo@erlang.org'

o°
o°

@doc ...use the command " “erl -name foo''' to...

@doc ...as in the following code:
SE(X) s
case X of

o° o of o of°
0® o° o° o° o°

end' '

@doc ...or in the following:

g(x) ->
fun () -> ... end

® o o o o
o® o° o° o° o°

1.1.12 Macro expansion

Before the content of atag is parsed, the text undergoes macr o expansion. The syntax for macro callsis:

{@name}

or

{@name argument}

where name and ar gument are separated by one or more whitespace characters. The argument can be any text, which
may contain other macro calls. The number of non-escaped "{ @ and "} " delimiters must be balanced.

The argument text is first expanded in the current environment, and the result is bound to the macro parameter,
written { @} . (If no argument is given, { @} isbound to the empty string.) The macro definition is then substituted
for the call, and expansion continues over the resulting text. Recursive macro expansions are not allowed.
User-defined macros
Users can define their own macros by using the def EDoc option; see edoc:file/2 and edoc:get_doc/2 for more
information. User-defined macros override predefined macros.
Predefined macros
{ @at e}

Expands to the current date, as"Mont h Day Year", eg. "Sep 22 2020".
{@ink reference. description}

Thiscreatesahypertext link; cf. the @see function tag above for details. The description text (including the period
separator) is optional; if no text is given, the reference itself is used. For example, { @i nk edoc: fil e/ 2}
createsthe link edoc:file/2,and{ @i nk edoc:fil e/ 2. <enpthis |ink</enp} createsthislink.

10 | Ericsson AB. All Rights Reserved.: EDoc

1.1 Welcome to EDoc

{ @odul e}

Expands to the name of the current module. Only defined when a module is being processed.
{@ection heading}

Expands to a hypertext link to the specified section heading; see Headings for more information.
{@i e}

Expands to the current time, as"Hr : M n: Sec", e.g. "20:23:48".
{@ype type-expression}

Formats a type expression within <code>. . . </ code> markup and with hypertext links for data types.
For example, { @ype {options, List::edoc:option_list()@} generates "{opti ons,
Li st::edoc:option_list()}". (Cf. Escape sequences.)

{@ersion}

Intended for usein @version tags. Defaultsto atimestamp using{ @lat e} and{ @ i ne} . Typically, thismacro
is redefined by the user when an official release of the application is generated.

Escape sequences

To prevent certain characters from being interpreted as delimiters, for example to produce the text "{ @ in the output,
or usea'} ' character in the argument text of a macro call, the following escape sequences may be used:

Q
Expandsto "{ ". Example:

%% @doc A macro call starts with the sequence "@{@".
@
Expandsto "} ". Example:
%% @doc ...{@foo ...{Key, Value@}...}...
@
Expandsto "@. Example:
%% @doc Contact us at support@@{@hostname}

Will generate the text "Contact us at support@vaporware.acme.com” if the macro host nane is bound to
"vapor war e. acrne. cont'. Also:

@doc You might want to write something like
@@foo that will expand to @foo and does not start
a new tag even if it appears first in a line.

o® o of
o® o° o°

1.1.13 Type specifications

Function specifications

Note that although the syntax described in the following can till be used for specifying functions we recommend that
Erlang specifications as described in Types and Function Specification should be added to the source code instead.
This way the analyses of Dialyzer's can be utilized in the process of keeping the documentation consistent and up-

Ericsson AB. All Rights Reserved.: EDoc | 11

1.1 Welcome to EDoc

to-date. Erlang specifications will be used unless there is also a function specification (a @ pec tag followed by a
type) with the same name.

The following grammar describes the form of the specifications following a @ pec tag. A '?' suffix implies that the
element is optional. Function types have higher precedence than union types; e.g., "(atom()) -> atom() |
integer()"isparsedas((atom()) -> atom()) | integer(),notas(atom’)) -> (aton() |
integer()).

FunType "where"?

Def Li st? | Functi onNane
FunType "where"?

Def Li st ?

