ERLANG

System Architecture Support Libraries
(SASL)

Copyright © 1997-2020 Ericsson AB. All Rights Reserved.
System Architecture Support Libraries (SASL) 4.0.1
September 22, 2020

Copyright © 1997-2020 Ericsson AB. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance
with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless
required by applicable law or agreed to in writing, software distributed under the License is distributed on an
"AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See

the License for the specific language governing permissions and limitations under the License. Ericsson AB. All
Rights Reserved..

September 22, 2020

1.1 Introduction

1 SASL User's Guide

The System Architecture Support Libraries SASL application provides support for alarm handling, release handling,
and related functions.

1.1 Introduction

1.1.1 Scope

The SASL application provides support for:
e Error logging

e Alarm handling

* Reease handling

* Report browsing

Section SASL Error Logging describes the error handler that produces the supervisor, progress, and crash reports,
which can be written to screen or to a specified file. It also describes the Report Browser (RB).

The sections about rel ease structure and rel ease handling have been moved to section OTP Design Principlesin System
Documentation.

1.1.2 Prerequisites

It is assumed that the reader is familiar with the Erlang programming language.
1.2 SASL Error Logging

The SASL error logging concept described in this section is deprecated since Erlang/OTP 21.0, when the new
logging API was introduced.

The new default behaviour is that the SASL application no longer affects which log events that are logged.
Supervisor reports and crash reports are logged via the default logger handler which is setup by Kernel. Progress
reports are by default not logged, but can be enabled by setting the primary log level to i nf o, for example by
using the Kernel configuration parameter | ogger _| evel .

The old SASL error logging behaviour can be re-enabled by setting the Kernel configuration parameter
| ogger _sasl _conpati bl etot rue.

The mechanism for multi-file error report logging as described in this section is also kept for backwards
compatibility. However, the new logging APl also introduces | ogger _di sk_I og_h(3), which is a logger
handler that can print to multiple filesusing di sk_I og(3) .

1.2.1 SASL reports

The SASL application introduces three types of reports:
* Supervisor report

Ericsson AB. All Rights Reserved.: System Architecture Support Libraries (SASL) | 1

1.2 SASL Error Logging

e Progressreport

e Crashreport

When the SASL application is started, it adds a Logger handler that formats and writes these reports, as specified in
the configuration parameters for SASL.

Supervisor Report

A supervisor report is issued when a supervised child terminates unexpectedly. A supervisor report contains the
following items:

Super vi sor
Name of the reporting supervisor.
Cont ext

Indicates in which phase the child terminated from the supervisor's point of view. Thiscanbestart _error,
chil d_t erm nat ed, or shut down_error.

Reason
Termination reason.
O f ender
Start specification for the child.

Progress Report
A progress report isissued when a supervisor starts or restarts achild. A progress report contains the following items:
Super vi sor
Name of the reporting supervisor.
Started
Start specification for the successfully started child.

Crash Report

Processes started with functions pr oc_1 i b: spawn or proc_l i b: spawn_I i nk are wrapped within acat ch.
A crash report is issued when such a process terminates with an unexpected reason, which is any reason other
than nor mal , shut down, or { shut down, Ter n}. Processes using behaviors gen_server, gen_fsmor
gen_st at emare examples of such processes. A crash report contains the following items:

Crasher
Information about the crashing process, such asinitial function call, exit reason, and message queue.
Nei ghbour s

Information about processes that are linked to the crashing process and do not trap exits. These processes are the
neighbours that terminate because of this process crash. The information gathered is the same as the information
for Crasher, described in the previous item.

Example

The following example shows the reports generated when a process crashes. The example processisaper manent
process supervised by thet est _sup supervisor. A division by zero is executed and the error is first reported by
thefaulty process. A crash report is generated, as the process was started using function pr oc_| i b: spawn/ 3. The
supervisor generates a supervisor report showing the crashed process. A progressreport is generated when the process
isfinally restarted.

2 | Ericsson AB. All Rights Reserved.: System Architecture Support Libraries (SASL)

1.2 SASL Error Logging

=ERROR REPORT==== 27-May-1996::13:38:56 ===
<0.63.0>: Divide by zero !

=CRASH REPORT==== 27-May-1996::13:38:56 ===
crasher:

pid: <0.63.0>

registered name: []
error_info: {badarith,{test,s,[]1}}
initial call: {test,s,[]}
ancestors: [test sup,<0.46.0>]
messages: []

links: [<0.47.0>]

dictionary: []

trap exit: false

status: running

heap size: 128

stack size: 128

reductions: 348

neighbours:

=SUPERVISOR REPORT==== 27-May-1996::13:38:56 ===
Supervisor: {local,test sup}

Context: child terminated

Reason: {badarith, {test,s,[1}}

Offender: [{pid,<0.63.0>},

{name, test},

{mfa, {test,t,[1}},

{restart_type,permanent},

{shutdown, 200},

{child type,worker}]

=PROGRESS REPORT==== 27-May-1996::13:38:56 ===
Supervisor: {local,test sup}

Started: [{pid,<0.64.0>},

{name, test},

{mfa, {test,t,[1}},

{restart_type,permanent},

{shutdown, 200},

{child type,worker}]

1.2.2 Multi-File Error Report Logging

Multi-file error report logging is used to store error messages received by er r or _| ogger . The error messages are
stored in several files and each file is smaller than a specified number of kilobytes. No more than a specified number
of files exist at the same time. Thelogging is very fast, as each error message is written as a binary term.

For more details, seethe sasl (6) application in the Reference Manual.

1.2.3 Report Browser

The report browser is used to browse and format error reports written by the error logger handler | og_nf _h defined
in STDLIB.

Thel og_nf _h handler writesall reportsto areport logging directory, which is specified when configuring the SASL
application.

If the report browser is used offline, the reports can be copied to another directory specified when starting the browser.
If no such directory is specified, the browser reads reports from the SASL error _| ogger _nf _dir.

Starting Report Browser

Start ther b_ser ver with functionr b: start ([Opti ons]) asshown in thefollowing example:

Ericsson AB. All Rights Reserved.: System Architecture Support Libraries (SASL) | 3

1.2 SASL Error Logging

5> rb:start([{max, 20}]).
rb: reading report...done.
rb: reading report...done.
rb: reading report...done.
rb: reading report...done.
{ok,<0.199.0>}

Online Help

Enter command r b: hel p() to accessthe report browser online help system.

List Reports in Server
Usefunctionr b: |'i st () tolistall loaded reports:

4> rb:list().

No Type Process Date Time
20 progress <0.17.0> 1996-10-16 16:14:54
19 progress <0.14.0> 1996-10-16 16:14:55
18 error <0.15.0> 1996-10-16 16:15:02
17 progress <0.14.0> 1996-10-16 16:15:06
16 progress <0.38.0> 1996-10-16 16:15:12
15 progress <0.17.0> 1996-10-16 16:16:14
14 progress <0.17.0> 1996-10-16 16:16:14
13 progress <0.17.0> 1996-10-16 16:16:14
12 progress <0.14.0> 1996-10-16 16:16:14
11 error <0.17.0> 1996-10-16 16:16:21
10 error <0.17.0> 1996-10-16 16:16:21
9 crash report release handler 1996-10-16 16:16:21
8 supervisor report <0.17.0> 1996-10-16 16:16:21
7 progress <0.17.0> 1996-10-16 16:16:21
6 progress <0.17.0> 1996-10-16 16:16:36
5 progress <0.17.0> 1996-10-16 16:16:36
4 progress <0.17.0> 1996-10-16 16:16:36
3 progress <0.14.0> 1996-10-16 16:16:36
2 error <0.15.0> 1996-10-16 16:17:04
1 progress <0.14.0> 1996-10-16 16:17:09
ok

Show Reports
Usefunction r b: show(Nurnber) to show details of a specific report:

4 | Ericsson AB. All Rights Reserved.: System Architecture Support Libraries (SASL)

1.2 SASL Error Logging

7> rb:show(4).