Spec =

Funct i onName = At om

"“(" UnionTypes? ")" "->"

FunType - Uni onType

Uni onType | Uni onType

Uni onTypes = Uni onTypes

Uni onLi st | Name "

Uni onType n= Uni onLi st

Name n= Vari abl e

Type | Type "+"
Uni onLi st i= UnionList | Type "|"
Uni onLi st

TypeVariable | Atom

| Integer | Float |
Integer ".." Integer

| FunType | "fun("
FunType ")" | "fun(...)"
| “{" UnionTypes? "}"

| "#" Atom"{" Fields?
A 2 I S B

Uni onType "]1" | "["

Uni onType ", " "..."

“T" | "(" UnionType ")"
| BinType | TypeNane
"“(" UnionTypes? ")" |
Modul eNanme ":" TypeNane
“(" UnionTypes? ")"

| “//" AppNane "/"
Modul eNane ":" TypeName
“(" UnionTypes? ")"

Type =

Fi el ds = E: E: SSI Fields ",

Field = At om " =" Uni onLi st

12 | Ericsson AB. All Rights Reserved.: EDoc

1.1 Welcome to EDoc

TypeVari abl es? ")
Uni onType

"<<>>" | "<<" BaseType

5 Ty s it
Unit Type ">>"

BaseType """ I nteger

Uni t Type W wow.wowowowaw | npeger

TypeVari abl e Vari abl e

TypeNanme At om

Modul eNare 2: 82 | Modul eNarme . "

AppNane At om

Def Li st g; L! S?ef LISEe]Pef |
TypeVariable "="

Def Uni onLi st | TypeNane " ("

TypeVari abl es

TypeVari abl e |

TypeVariable ",
TypeVari abl es

Table 1.2: specification syntax grammar

Examples:

-spec my function(X :: integer()) -> integer().

o°

% @doc Creates ...

o°

o

% @spec (X::integer())

oP
o°

o°
o°

o® of
o® o°

List = [term()]

List
Item

[Item]
term()

o o of
o® o° o°

% @spec my function(X::integer()) -> integer()
-> integer()

@spec sqrt(float()) -> float()

@spec pair(S, T) -> {S, T}

@spec append(List, List) -> List

@spec append(A::List, B::List)

Ericsson AB. All Rights Reserved

.. EDoc | 13

1.1 Welcome to EDoc

@spec open(File::filename()) -> FileDescriptor

%% where

%% filename() = string() + atom(),
%% FileDescriptor = term()

%% @spec close(graphics:window()) -> ok

The first example shows the recommended way of specifying functions.

In the above examples, X, A, B, and Fi | e are parameter names, used for referring to the parameters from the
documentation text. The type variables S, T and Li st are used to simplify the type specifications, and may be
supplied with definitions. It is also possible to give definitions for named types, which means that the name is simply
an dias. (Usethe @ ype tag to document abstract data types.) If a named type is defined in another module, it can
bereferredto asvbdul e: TypeNane(. . .) . Notethat the keyword ‘wher e' isoptional before alist of definitions,
and that the definitionsin the list may optionally be separated by ', '

Both the'| ' and the '+' character may be used to separate alternatives in union types; there is no semantic difference.
Notethat the notation[Type] means"proper (nil-terminated) list whose elementsall belongto Type"; For example,
[atom()|i nteger()] meansthe same thing as[at on() +i nteger ()], i.e, aproper list of atoms and/or
integers.

If only atypevariableisgivenfor aparameter, asin"pai r (S, T) -> ... ", thesamevariable namemay implicitly
be used as the parameter name; thereisno need towrite"pai r (S::S, T::T) -> ..."

EDoc automatically extracts possible parameter names from the source code, to be used if no parameter nameis given
in the specification (or if the specification is missing altogether). If thisfails, EDoc will generate adummy parameter
name, such as X1. Thisway, EDoc can often produce helpful documentation even for code that does not contain any
annotations at al.