PROGRESS REPORT

<0.20.0> 1996-10-16 16:16:36

supervisor
started
[{pid,<0.24.0>},

{local,sasl sup}

{name, release handler},
{mfa, {release handler,start link,[]1}},
{restart_type,permanent},

{shutdown, 2000},

{child type,worker}]

ok
8> rb:show(9).

CRASH REPORT <0.24.0> 1996-10-16 16:16:21

Crashing process
pid

registered name
error_info

<0.24.0>
release handler
{undef, {release _handler,mbj func,[]1}}

initial call
{gen,init it,

[gen server,
<0.20.0>,
<0.20.0>,

{erlang, register},
release handler,
release handler,
[1,

[11%}

ancestors [sasl sup,<0.18.0>]
messages [1
links [<0.23.0>,<0.20.0>]
dictionary []
trap exit false
status running
heap size 610
stack size 142
reductions 54
ok

Search Reports

All reports containing acommon pattern can be shown. Suppose a process crashes becauseit triesto call anon-existing
functionr el ease_handl er: nbj _func/ 1. The reports can then be shown as follows:

Ericsson AB. All Rights Reserved.: System Architecture Support Libraries (SASL) | 5

1.2 SASL Error Logging

12> rb:grep("mbj func").
Found match in report number 11

ERROR REPORT <0.24.0>

1996-10-16 16:16:21

** undefined function: release handler:mbj func[] **

Found match in report number 10

ERROR REPORT <0.24.0>

1996-10-16 16:16:21

** Generic server release handler terminating
** Last message in was {unpack release,hej}
** When Server state == {state,[],

"/home/dup/otp2/0tp beam sunos5 |

[{release,

"OTP APN 181 01",

"P1G",

undefined,

[1,

permanent}],

undefined}

** Reason for termination ==

plg 7",

** {undef, {release handler,mbj func,[]1}}

Found match in report number 9

CRASH REPORT <0.24.0>

1996-10-16 16:16:21

Crashing process
pid

registered name
error_info
initial call
{gen,init it,
[gen server,
<0.20.0>,
<0.20.0>,
{erlang, register},
release handler,
release handler,
[1,

[11}

ancestors
messages
links
dictionary
trap exit
status
heap size
stack size
reductions

Found match in report number 8

SUPERVISOR REPORT <0.20.0>

<0.24.0>
release handler
{undef, {release _handler,mbj func,[]1}}

[sasl sup,<0.18.0>]
[
[<0.23.0>,<0.20.0>]
[

false

running

610

142

54

1996-10-16 16:16:21

Reporting supervisor

Child process
errorContext
reason

pid

name

6 | Ericsson AB. All Rights Reserved

{local,sasl sup}

child terminated

{undef, {release _handler,mbj func,[]1}}
<0.24.0>

release handler

.. System Architecture Support Libraries (SASL)

1.2 SASL Error Logging

start function {release _handler,start link,[]}
restart type permanent
shutdown 2000
child type worker
ok

Stop Server

Usefunctionr b: st op() tostoptherb_server:

13> rb:stop().
ok

Ericsson AB. All Rights Reserved.: System Architecture Support Libraries (SASL) | 7

1.2 SASL Error Logging

2 Reference Manual

The SASL application provides support for alarm handling, release handling, and related functions.

8 | Ericsson AB. All Rights Reserved.: System Architecture Support Libraries (SASL)

sasl

sasl
Application

The SASL application provides the following services:

e alarm handl er
« rel ease_handl er
e systools

‘ The SASL application in OTP has nothing to do with "Simple Authentication and Security Layer" (RFC 4422). ‘

Configuration

The following configuration parameters are defined for the SASL application. For more information about
configuration parameters, seeapp(4) inKerndl.

All configuration parameters are optional .
start_prg = string()

Specifiesthe program to be used when restarting the system during release installation. Default is $OTP_ROOT/
bin/start.

masters = [atom()]

Specifies the nodes used by this node to read/write release information. This parameter isignored if parameter
client_directory isnot set.

client_directory = string()

Thisparameter specifiestheclient directory at the master nodes. For details, see Release Handlingin OTP Design
Principles. This parameter isignored if parameter mast er s isnot set.

static_emrmulator = true | fal se

Indicatesif the Erlang emulator is statically installed. A node with a static emulator cannot switch dynamically to
anew emulator, asthe executable files are written into memory statically. This parameter isignored if parameters
mast ers andcl i ent _directory arenot set.

rel eases _dir = string()

Indicates where the r el eases directory is located. The release handler writes al its files to this directory.
If this parameter is not set, the OS environment parameter RELDI R is used. By default, thisis $OTP_ROOT/
rel eases.

Deprecated Error Logger Event Handlers and Configuration

In Erlang/OTP 21.0, anew API for logging was added. Theold er r or _| ogger event manager, and event handlers
running on this manager, still work, but they are not used by default.

The error logger event handlers sasl _report _tty h and sasl _report_file_h, were earlier used for
printing the so called SASL reports, i.e. supervisor reports, crash reports, and progress reports. These reports
are now also printed by the default logger handler started by the Kernel application. Progress reports are by default
stopped by the primary log level, but can be enabled by setting this level to i nf o, for example by using the Kernel
configuration parameter | ogger _| evel .

Ericsson AB. All Rights Reserved.: System Architecture Support Libraries (SASL) | 9

sasl

If the old error logger event handlers are dill desired, they must be added by calling
error _| ogger:add_report_handler/1, 2.

sasl _report_tty h

Formats and writes supervisor reports, crash reports, and progressreportstost di 0. Thiserror logger event
handler useser r or _| ogger _f or mat _dept h in the Kernel application to limit how much detail is printed
in crash and supervisor reports.

sasl _report _file_h

Formats and writes supervisor reports, crash report, and progress report to a single file. This error logger
event handler useser r or _| ogger _f ormat _dept h in the Kernel application to limit the details printed in
crash and supervisor reports.

A similar behaviour, but still using the new logger API, can be obtained by setting the Kernel application environment
variablel ogger _sasl _conpati bl etot r ue. Thisaddsasecond instance of the standard L ogger handler, named
sasl , which only printsthe SASL reports. No SASL reports are then printed by the Kernel logger handler.

Thesasl| handler is configured according to the values of the following SASL application environment variables.
sasl _error_l ogger = Val ue
Val ue isone of the following:
tty
Installssasl _report _tty hintheerror logger. Thisisthe default option.
{file, FileNane}

Installssasl _report _fil e_hintheerror logger. All reports go to file Fi | eNamre, which isastring.
Thefileisopened inwr i t e mode with encoding ut f 8.

{file, Fil eName, Mbdes}

Sameas{fil e, Fi | eNane}, except that Modes allows you to specify the modes used for opening the
Fi | eName giventothefile:open/2 call. By default, thefileisopenedinwr i t € modewith encoding ut f 8.
Use[append] to havethe Fi | eNare open in append mode. A different encoding can also be specified.
Fi | eName isastring.

fal se
No SASL error logger handler isinstalled.
errlog_type = error | progress | all

Restricts the error logging performed by the specified sasl _error _| ogger to error reports or progress
reports, or both. Default isal | .

utc_log = true | false

If settotrue, all datesin textual log outputs are displayed in Universal Coordinated Time with the string UTC
appended.

Theerror logger event handler | og_nf _h can also till be used. This event handler writes all events sent to the error
logger to disk. Multiple files and log rotation are used. For efficiency reasons, each event is written as a binary. For
more information about this handler, see the STDLIB Reference Manual.

To activate this event handler, three SASL configuration parameters must be set:
error_logger_nf_dir = string() | false

Specifies in which directory | og_nf _h is to store its files. If this parameter is undefined or f al se, the
I og_nf _h handler isnot installed.

10 | Ericsson AB. All Rights Reserved.: System Architecture Support Libraries (SASL)

sasl

error_|l ogger _nf _maxbytes = integer()

Specifies the maximum size of each individua file written by | og_nf _h. If this parameter is undefined, the
| og_nf _h handler isnot installed.

error _| ogger _nf_maxfiles = 0O<integer()<256

Specifies the number of filesused by | og_nf _h. If this parameter is undefined, thel og_nf _h handler is not
installed.

Thenew | ogger _di sk_| og_h mightbeanalternativetol og_nf _h if log rotation isdesired. Thisdoes, however,
write the log eventsin clear text and not as binaries.

See Also

al arm _handl er (3) ,error _| ogger (3),l ogger(3),l og_nf_h(3),rb(3),rel ease_handl er (3),
syst ool s(3)

Ericsson AB. All Rights Reserved.: System Architecture Support Libraries (SASL) | 11

alarm_handler

alarm_handler

Erlang module

Theaarm handler processisagen_event event manager process that receives alarmsin the system. This processis
not intended to be a complete alarm handler. It defines a place to which alarms can be sent. One simple event handler
isinstalled in the alarm handler at startup, but users are encouraged to write and install their own handlers.

The simple event handler sends all alarms as info reports to the error logger, and saves all in alist. This list can
be passed to a user-defined event handler, which can be installed later. The list can grow large if many alarms are
generated. Thisisagood reason to install a better user-defined handler.

Functions are provided to set and clear alarms. The alarm format is defined by the user. For example, an event handler
for SNMP can be defined, together with an alarm Management Information Base (MI1B).

The alarm handler is part of the SASL application.
When writing new event handlers for the alarm handler, the following events must be handled:
{set _alarm {Alarmd, AlarnmDescr}}
Thisevent isgenerated by al ar m handl er: set _al arm({Al arnml d, Al arnDecsr}).
{clear_alarm Al arm d}
Thisevent isgenerated by al ar m_handl er: cl ear _al arm(Al arm d) .

The default simple handler is «cdled alarm handl er and it can be exchanged
by «cdling gen_event:swap_handler/3 as gen_event:swap_handl er (al arm handl er,
{al ar m_handl er, swap}, { NewHandl er, Args}). NewHandl er:init({Args,
{al arm handl er, Al arns}}) iscalled. For more details, seegen_event (3) in STDLIB.

Exports

clear alarm(AlarmId) -> void()
Types:
Alarmd = term))
Sendsevent cl ear _al ar mto all event handlers.
When receiving this event, the default simple handler clears the latest received alarm with id Al ar m d.

get alarms() -> [alarm()]
Returnsalist of all active alarms. This function can only be used when the ssmple handler isinstalled.

set alarm(alarm())

Types:
alarn() = {Alarm d, Al arnmDescription}
Alarmd = tern()
Al armDescription = tern()

Sendsevent set _al ar mto all event handlers.

When receiving this event, the default simple handler stores the alarm. Al ar ml d identifies the alarm and is used
when the alarmis cleared.

12 | Ericsson AB. All Rights Reserved.: System Architecture Support Libraries (SASL)

alarm_handler

See Also

error _| ogger(3),gen_event (3)

Ericsson AB. All Rights Reserved.: System Architecture Support Libraries (SASL) | 13

rb

rb

Erlang module

The Report Browser (RB) tool isused to browse and format error reportswritten by theerror logger handlerl og_nf _h
in STDLIB.

Exports

filter(Filters)
filter(Filters, Dates)
Types:

Filters = [filter()]

filter() = {Key, Value} | {Key, Value, no} | {Key, RegkExp, re} | {Key,
RegExp, re, no}

Key = term)
Value = term)

RegExp = string() | {string(), Options} | re:np() | {re:mp(), Options}
Dates = {DateFrom DateTo} | {DateFrom fron} | {DateTo, to}
Dat eFrom = Dat eTo = cal endar: dateti ne()

Displays the reports that match the provided filters.
When afilter includes the no atom, it excludes the reports that match that filter.

The reports are matched using the pr opl i st s module in STDLIB. The report must be a proplist to be matched
against any of thefilters.

If thefilter hastheform { Key, RegExp, r e}, thereport must contain an element with key equal to Key and the
value must match the regular expression RegExp.

If parameter Dat es is specified, the reports are filtered according to the date when they occurred. If Dat es hasthe
form { Dat eFr om front, reportsthat occurred after Dat eFr omare displayed.

If Dat es hastheform { Dat eTo, t 0}, reportsthat occurred before Dat eTo are displayed.
If two Dat es are specified, reports that occurred between those dates are returned.

To filter only by dates, specify the empty list astheFi | t er s parameter.

For details about parameter RegExp, seer b: grep/ 1.

For details about datatype np() , seere: mp() .

For details about datatype dat et i ne(), seecal endar: dateti me().

grep(RegExp)
Types:
RegExp = string() | {string(), Options} | re:np() | {re:nmp(), Options}
All reports matching the regular expression RegExp are displayed. RegExp can be any of the following:
e A string containing the regular expression
* A tuplewith the string and the options for compilation
* A compiled regular expression

14 | Ericsson AB. All Rights Reserved.: System Architecture Support Libraries (SASL)

rb

* A compiled regular expression and the options for running it

For a definition of valid regular expressions and options, see the r e module in STDLIB and in particular function
re:run/ 3.

For details about datatype np() , seere: mp() .

h()
help()

Displays online help information.

list()
list(Type)
Types:
Type = type()
type() = error | error_report | info_nsg | info_report | warning_mnsg |

war ni ng_report | crash_report | supervisor_report | progress

Listsall reportsloaded inr b_ser ver . Each report is given a unique number that can be used as a reference to the
report in function show' 1.

If no Type is specified, al reports are listed.

log list()
log list(Type)
Types.
Type = type()
type() = error | error_report | info_nsg | info_report | warning_nsg
warni ng_report | crash_report | supervisor_report | progress
Sameasfunctions! i st/ 0orli st/ 1,buttheresultisprintedtoalogfile, if set; otherwiseto st andar d_i o.

If no Type is specified, all reports are listed.

rescan()
rescan(Options)
Types.

Options = [opt()]

Rescans the report directory. Opt i ons isthe sameasfor functionst art/ 1.

show ()
show(Report)
Types:
Report = integer() | type()

If argument t ype is specified, al loaded reports of this type are displayed. If an integer argument is specified, the
report with this reference number is displayed. If no argument is specified, al reports are displayed.

Ericsson AB. All Rights Reserved.: System Architecture Support Libraries (SASL) | 15

rb

start()

start(Options)

Types:
Options = [opt()]
opt() = {start_log, FileNane} | {max, MaxNoOf Reports} | {report_dir,
DirString} | {type, ReportType} | {abort_on_error, Bool}

FileName = string() | atom() | pid()
MaxNoCOf Reports = integer() | all
DirString = string()

Report Type = type() | [type()] | all
Bool = bool ean()

Function st art/ 1 startsr b_ser ver with the specified options, whereas function st art / 0 starts with default
options. r b_ser ver must be started before reports can be browsed. Whenr b_ser ver is started, the filesin the
specified directory are scanned. The other functions assume that the server has started.