Type definitions

Note that although the syntax described in the following can still be used for specifying types we recommend that
Erlang types as described in Types and Function Specification should be added to the source code instead. Erlang
types will be used unless there is atype alias with the same name.

The following grammar (see above for auxiliary definitions) describes the form of the definitions that may follow a
@ ype tag:

TypeNane " ("
TypeVari abl es? ")"
Typedef n= Def List? | TypeName " ("

TypeVari abl es? ")
Uni onLi st DefList?

Table 1.3: type definition grammar

(For atruly abstract data type, no equivalenceis specified.) The main definition may be followed by additional local
definitions. Examples:

-type my list(X) :: [X]. %% A special kind of lists ...

-opaque another list(X) :: [X].
%% another list() is a kind of list...

%% @type myList(X). A special kind of lists ...

14 | Ericsson AB. All Rights Reserved.: EDoc

1.1 Welcome to EDoc

%% @type filename() = string(). Atoms not allowed!

@type thing(A) = {thong, A}
A = term()
A kind of wrapper type thingy.

o° o o
o® o° o°

The first two examples show the recommended way of specifying types.

Pre-defined data types
The following data types are predefined by EDoc, and may not be redefined:

any()

arity()

atom()

binary()

bitstring()

bool () (allowed, but use boolean() instead)
boolean()

byte()

char()

cons ()

deep string()

float()

function()

integer()

iodata()

iolist()

list()

maybe _improper list()
mfa()

module()

nil()

neg_integer()

node()

non_neg integer()
nonempty improper list()
nonempty list()
nonempty maybe improper list()
nonempty string()
none()

number()

pid()

port()

pos_integer()
reference()

string()

term()

timeout ()

tuple()

Details:

e any() means"any Erlang datatype".t er n{) issimply andiasfor any() .

e atom(), binary(),float(), function(),integer(), pid(), port() andreference() are
primitive data types of the Erlang programming language.

* bool ean() isthesubset of at on() consisting of theatomst r ue andf al se.

e char () isthesubset of i nt eger () representing Unicode character codes: hex 000000-10FFFF.
o« tuple() isthesetof al tuples{...}.

e |list(T) isjustanadliasfor[T];list()isandiasforli st (any()),i.e,[any()].

e nil() isandiasfortheempty list[] .

Ericsson AB. All Rights Reserved.: EDoc | 15

1.1 Welcome to EDoc

e cons(H, T) is the list constructor. This is usually not used directly. It is possible to recursively define
[ist(T) :=nil()+cons(T,list(T)).

e string() isandiasfor[char()].

 deep_string() isrecursively definedas[char () +deep_string()].

 none() means'"no datatype". E.g., afunction that never returns hastype(...) -> none()

1.1.14 Acknowledgements

Since the first version of EDoc, several people have come up with suggestions (Luke Gorrie, Joe Armstrong, Erik
Stenman, Sean Hinde, UIf Wiger, ...), and some have even submitted code to demonstrate their ideas (Vlad Dumitrescu,
Johan Blom, Vijay Hirani, ...). None of that code was actually included in the Great Rewriting that followed the
initial public release (EDoc version 0.1), but most of the central points were addressed in the new system, such as
better modularization and possibility to plug in different layout engines, and making EDoc understand the application
directory layout.

It is now getting too hard to keep track of all the people who have made further suggestions or submitted bug reports,
but your input is always appreciated. Thank you.

16 | Ericsson AB. All Rights Reserved.: EDoc

1.1 Welcome to EDoc

2 Reference Manual

EDoc is the Erlang program documentation generator. Inspired by the Javadoc (TM) tool for the Java (TM)
programming language, EDoc is adapted to the conventions of the Erlang world, and has several features not found
in Javadoc.

Ericsson AB. All Rights Reserved.: EDoc | 17

edoc

edoc

Erlang module

EDoc - the Erlang program documentation generator.
This module provides the main user interface to EDoc.