Options:
{start | og, FileNane}

Startsloggingtofile, registered name, ori o_devi ce. All reportsare printed to the specified destination. Default
isstandard_i o.Option{start | og, standard_error} isnotalowedandwill bereplaced by default
standard_i o.

{max, MaxNoCOf Report s}

Controls how many reportsr b_ser ver istoread at startup. This option isuseful, asthe directory can contain a
large amount of reports. If thisoption isspecified, the MaxNoCOf Repor t s latest reportsareread. Defaultisal | .

{report _dir, DirString}

Defines the directory where the error log files are located. Default is the directory specified by application
environment variableer r or _| ogger _nf _di r, see sadl(6).

{type, ReportType}
Controls what kind of reportsr b_ser ver istoread at startup. Report Type is a supported type, al | , or a
list of supported types. Defaultisal | .

{abort_on_error, Bool}

Specifiesif logging isto be ended if r b encounters an unprintable report. (Y ou can get areport with an incorrect
form if functionerr or _| ogger,error _mnsg, ori nf o_nsg has been called with an invalid format string)

e IfBool istrue,rb stopslogging (and prints an error message to st dout) if it encounters a badly
formatted report. If logging to file is enabled, an error message is appended to the log file as well.

« If Bool isf al se (thedefault value), r b prints an error message to st dout for every bad report it
encounters, but the logging process is never ended. All printable reports are written. If logging tofileis
enabled, r b prints* UNPRI NTABLE REPORT * inthelogfile at the location of an unprintable report.

start_log(FileName)
Types:
FileName = string() | atom() | pid()
Redirects all report output from the RB tool to the specified file, registered name, ori 0_devi ce.

16 | Ericsson AB. All Rights Reserved.: System Architecture Support Libraries (SASL)

rb

stop()
Stopsr b_server.

stop log()
Closesthelog file. The output from the RB tool isdirected to st andar d_i o.

Ericsson AB. All Rights Reserved.: System Architecture Support Libraries (SASL) | 17

release_handler

release_handler

Erlang module

The release handler process belongs to the SASL application, which is responsible for release handling, that is,
unpacking, installation, and removal of release packages.

Anintroduction to release handling and an exampleis provided in OTP Design Principlesin System Documentation.

A release package is a compressed tar file containing code for a certain version of a release, created by calling
syst ool s: make_tar/ 1, 2. The release package is to be located in the $ROOT/ r el eases directory of the
previous version of the release, where $ROOT is the instalation root directory, code: r oot _di r () . Another
rel eases directory can be specified using the SASL configuration parameter r el eases_dir or the OS
environment variable RELDI R. The release handler must have write access to this directory to install the new release.
The persistent state of the release handler is stored therein afile called RELEASES.

A release package is always to contain:;
* Avreleaseresourcefile, Name. r el
e A boot script, Name. boot

The. r el file contains information about the release: its name, version, and which ERTS and application versions
it uses.

A release package can also contain:

» Avrdeaseupgradefile rel up
* A system configuration file, sys. confi g
* A system configuration sourcefile, sys. confi g. src

Ther el up file contains instructions for how to upgrade to, or downgrade from, this version of the release.

The release package can be unpacked, which extracts the files. An unpacked release can be installed. The currently
used version of the release is then upgraded or downgraded to the specified version by evaluating the instructions in
ther el up file. Aninstalled rel ease can be made per manent. Only one permanent rel ease can exist in the system, and
thisreleaseisused if the system is restarted. An installed release, except the permanent one, can be removed. When
arelease isremoved, all files belonging to that release only are del eted.

Each release version has a status, which can be unpacked, curr ent , per manent , or ol d. There is always one
latest rel ease, which either hasstatusper manent (normal case) or cur r ent (installed, but not yet made permanent).
The meaning of the status values are illustrated in the following table:

Status Action NextStatus

- unpack unpacked

unpacked install current
remove -

current make permanent permanent
install other old
remove -

permanent make other permanent old
install permanent

old reboot old permanent
install current
remove -

The release handler processis alocally registered process on each node. When arelease isinstalled in a distributed
system, the release handler on each node must be called. The release installation can be synchronized between nodes.

18 | Ericsson AB. All Rights Reserved.: System Architecture Support Libraries (SASL)

release_handler

From an operator view, it can be unsatisfactory to specify each node. The aim is to install one release package in
the system, no matter how many nodes there are. It is recommended that software management functions are written
that take care of this problem. Such a function can have knowledge of the system architecture, so it can contact each
individual release handler to install the package.

For release handling to work properly, the runtime system must know which releaseit isrunning. It must also be able
to change (in runtime) which boot script and system configuration file are to be used if the system is restarted. This
is taken care of automatically if Erlang is started as an embedded system. Read about this in Embedded System in
System Documentation. In this case, the system configuration file sys. conf i g is mandatory.

Theinstallation of a new release can restart the system. Which program to use is specified by the SASL configuration
parameter st art _pr g, which defaultsto $ROOT/ bi n/ st art .

The emulator restart on Windows NT expects that the system is started using the er | sr v program (as a service).
Furthermore, the release handler expects that the service is named NodeNane_Rel ease, where NodeNane isthe
first part of the Erlang node name (up to, but not including the "@") and Rel ease is the current release version.
Therelease handler furthermore expectsthat aprogramlikest art _er | . exe isspecified as"machine" toer | srv.
During upgrading with restart, anew service isregistered and started. The new serviceis set to automatic and the old
service is removed when the new release is made permanent.

The release handler at a node running on a diskless machine, or with a read-only file system, must be configured
accordingly using the following SASL configuration parameters (for details, see sasl(6)):

masters

This node uses some master nodes to store and fetch release information. All master nodes must be operational
whenever release information is written by this node.

client_directory
Thecl i ent _di rect ory inthedirectory structure of the master nodes must be specified.
static_emul at or

This parameter specifies if the Erlang emulator is statically installed at the client node. A node with a static
emulator cannot dynamically switch to anew emulator, asthe executablefiles are statically written into memory.

The release handler can also be used to unpack and install rel ease packages when not running Erlang as an embedded
system. However, in this case the user must somehow ensure that correct boot scripts and configuration files are used
if the system must be restarted.

Functions are provided for using another file structure than the structure defined in OTP. These functions can be used
to test arelease upgrade locally.

Exports

check install release(Vsn) -> {ok, OtherVsn, Descr} | {error, Reason}
check install release(Vsn,Opts) -> {ok, OtherVsn, Descr} | {error, Reason}
Types:

Vsn = GtherVsn = string()

Opts = [Opt]

Opt = purge

Descr = tern()

Reason = term()

Checks if the specified version Vsn of the release can be installed. The release must not have status cur r ent .
Issueswarningsif r el up fileor sys. confi g isnot present. If r el up fileis present, its contents are checked and

Ericsson AB. All Rights Reserved.: System Architecture Support Libraries (SASL) | 19

release_handler

{error, Reason} isreturned if an error isfound. Also checksthat all required applications are present and that all
new code can be loaded; { er r or , Reason} isreturned if an error isfound.

Evaluates al instructions that occur before the poi nt _of _no_r et ur n instruction in the rel ease upgrade script.
Returnsthesameasi nstal | _rel ease/ 1. Descr defaultsto ™" if nor el up fileisfound.