 EDoc User Manua
* Running EDoc

DATA TYPES

comment() = {Line, Column, Indentation, Text}
e Line=integer()
e Column = integer()
¢ Indentation = integer()
e Text=[string()]
edoc_module()
The EDoc documentation data for a module, expressed as an XML document in XMerL format. See the file
edoc.dtd for details.

filename() = filexfilename()
proplist() = [term()]

syntaxTree() = erl_syntax:syntaxTree()
Exports

application(Application::atom()) -> ok
Equivalent to application(Application, []).

application(Application::atom(), Options::proplist()) -> ok
Run EDoc on an application in its default app-directory. See application/3 for details.
See also: application/1.

application(Application::atom(), Dir::filename(), Options::proplist()) -> ok
Run EDoc on an application located in the specified directory. Tries to automatically set up good defaults. Unless the
user specifies otherwise:

» Thedoc subdirectory will be used as the target directory, if it exists; otherwise the application directory is used.

» The source code is assumed to be located in the sr ¢ subdirectory, if it exists, or otherwise in the application
directory itself.

» The subpackages option is turned on. All found source files will be processed.

e Thei ncl ude subdirectory isautomatically added to theinclude path. (Only important if preprocessing isturned
on.)

See run/2 for details, including options.

18 | Ericsson AB. All Rights Reserved.: EDoc

href

edoc

See also: application/2.

file(Name::filename()) -> ok
Thisfunction is deprecated: Seefile/2 for details.
Equivalent to file(Name, []).

file(Name::filename(), Options::proplist()) -> ok

Thisfunction isdeprecated: Thisispart of the old interface to EDoc and is mainly kept for backwards compatibility.
The preferred way of generating documentation is through one of the functions application/2 and files/2.

Reads a source code file and outputs formatted documentation to a corresponding file.
Options:
{dir, filename()}

Specifies the output directory for the created file. (By default, the output is written to the directory of the source
file))

{source_suffix, string()}
Specifies the expected suffix of theinput file. The default valueis" . er| "
{file_suffix, string()}
Specifies the suffix for the created file. The default valueis" . ht mi "
See get_doc/2 and layout/2 for further options.
For running EDoc from a Makefile or similar, see edoc_run:file/1.
See also: read/2.

files(Files::[filename()]) -> ok

files(Files::[filename()], Options::proplist()) -> ok
Runs EDoc on agiven set of source files. See run/2 for details, including options.

get doc(File::filename()) -> {ModuleName, edoc module()}
Equivalent to get_doc(File, []).

get doc(File::filename(), Options::proplist()) -> {ModuleName, edoc module()}
Types:
Modul eNane = at on()

Reads a source code file and extracts EDoc documentation data. Note that without an environment parameter (see
get_doc/3), hypertext links may not be correct.

Options:
{def, Macros}
e Macros =Macro | [Macro]
e Macro={Nane::aton(), Text::string()}

Specifies a set of EDoc macro definitions. See Inline macro expansion for details.

Ericsson AB. All Rights Reserved.: EDoc | 19

edoc

{hi dden, bool ean()}

If thevalueist r ue, documentation of hidden functions will also beincluded. The default valueisf al se.
{private, boolean()}

If thevalueist r ue, documentation of private functions will also be included. The default valueisf al se.
{todo, bool ean()}

If thevalueist r ue, To-Do notes written using @ odo or @ ODOtags will be included in the documentation.
The default valueisf al se.

See read_source/2, read_comments/2 and edoc_lib:get_doc_env/3 for further options.
See also: get_doc/3, layout/2, read/2, run/2, edoc_extract:source/5.

get doc(File::filename(), Env::edoc lib:edoc env(), Options::proplist()) ->
{ModuleName, edoc module()}
Types:
Modul eNane = at on{)
Like get_doc/2, but for a given environment parameter. Env is an environment created by edoc_lib:get_doc_env/3.

layout(Doc::edoc_module()) -> string()
Equivalent to layout(Dac, []).

layout(Doc::edoc module(), Options::proplist()) -> string()

Transforms EDoc module documentation data to text. The default layout createsan HTML document.

Options:

{layout, Module::atom)}
Specifies a callback module to be used for formatting. The module must export a function nodul e(Doc,
Opt i ons) . The default callback moduleis edoc layout; see edoc layout:module/2 for layout-specific options.

See also: file/2, layout/1, read/2, run/2.

read(File::filename()) -> string()
Equivalent to read(File, []).

read(File::filename(), Options::proplist()) -> string()
Readsand processesasourcefileand returnsthe resulting EDoc-text asastring. Seeget_doc/2 and layout/2 for options.
See also: file/2.

read comments(File) -> [comment()]
Equivalent to read_comments(File, []).

read comments(File::filename(), Options::proplist()) -> [comment()]

Extracts comments from an Erlang source code file. See the module erl_comment_scan(3) for details on the
representation of comments. Currently, no options are avaliable.

20 | Ericsson AB. All Rights Reserved.: EDoc

edoc

read source(Name::File) -> [syntaxTree()]
Equivalent to read_source(File, []).

read source(File::filename(), Options::proplist()) -> [syntaxTree()]
Reads an Erlang source file and returns the list of "source code form" syntax trees.

Options:

{preprocess, bool ean()}

If thevalueist r ue, the sourcefile will be read viathe Erlang preprocessor (epp). The default valueisf al se.
no_preprocess isanaliasfor{ preprocess, false}.

Normally, preprocessing is not necessary for EDoc to work, but if a file contains too exotic definitions or uses
of macros, it will not be possible to read it without preprocessing. Note: comments in included files will not
be available to EDoc, even with this option enabled.

{includes, Path::[string()]}

Specifiesalist of directory namesto be searched for includefiles, if the pr epr ocess optionisturned on. Also
used with the @header f i | e tag. The default value is the empty list. The directory of the source fileis aways
automatically appended to the search path.

{macros, [{atom(), term()}]}

Specifies alist of pre-defined Erlang preprocessor (epp) macro definitions, used if the pr epr ocess optionis
turned on. The default value is the empty list.

{report_m ssing_types, bool ean()}
If the value is true, warnings are issued for missing types. The default value is fal se.
no_report _nmissing typesisanadiasfor{report_m ssing_types, false}.

See also: erl_syntax(3), get_doc/2.

run(Files::[filename()], Options::proplist()) -> ok

Runs EDoc on a given set of source files. Note that the doclet plugin module has its own particular options; see the
docl et option below.

Also see layout/2 for layout-related options, and get_doc/2 for options related to reading source files.
Options:
{app_default, string()}
Specifies the default base URI for unknown applications.
{application, App::atom()}

Specifies that the generated documentation describes the application App. This mainly affects generated
references.

{dir, filenanme()}
Specifies the target directory for the generated documentation.
{doc_path, [string()]}

Specifiesalist of file system paths pointing to directories that contain EDoc-generated documentation. All paths
for applicationsin the code path are automatically added.

Ericsson AB. All Rights Reserved.: EDoc | 21

edoc

{docl et, Mbdul e::aton()}

Specifies a callback module to be used for creating the documentation. The module must export a function
run(Cmd, Ctxt).Thedefaultdoclet moduleisedoc_doclet; seeedoc_doclet:run/2 for doclet-specific options.

{file_suffix, string()}

Specifies the suffix used for output files. The default valueis ™. ht ml " . Note that this also affects generated
references.

{new, bool ean()}

If thevalueist r ue, any existing edoc- i nf o filein the target directory will be ignored and overwritten. The
default valueisf al se.

{source_path, [filename()]}

Specifies alist of file system paths used to locate the source code for packages.
{source_suffix, string()}

Specifies the expected suffix of input files. The default valueis" . er | "
{subpackages, bool ean()}

If the value ist r ue, al subpackages of specified packages will aso be included in the documentation. The
default valueisf al se. no_subpackages isanadiasfor { subpackages, fal se}.