If option pur ge is specified, all old code that can be soft-purged is purged after all other checks are successfully
completed. This can be useful to reducethetimeneeded by i nstal | _rel ease/ 1.

create RELEASES(Root, RelDir, RelFile, AppDirs) -> ok | {error, Reason}
Types.

Root = RelDir = RelFile = string()

AppDirs = [{App, Vsn, Dir}]

App = atomn()

Vsn = Dir = string()

Reason = term()
Creates an initial RELEASES file to be used by the release handler. Thisfile must exist to install new rel eases.

Root isthe root of the installation ($ROO0T) as described earlier. Rel Di r is the directory where the RELEASES
fileisto be created (normally $ROCT/ r el eases). Rel Fi | e isthe name of the. r el filethat describestheinitial
release, including the extension . r el .

AppDi r s can be used to specify from where the modules for the specified applications are to be loaded. App isthe
name of an application, Vsn is the version, and Di r is the name of the directory where App- Vsn is located. The
corresponding modules are to be located under Di r / App- Vsn/ ebi n. The directories for applications not specified
in AppDi r s are assumed to be located in $ROOT/ | i b.

install file(Vsn, File) -> ok | {error, Reason}
Types:

Vsn = File = string()

Reason = term()

Installs a release-dependent file in the release structure. The release-dependent file must be in the release structure
when anew releaseisinstalled: st art . boot ,r el up,andsys. confi g.

The function can be called, for example, when these files are generated at the target. The function isto be called after
set _unpacked/ 2 hasbeen called.

install release(Vsn) -> {ok, OtherVsn, Descr} | {error, Reason}

install release(Vsn, [Opt]) -> {ok, OtherVsn, Descr} |
{continue after restart, OtherVsn, Descr} | {error, Reason}

Types:
Vsn = GtherVsn = string()
Opt = {error_action, Action} | {code_change_ tineout, Ti nmeout}

| {suspend_tineout, Tinmeout} | {update_paths, Bool}
Action = restart | reboot
Timeout = default | infinity | pos_integer()
Bool = bool ean()
Descr = tern()

20 | Ericsson AB. All Rights Reserved.: System Architecture Support Libraries (SASL)

release_handler

Reason = {illegal _option, Opt} | {already_ installed, Vsn} |
{change_appl data, tern()} | {missing_base app, O herVsn, App} |
{coul d_not _create_hybrid _boot, term()} | term)

App = aton()
Installs the specified version Vsn of the release. Looks first for a rel up file for Vsn and a script
{UpFronvVsn, Descr 1, I nstructionsl} in thisfilefor upgrading from the current version. If not found, the

function looksfor ar el up file for the current version and ascript { Vsn, Descr 2, | nstruct i ons2} inthisfile
for downgrading to Vsn.

If ascript isfound, the first thing that happensisthat the application specifications are updated according to the . app
filesand sys. confi g belonging to the release version Vsn.

After the application specifications have been updated, the instructions in the script are evaluated and the function
returns{ ok, & her Vsn, Descr } if successful. & her Vsn and Descr aretheversion (UpFr omvsn or Vsn) and
description (Descr 1 or Descr 2) as specified in the script.

If {continue_after_restart, G herVsn, Descr} isreturned, the emulator is restarted before the upgrade
instructions are executed. Thisoccursif the emulator or any of the applicationsKernel, STDLIB, or SASL are updated.
Thenew emulator version and these core applications execute after therestart. For all other applicationsthe old versions
are started and the upgrade is performed as normal by executing the upgrade instructions.

If arecoverable error occurs, the function returns{ er r or , Reason} and the original application specifications are
restored. If anon-recoverable error occurs, the system is restarted.

Options:
error_action

Definesif thenodeistoberestarted (i nit: restart ()) or rebooted (i ni t: reboot ()) if thereisan error
during theinstallation. Defaultisr est art .

code_change_ti meout

Definesthe time-out for al callsto sys: change_code. If no valueis specified or def aul t isspecified, the
default value defined in sy's is used.

suspend_ti nmeout

Definesthetime-out for all callstosys: suspend. If novalueis specified, the values defined by the Ti meout
parameter of theupgr ade or suspend instructionsareused. If def aul t isspecified, the default value defined
insys isused.

{updat e_pat hs, Bool }

Indicates if all application code paths are to be updated (Bool ==t r ue) or if only code paths for modified
applications are to be updated (Bool ==f al se, default). This option has only effect for other application
directories than the default $SROOT/ | i b/ App- Vsn, that is, application directories specified in argument
AppDi rsinacal tocreat e RELEASES/ 4 or set _unpacked/ 2.

Example:

In the current version Cur Vsn of arelease, the application directory of myapp is$ROOT/ | i b/ myapp- 1. 0.
A new version NewVsn is unpacked outside the release handler and the release handler is informed about this
with acall asfollows:

release handler:set unpacked(RelFile, [{myapp,"1.0","/home/user"},...1).
=> {ok,NewVsn}

If NewVsn is installed with option { updat e_pat hs, t rue}, then code: i b_di r (myapp) returns /
hone/ user/ myapp- 1. 0.

Ericsson AB. All Rights Reserved.: System Architecture Support Libraries (SASL) | 21

release_handler

Installing a new release can be time consuming if there are many processes in the system. The reason is that each
process must be checked for references to old code before a module can be purged. This check can lead to garbage
collections and copying of data.

To speed up the execution of i nstal | _rel ease, first call check_i nstall _rel ease, using option
pur ge. This does the same check for old code. Then purges all modules that can be soft-purged. The purged
modules do then no longer have any old code, andi nst al | _r el ease does not need to do the checks.

This does not reduce the overall time for the upgrade, but it alows checks and purge to be executed in the
background before the real upgrade is started.

When upgrading the emulator from a version older than OTP R15, an attempt is made to load new application
beam code into the old emulator. Sometimes the new beam format cannot be read by the old emulator, so the code
loading fails and the complete upgrade is terminated. To overcome this problem, the new application codeisto be
compiled with the old emulator. For more information about emulator upgrade from pre OTP R15 versions, see
Design Principlesin System Documentation.

make permanent(Vsn) -> ok | {error, Reason}
Types:

Vsn = string()

Reason = {bad_status, Status} | term()

Makes the specified release version Vsn permanent.

remove release(Vsn) -> ok | {error, Reason}
Types:
Vsn = string()
Reason = {pernmanent, Vsn} | client_node | tern()

Removes a release and its files from the system. The release must not be the permanent release. Removes only the
files and directories not in use by another release.

reboot old release(Vsn) -> ok | {error, Reason}
Types.

Vsn = string()

Reason = {bad_status, Status} | term()

Reboots the system by making the old release permanent, and callsi ni t : r eboot () directly. The release must
have status ol d.

set removed(Vsn) -> ok | {error, Reason}
Types:

Vsn = string()

Reason = {permanent, Vsn} | term))

22 | Ericsson AB. All Rights Reserved.: System Architecture Support Libraries (SASL)

release_handler

Makes it possible to handle removal of releases outside the release handler. Tells the release handler that the release
is removed from the system. This function does not delete any files.

set unpacked(RelFile, AppDirs) -> {ok, Vsn} | {error, Reason}
Types:

Rel File = string()

AppDirs = [{App, Vsn, Dir}]

App = aton()

Vsn = Dir = string()

Reason = term)

Makesit possible to handle unpacking of releases outside the release handler. Tellsthe release handler that the release
isunpacked. Vsn is extracted from the release resource file Rel Fi | e.