Subpackage source files are found by recursively searching for source code files in subdirectories of the known
source coderoot directories. (Also seethesour ce_pat h option.) Directory names must begin with alowercase
letter and contain only aphanumeric characters and underscore, or they will be ignored. (For example, a
subdirectory named t est - fi | es will not be searched.)

See also: application/2, files/2.

22 | Ericsson AB. All Rights Reserved.: EDoc

edoc_doclet

edoc_doclet

Erlang module

Standard doclet module for EDoc.

DATA TYPES
doclet_gen() = #doclet_gen{ sources=[string()], app=no_app() | atom(), modules=[atom()]}

doclet_toc() = #doclet_gen{ paths=[string()], indir=string()}
edoc_context() = #context{ dir=string(), env=edoc_lib:edoc_env(), opts=[term()]}

no_app()

A vaue used to mark absence of an Erlang application context. Use the macro NO _APP defined in
edoc_doclet.hrl to produce this value.

Exports

run(Command: :doclet gen() | doclet toc(), Ctxt::edoc context()) -> ok
Main doclet entry point. See the file edoc_doclet.hrl for the data structures used for passing parameters.
Also see edoc:layout/2 for layout-related options, and edoc:get_doc/2 for options related to reading source files.
Options:
{file_suffix, string()}
Specifies the suffix used for output files. The default valueis” . ht mi "
{hi dden, bool ean()}

If the valueist r ue, documentation of hidden modules and functions will also be included. The default value
isfal se.

{overview, edoc:filenane()}

Specifiesthe name of the overview-file. By default, thisdoclet looksfor afile” over vi ew. edoc" inthetarget
directory.

{private, boolean()}

If the value ist r ue, documentation of private modules and functions will also be included. The default value
isfal se.

{stylesheet, string()}

Specifies the URI used for referencing the stylesheet. The default valueis" st yl esheet . css". If an empty
string is specified, no stylesheet reference will be generated.

{styl esheet file, edoc:filenane()}

Specifies the name of the stylesheet file. By default, this doclet usesthefile" st yl esheet . css" inthepri v
subdirectory of the EDoc installation directory. The named file will be copied to the target directory.

{title, string()}
Specifies the title of the overview-page.

Ericsson AB. All Rights Reserved.: EDoc | 23

href
href

edoc_doclet

See also
edoc

24 | Ericsson AB. All Rights Reserved.: EDoc

edoc_extract

edoc_extract

Erlang module

EDoc documentation extraction.

DATA TYPES
edoc_env() = edoc lib:edoc_env()

filename() = filexfilename()
proplist() = proplists:property()
syntaxTree() = erl_syntax:syntaxTree()

Exports

file(File::filename(), Context, Env::edoc_env(), Options::proplist()) -> {ok,
Tags} | {error, Reason}
Types:
Cont ext = overview
Tags = [term()]
Reason = tern()
Reads a text file and returns the list of tags in the file. Any lines of text before the first tag are ignored. Env

is an environment created by edoc lib:get_doc_env/3. Upon error, Reason is an atom returned from the call to
fileeread file/1 or the atom ‘invalid_unicode'.

Seetext/4 for options.

header(File::filename(), Env::edoc env(), Options::proplist()) -> {ok, Tags}
| {error, Reason}
Types:
Tags = [term()]
Reason = term)
Similar to header/5, but reads the syntax tree and the comments from the specified file.

See also: header/4, edoc:read comments/2, edoc:read _source/2.

header(Forms, File::filename(), Env::edoc _env(), Options::proplist()) -> {ok,
Tags} | {error, Reason}
Types:
Forms = syntaxTree() | [syntaxTree()]
Tags = [term()]
Reason = term()
Extracts EDoc documentation from commented header file syntax trees. Similar to source/5, but ignores any

documentation that occurs before a module declaration or a function definition. (Warning messages are printed if
content may be ignored.) Env isassumed to already be set up with a suitable modul e context.

Ericsson AB. All Rights Reserved.: EDoc | 25

edoc_extract

See also: erl_recomment(3), header/5.

header (Forms, Comments::[edoc:comment()], File::filename(), Env::edoc env(),
Options::proplist()) -> {ok, Tags} | {error, Reason}
Types:

Forms = syntaxTree() | [syntaxTree()]

Tags = [term()]

Reason = term()

Similar to header/4, but first insertsthe given commentsin the syntax trees. The syntax treesmust contain valid position
information. (Cf. edoc:read_comments/2.)

See also: erl_recomment(3), header/3, header/4.

source(File::filename(), Env::edoc env(), Options::proplist()) ->
{ModuleName, edoc:edoc module()}
Types:
Modul eNane = at on{)
proplist() = [term()]
Like source/5, but reads the syntax tree and the comments from the specified file.
See also: source/4, edoc:read_comments/2, edoc:read_source/2.

source(Forms, File::filename(),
{ModuleName, edoc:edoc module()}
Types:

Fornms = syntaxTree() | [syntaxTree()]

Modul eNane = at on{)
Extracts EDoc documentation from commented source code syntax trees. The given For ms must be a single syntax
tree of typef orm | i st, or alist of syntax trees representing "program forms" (cf. edoc:read _source/2. Env is an

environment created by edoc_lib:get_doc_env/3. The Fi | e argument is used for error reporting and output file name
generation only.

Env::edoc _env(), Options::proplist()) ->

See edoc:get_doc/2 for descriptions of the def , hi dden, pri vat e, andt odo options.
See also: erl_recomment(3), source/5, edoc:read comments/2, edoc:read source/2.

source(Forms, Comments::[edoc:comment()], File::filename(), Env::edoc env(),
Options::proplist()) -> {ModuleName, edoc:edoc module()}

Types:
Fornms = syntaxTree() | [syntaxTree()]
Modul eNanme = atom()

Like source/4, but first inserts the given comments in the syntax trees. The syntax trees must contain valid position
information. (Cf. edoc:read_comments/2.)

See also: erl_recomment(3), source/3, source/4, edoc:read comments/2, edoc:read source/2.
text(Text::string(), Context, Env::edoc _env(), Options::proplist()) -> Tags

Types:
Cont ext = overvi ew

26 | Ericsson AB. All Rights Reserved.: EDoc

edoc_extract

Tags = [tern()]
Returns the list of tags in the text. Any lines of text before the first tag are ignored. Env is an environment created
by edoc _lib:get_doc_env/3.

See source/4 for a description of the def option.

See also
edoc

Ericsson AB. All Rights Reserved.: EDoc | 27

edoc_layout

edoc_layout

Erlang module

The standard HTML layout module for EDoc. See the edoc module for details on usage.

Exports

module(Element, Options) -> term()
The layout function.
Options to the standard layout:
{index_colums, integer()}
Specifies the number of column pairs used for the function index tables. The default valueis 1.

{pretty printer, atom()}

Specifies how types and specifications are pretty printed. If the value er | _pp is specified the Erlang pretty
printer (the module er | _pp) will be used. The default is to do no pretty printing which implies that lines can
be very long.

{styl esheet, string()}

Specifies the URI used for referencing the stylesheet. The default valueis" st yl esheet . css". If an empty
string is specified, no stylesheet reference will be generated.

{sort_functions, boolean()}

If t r ue, the detailed function descriptions are listed by name, otherwise they arelisted in the order of occurrence
in the source file. The default valueist r ue.

{xm _export, Module::atom)}

Specifies an xmerl callback module to be used for exporting the documentation. See xmerl:export_simple/3 for
details.

See also: edoc:layout/2.
overview(E, Options) -> term()
type(E) -> term()

See also
edoc

28 | Ericsson AB. All Rights Reserved.: EDoc

edoc_lib

edoc_lib

Erlang module

Utility functions for EDoc.

DATA TYPES

edoc_env()

Environment information needed by EDoc for generating references. The data representation is not documented.

proplist() = proplists:property()
Exports

get doc env(App, Modules, Options::proplist()) -> edoc env()
Types.