AppDi r s can be used to specify from where the modules for the specified applications are to be loaded. App isthe
name of an application, Vsn is the version, and Di r is the name of the directory where App- Vsn is located. The
corresponding modules are to be located under Di r / App- Vsn/ ebi n. The directories for applications not specified
in AppDi r s are assumed to be located in $ROOT/ | i b.

unpack release(Name) -> {ok, Vsn} | {error, Reason}
Types:

Name = Vsn = string()

Reason = client_node | term))
Unpacks arelease package Nane. t ar . gz located inther el eases directory.

Performs some checks on the package, for example, checksthat all mandatory filesare present, and extractsits contents.

which releases() -> [{Name, Vsn, Apps, Status}]

Types:
Name = Vsn = string()
Apps = ["App-Vsn"]

Status = unpacked | current | permanent | old
Returns all releases known to the release handler.

which releases(Status) -> [{Name, Vsn, Apps, Status}]

Types:
Name = Vsn = string()
Apps = ["App-Vsn"]

Status = unpacked | current | permanent | old
Returns al releases, known to the release handler, of a specific status.

The following functions can be used to test upgrade and downgrade of single applications (instead of upgrading/
downgrading an entire release). A script corresponding to the instructions in the r el up file is created on-the-fly,
based on the . appup filefor the application, and evaluated exactly in the sameway asr el ease_handl er does.

Ericsson AB. All Rights Reserved.: System Architecture Support Libraries (SASL) | 23

release_handler

These functions are primarily intended for simplified testing of . appup files. They are not run within
the context of the r el ease_handl er process. They must therefore not be used together with calls to
install _rel ease/ 1, 2, asthiscausesther el ease_handl er toend up in aninconsistent state.

No persistent information is updated, so these functions can be used on any Erlang node, embedded or not. Also,
using these functions does not affect which code isloaded if there is a reboot.

If the upgrade or downgrade fails, the application can end up in an inconsistent state.

Exports

upgrade_app(App, Dir) -> {ok, Unpurged} | restart emulator | {error, Reason}
Types.

App = atomn()

Dir string()

Unpurged = [Modul €]

Modul e = atom()

Reason = term()

Upgrades an application App from the current version to anew version located in Di r according to the. appup file.

App isthe name of the application, which must be started. Di r isthe new library directory of App. The corresponding
modules aswell asthe. app and . appup filesare to be located under Di r / ebi n.

The function looks in the . appup file and tries to find an upgrade script from the current version of the application
usingupgr ade_scri pt/ 2. Thisscriptisevaluated using eval _appup_scri pt/ 4, exactly in the sameway as
install _rel ease/ 1, 2 does.

Returns one of the following:

« {ok, Unpurged} if evaluating the script is successful, where Unpur ged isalist of unpurged modules

e restart_enul at or if thisinstruction is encountered in the script

e {error, Reason} if anerror occurred when finding or evaluating the script

If the restart_new enul ator instruction is found in the script, upgrade_app/ 2 returns
{error,restart_new enul ator}. Thisbecauser est art _new _enul at or requiresanew version of the

emulator to be started before the rest of the upgrade instructions can be executed, and this can only be done by
install _release/1, 2.

downgrade app(App, Dir) ->

downgrade app(App, 0ldVsn, Dir) -> {ok, Unpurged} | restart emulator |
{error, Reason}

Types:
App = aton()
Dir = AdVsn = string()

Unpurged = [Modul €]
Modul e = at om()
Reason = term()

24 | Ericsson AB. All Rights Reserved.: System Architecture Support Libraries (SASL)

release_handler

Downgrades an application App from the current version to a previous version A dVsn located in Di r according
to the. appup file

App is the name of the application, which must be started. O dVsn is the previous application version and can be
omitted if Di r isof the format " App- A dVsn". Di r isthe library directory of the previous version of App. The
corresponding modules and the old . app file are to be located under Di r / ebi n. The . appup fileisto be located
inthe ebi n directory of the current library directory of the application (code: | i b_di r (App)).

The function looks in the . appup file and tries to find a downgrade script to the previous version of the application
usingdowngr ade_scri pt/ 3. Thisscriptisevaluated usingeval _appup_scri pt/ 4, exactly inthe same way
asinstall _rel ease/1, 2 does.

Returns one of the following:

« {ok, Unpurged} if evaluating the script is successful, where Unpur ged isalist of unpurged modules
e« restart_enul at or if thisinstruction is encountered in the script
« {error, Reason} if anerror occurred when finding or evaluating the script

upgrade script(App, Dir) -> {ok, NewVsn, Script}

Types:
App
Dir
NewVsn
Scri pt

atom()
string()

string()
I nstructions

Triesto find an application upgrade script for App from the current version to anew version located inDi r .

The upgrade script can then be evaluated using eval appup_script/4. It is recommended to use
upgr ade_app/ 2 instead, but thisfunction (upgr ade_scr i pt) is useful to inspect the contents of the script.

App isthe name of the application, which must be started. Di r isthe new library directory of App. The corresponding
modules aswell asthe. app and . appup filesare to be located under Di r / ebi n.

The function looksin the.. appup file and tries to find an upgrade script from the current application version. High-
level instructions are translated to low-level instructions. The instructions are sorted in the same manner as when
generating ar el up file.

Returns{ ok, NewVsn, Scri pt} if successful, where NewMsn isthe new application version. For details about
Scri pt,seeappup(4) .

Failure: If a script cannot be found, the function fails with an appropriate error reason.

downgrade script(App, 0ldVsn, Dir) -> {ok, Script}

Types:
App = aton()
advsn = Dir = string()
Script = Instructions

Triesto find an application downgrade script for App from the current version to a previous version O dVsn located
inDir.
The downgrade script can then be evaluated using eval _appup_script/4. It is recommended to use

downgr ade_app/ 2, 3 instead, but this function (downgr ade_scri pt) is useful to inspect the contents of the
script.

Ericsson AB. All Rights Reserved.: System Architecture Support Libraries (SASL) | 25

release_handler

App is the name of the application, which must be started. Di r is the previous library directory of App. The
corresponding modules and the old . app file areto be located under Di r/ ebi n. The. appup fileisto be located
inthe ebi n directory of the current library directory of the application (code: | i b_di r (App)).

Thefunction looksin the. appup fileand triesto find adowngrade script from the current application version. High-
level instructions are tranglated to low-level instructions. The instructions are sorted in the same manner as when
generating ar el up file.

Returns{ ok, Scri pt} if successful. For detailsabout Scri pt, seeappup(4) .
Failure: If ascript cannot be found, the function fails with an appropriate error reason.

eval appup script(App, ToVsn, ToDir, Script) -> {ok, Unpurged} |
restart emulator | {error, Reason}

Types:
App = atomn()
ToVsn = ToDir = string()
Scri pt

Seeupgrade_scri pt/ 2, downgrade_script/3
Unpurged = [Modul €]

Modul e = atom()

Reason = term()

Evaluates an application upgrade or downgrade script Scri pt , the result from calling upgr ade_scri pt/ 2 or
downgr ade_scri pt/ 3, exactly inthe sameway asi nstal | _rel ease/ 1, 2 does.

App isthe name of the application, which must be started. ToVsn is the version to be upgraded/downgraded to, and
ToDi r isthe library directory of this version. The corresponding modules as well as the . app and . appup files
areto belocated under Di r / ebi n.