App =[] | atom()
Modul es = [aton()]

proplist() = [term()]

Creates an environment data structure used by parts of EDoc for generating references, etc. See edoc:run/2 for a
description of the optionsfi | e_suf fi x,app_defaul t anddoc_pat h.

See also: edoc:get_doc/3, edoc_extract:source/4.

write file(Text, Dir, Name, Options) -> term()

See also
edoc

Ericsson AB. All Rights Reserved.: EDoc | 29

edoc_run

edoc_run

Erlang module

Interface for calling EDoc from Erlang startup options.
The following is an example of typical usagein a Makefile:

docs:
erl -noshell -run edoc run application "'$(APP_NAME)'" \
III.III I[{def,{vsn,"$(vSN)"}}]I

(note the single-quotes to avoid shell expansion, and the double-quotes enclosing the strings).

New featurein version 0.6.9: It isno longer necessary towrite-s i nit st op last onthe command linein order
to make the execution terminate. The termination (signalling success or failure to the operating system) is now built
into these functions.

Exports

application(Args::[string()]) -> none()

Calls edoc:application/3 with the corresponding arguments. The stringsin thelist are parsed as Erlang constant terms.
Thelist canbeeither [App] ,[App, Options] or[App, Dir, Options].Inthefirst caseedoc:application/1
is called instead; in the second case, edoc:application/2 is called.

The function call never returns; instead, the emulator is automatically terminated when the call has completed,
signalling success or failure to the operating system.

file(Args::[string()]) -> none()

Thisfunction isdeprecated: Thisispart of the old interface to EDoc and is mainly kept for backwards compatibility.
The preferred way of generating documentation is through one of the functions application/1 and files/1.

Calls edoc:file/2 with the corresponding arguments. The stringsin thelist are parsed as Erlang constant terms. Thelist
canbeeither[File] or[Fil e, Options].Inthefirst case, an empty list of optionsis passed to edoc:file/2.

The following is an example of typical usagein a Makefile:

$(DOCDIR)/%.html:%.erl
erl -noshell -run edoc run file '"$<"' '[{dir,"$(DOCDIR)"}]"' \
-s init stop

The function call never returns; instead, the emulator is automatically terminated when the call has completed,
signalling success or failure to the operating system.

files(Args::[string()]) -> none()

Calls edoc:files/2 with the corresponding arguments. The strings in the list are parsed as Erlang constant terms. The
listcanbeeither [Fi | es] or[Fil es, Opti ons].Inthefirst case, edoc:files/1is called instead.

The function call never returns; instead, the emulator is automatically terminated when the call has completed,
signalling success or failure to the operating system.

See also
edoc

30 | Ericsson AB. All Rights Reserved.: EDoc

	EDoc
	EDoc User's Guide
	Welcome to EDoc

	Contents
	Introduction
	Running EDoc
	The overview page
	Generic tags
	Overview tags
	Module tags
	Function tags
	References
	Notes on XHTML
	Wiki notation
	Empty lines separate paragraphs
	Headings
	External links
	TODO-notes
	Verbatim quoting

	Macro expansion
	User-defined macros
	Predefined macros
	Escape sequences

	Type specifications
	Function specifications
	Type definitions
	Pre-defined data types

	Acknowledgements

	Reference Manual
	edoc
	application/1
	application/2
	application/3
	file/1
	file/2
	files/1
	files/2
	get_doc/1
	get_doc/2
	get_doc/3
	layout/1
	layout/2
	read/1
	read/2
	read_comments/1
	read_comments/2
	read_source/1
	read_source/2
	run/2

	edoc_doclet
	run/2

	edoc_extract
	file/4
	header/3
	header/4
	header/5
	source/3
	source/4
	source/5
	text/4

	edoc_layout
	module/2
	overview/2
	type/1

	edoc_lib
	get_doc_env/3
	write_file/4

	edoc_run
	application/1
	file/1
	files/1