Returns one of the following:

 {ok, Unpurged} if evaluating the script is successful, where Unpur ged isalist of unpurged modules
e restart_emnul at or if thisinstruction is encountered in the script
e {error, Reason} if anerror occurred when finding or evaluating the script

If the restart _new enul at or instruction is found in the script, eval appup_script/4 returns
{error,restart_new enul ator}. Thisbecauser est art _new _enul at or requiresanew version of the
emulator to be started before the rest of the upgrade instructions can be executed, and this can only be done by
install _release/1, 2.

Typical Error Reasons
{bad_masters, Masters}
The master nodes Mast er s are not alive.
{bad _rel file, File}
Specified . r el fileFi | e cannot be read or does not contain asingle term.
{bad_rel data, Data}
Specified . r el file does not contain a recognized rel ease specification, but another term Dat a.
{bad_relup file, File}
Specified r el up file Rel up contains bad data.

26 | Ericsson AB. All Rights Reserved.: System Architecture Support Libraries (SASL)

release_handler

{cannot _extract _file, Nane, Reason}

Problems when extracting from atar file,er | _tar: extract/2returned{error, {Nanme, Reason}}.
{exi sting_rel ease, Vsn}

Specified release version Vsn isaready in use.
{Mast er, Reason, Wen}

Some operation, indicated by the term When, failed on the master node Mast er with the specified error reason
Reason.

{no_mat chi ng_relup, Vsn, CurrentVsn}
Cannot find a script for upgrading/downgrading between Cur r ent VVsn and Vsn.
{no_such_directory, Path}
The directory Pat hdoes not exist.
{no_such_file, Path}
The path Pat h (file or directory) does not exist.
{no_such_file, {Master, Path}}
The path Pat h (file or directory) does not exist at the master node Mast er .
{no_such_rel ease, Vsn}
The specified release version Vs n does not exist.
{not _a directory, Path}
Pat h existsbut is not a directory.
{Posix, File}

Some file operation failed for Fi | e. Posi x is an atom named from the Posix error codes, such as enoent ,
eacces,orei sdir.Seefil e(3) inKernd.

Posi x

Some file operation failed, as for the previousitem in thelist.

See Also
OTP Design Principles, confi g(4),rel (4),relup(4),script(4),sys(3),systool s(3)

Ericsson AB. All Rights Reserved.: System Architecture Support Libraries (SASL) | 27

systools

systools

Erlang module

This module contains functions to generate boot scripts (. boot, . scri pt), arelease upgrade file (r el up), and
release packages.

Exports

make relup(Name, UpFrom, DownTo) -> Result
make relup(Name, UpFrom, DownTo, [Opt]) -> Result
Types:

Name = string()

UpFrom = DownTo = [Nane | {Nane, Descr}]

Descr = tern()

Opt = {path,[Dir]} | restart_enulator | silent | noexec | {outdir,Dir} |
war ni ngs_as_errors

Dir = string()
Result = ok | error | {ok, Rel up, Modul e, Warni ngs} | {error, Modul e, Error}
Rel up, see relup(4)
Modul e = atom()
Warnings = Error = tern()
Generates a release upgrade file r el up containing instructions for upgrading from or downgrading to one or more

previous releases. The instructions are used by r el ease_handl er when installing a new version of arelease in
runtime.

By default, r el up fileislocated in the current working directory. If option{ out di r, Di r} isspecified, ther el up
fileislocated inDi r instead.

The release resource file Nane. r el iscompared with all release resource files Nane2. r el , specified in UpFr om

and DownTo. For each such pair, the following is deducted:

» Which applications to be deleted, that is, applications listed in Nane. r el but notin Nane2. r el

* Which applications to be added, that is, applicationslisted in Nare2. r el but not in Nane. r el

* Which applicationsto be upgraded/downgraded, that is, applicationslisted in both Nane. r el and Nane2. r el
but with different versions

e |f the emulator needsto be restarted after upgrading or downgrading, that is, if the ERTS version differs between
Nane. r el and Nanme2. r el

Instructionsfor thisareadded tother el up fileintheaboveorder. Instructionsfor upgrading or downgrading between
application versions are fetched from the relevant application upgrade files App. appup, sorted in the same order
as when generating a boot script, see make_scri pt/ 1, 2. High-level instructions are translated into low-level
instructions and the result is printed to ther el up file.

The optional Descr parameter isincluded "asis’ inther el up file, seer el up(4) . Defaults to the empty list.

All the files are searched for in the code path. It is assumed that the . app and . appup files for an application are
located in the same directory.

If option { path, [Di r]} is specified, this path is appended to the current path. Wildcard * is expanded to all
matching directories, for example, I i b/ */ ebi n.

28 | Ericsson AB. All Rights Reserved.: System Architecture Support Libraries (SASL)

systools

If optionr est art _enul at or isspecified, alow-level instruction to restart the emulator is appended to ther el up
file. This ensures that a complete reboot of the system is done when the system is upgraded or downgraded.

If an upgrade includes a change from an emulator earlier than OTP R15 to OTP R15 or later, the warning
pre_R15 erul at or _upgr ade is issued. For more information about this, see Design Principles in System
Documentation.

By default, errors and warnings are printed to tty and the function returns ok or error. If option si |l ent is
specified, the function instead either returns { ok, Rel up, Modul e, War ni ngs}, where Rel up is the release
upgrade file, or {error, Modul e, Error}. Warnings and errors can be converted to strings by calling
Modul e: f or mat _war ni ng(War ni ngs) or Modul e: format _error (Error).

If option noexec is specified, the function returns the same values asfor si | ent but nor el up fileiscreated.

If optionwar ni ngs_as_error s isspecified, warnings are treated as errors.

make script(Name) -> Result
make script(Name, [Opt]) -> Result

Types:
Name = string()
Opt = src_tests | {path,[Dir]} | local | {variables,[Var]} | exref |
{exref,[App]}] | silent | {outdir,Dir} | no_dot_erlang | no_warn_sasl |

warni ngs_as_errors | {script_nane, Nane}
Dir = string()
Var = {Var Nane, Prefi x}
Var Nane = Prefix = string()
App = aton()
Result = ok | error | {ok, Modul e, Warnings} | {error, Modul e, Error}
Modul e = atom()
Warnings = Error = term()
Generates a boot script Nane. script and its binary version, the boot file Nane. boot, unless the
{script_nane, ScriptNanme} option is given, in which case the names are Scri pt Name. scri pt and

Scri pt Name. boot The boot file specifies which code to be loaded and which applications to be started when the
Erlang runtime system is started. Seescri pt (4).

The release resource file Nane. r el isread to determine which applications are included in the release. Then the
relevant application resource files App. app are read to determine which modules to be loaded, and if and how the
applications are to be started. (Keysmodul es and nod, seeapp(4) .

By default, the boot script and boot file are located in the same directory asNane. r el . That is, in the current working
directory unless Narmre contains a path. If option{ out di r, Di r} isspecified, they arelocated in Di r instead.

The correctness of each application is checked as follows:

e Theversion of an application specifiedinthe. r el fileisto bethe sameastheversion specifiedinthe. app file.

* Thereareto be no undefined applications, that is, dependenciesto applicationsthat are not included in the release.
(Key appl i cati ons inthe. app file).

e Thereareto beno circular dependencies among the applications.

e Thereareto beno duplicated modules, that is, modul eswith the same name but bel onging to different applications.

» If option src_t est s is specified, awarning is issued if the source code for a module is missing or is newer
than the object code.

Ericsson AB. All Rights Reserved.: System Architecture Support Libraries (SASL) | 29

systools

The applications are sorted according to the dependencies between the applications. Where there are no dependencies,
theorderinthe. r el fileiskept.

The function fails if the mandatory applications Kernel and STDLIB are not included inthe. r el file and have start
type per manent (which is default).

If SASL isnot included as an applicationinthe. r el file, awarning isissued because such arelease cannot be used
in an upgrade. To turn off thiswarning, add option no_war n_sasl .

All filesare searched for in the current path. It isassumed that the. app and . beamfilesfor an application arelocated
in the same directory. The . er | files are also assumed to be located in this directory, unlessit isan ebi n directory
in which case they can be located in the corresponding sr ¢ directory.

If option {pat h, [Di r]} is specified, this path is appended to the current path. A directory in the path can be
specified with awildcard * , thisis expanded to all matching directories. Example: "1 i b/ */ ebi n".

In the generated boot script al application directories are structured as App- Vsn/ ebi n. They are assumed to be
located in SROOT/ | i b, where $ROOT isthe root directory of theinstalled release. If option | ocal isspecified, the
actua directories where the applications were found are used instead. This is a useful way to test a generated boot
script locally.

Option vari abl es can be used to specify an installation directory other than $ROOT/ | i b for some of the
applications. If avariable { Var Nane, Pr ef i x} is specified and an application is found in a directory Pr ef i x/
Rest / App[- Vsn] / ebi n, this application gets the path Var Nane/ Rest / App- Vsn/ ebi n in the boot script. If
anapplicationisfoundinadirectory Pr ef i X/ Rest ,thepathisVar Name/ Rest / App- Vsn/ ebi n. When starting
Erlang, al variables Var Nane are given values using command-line flag boot _var .

Example: If option {variables, [{"TEST","lib"}]} is specified and nmyapp. app is found in | i b/
nyapp/ ebi n, thepathtothisapplicationintheboot scriptis” $TEST/ nyapp- 1/ ebi n".If nyapp. app isfound
inlib/test,thepahis$TEST/t est/ myapp- 1/ ebi n.

The checks performed before the boot script is generated can be extended with some cross reference checks by
specifying option exr ef . These checksare performed with the Xref tool. All applications, or the applications specified
with { exr ef, [App] }, are checked by Xref and warnings are issued for calls to undefined functions.

By default, errors and warnings are printed to tty and the function returns ok or error. If option
{ ok, Modul e, War ni ngs} or {error, Modul e, Error}. sil ent is specified, the function instead returns
Warnings and errors can be converted to strings by calling Modul e: f or mat _war ni ng(War ni ngs) or
Modul e: format _error(Error).

If optionwar ni ngs_as_error s isspecified, warnings are treated as errors.
If optionno_dot _er | ang is specified, the instruction to load the . er | ang file during boot is not included.

make tar(Name) -> Result
make tar(Name, Opts) -> Result

Types.
Name = string()
Opts = [Opt]
Opt =

{dirs, [IncDir]} |

{path, [Dir]} |

{variables, [Var]} |

{var_tar, VarTar} |

{erts, Dir} |

erts all | src tests | exref |
{exref, [Appl} |

30 | Ericsson AB. All Rights Reserved.: System Architecture Support Libraries (SASL)

systools

silent |

{outdir, Dir} |

no warn_sasl | warnings as errors |
{extra files, ExtraFiles}

Dir = file:filename all()
IncDir = src | include | atom()
Var = {VarName, PreFix}

VarName = PreFix = string()
VarTar = include | ownfile | omit

App = atom()
Result =
ok | error |
{ok, Module :: module(), Warnings :: term |

()}
{error, Module :: module(), Error :: term()}
ExtraFiles = [{NameInArchive, file:filename all(
NameInArchive = string()

)}

Creates a release package file Nane. t ar . gz. This file must be uncompressed and unpacked on the target system
usingr el ease_handl er beforethe new release can be installed.

The release resource file Nane. r el isread to determine which applications are included in the release. Then the
relevant application resource files App. app areread to determine the version and modules of each application (keys
vsn and nodul es, seeapp(4)).

By default, the release package file is located in the same directory as Nane. r el . That is, in the current working
directory unless Namre contains a path. If option{ out di r, Di r} isspecified, itislocated in Di r instead.

If SASL isnot included as an applicationinthe. r el file, awarning isissued because such arelease cannot be used
in an upgrade. To turn off thiswarning, add option no_war n_sasl .

By default, the release package contains the directories | i b/ App- Vsn/ ebi n and | i b/ App-Vsn/ priv for
each included application. If more directories are to be included, option di r s is specified, for example, {di r s,
[src, exanpl es]}.

All thesefiles are searched for in the current path. If option { pat h, [Di r]} isspecified, this path is appended to the
current path. Wildcard * is expanded to all matching directories. Example: " | i b/ */ ebi n" .

If the{extra_files, ExtraFiles} optionis given then the ExtraFi | es are added to the tarball after
everything elseto beincluded has been added. The Ext r aFi | es listisalist of filesor directoriesin the same format
astheadd_t ype() tuplefor erl_tar:add/3,4

Option var i abl es can be used to specify an installation directory other than | i b for some of the applications. If
variable{ Var Nane, Pr ef i x} isspecified and an applicationisfound in directory Pr ef i x/ Rest/ App[- Vsn] /
ebi n, this application is packed into a separate Var Nane. t ar . gz fileasRest / App- Vsn/ ebi n.

Example: If option {vari abl es, [{"TEST","lib"}]} is specified and nyapp. app is located in | i b/
myapp- 1/ ebi n, application nyapp isincluded in TEST. t ar . gz:

% tar tf TEST.tar
myapp-1/ebin/myapp.app

Option {var _tar, Var Tar } can be used to specify if and where a separate package is to be stored. In this option
Var Tar isone of the following:

Ericsson AB. All Rights Reserved.: System Architecture Support Libraries (SASL) | 31

systools

i ncl ude
Each separate (variable) packageisincluded in the main Rel easeNane. t ar . gz file. Thisisthe default.
ownfile

Each separate (variable) package is generated as a separate file in the same directory as the
Rel easeNane. tar. gz file

om t
No separate (variable) packages are generated. Applications that are found underneath a variable directory are
ignored.

A directory r el eases isasoincluded in the release package, containing Nane. r el and a subdirectory Rel Vsn.
Rel Vsn istherelease version as specified in Nane. r el .

r el eases/ Rel Vsn containsthe boot script Nane. boot renamedtost art . boot and, if found, thefilesr el up
and sys. confi gorsys. config. src. Thesefiles are searched for in the same directory as Nane. r el , inthe
current working directory, and in any directories specified using option pat h. In the case of sys. confi g it isnot
included if sys. confi g. src isfound.

If the rel ease package isto contain anew Erlang runtime system, theer t s- Er t sVsn/ bi n directory of the specified
runtimesystem{erts, Di r} iscopiedtoert s- Ert sVsn/ bi n. Some erts executables are not copied by default,
if you want to include all executablesyou can givetheerts_al | option.

All checks with function make_scri pt are performed before the release package is created. Optionssrc_t est s
and exr ef areasovalid here.

The return value and the handling of errors and warnings are the same as described for make_scri pt.

script2boot(File) -> ok | error
Types:
File = string()

The Erlang runtime system requires that the contents of the script used to boot the system isabinary Erlang term. This
function transformsthe Fi | e. scri pt boot script to abinary term, whichisstored inthe Fi | e. boot file.

A boot script generated using make_scri pt isalready transformed to the binary form.

See Also
app(4),appup(4),erl(1),rel (4),rel ease_handl er(3),relup(4),script(4)

32 | Ericsson AB. All Rights Reserved.: System Architecture Support Libraries (SASL)

appup

appup

Name

The application upgrade file defines how an application is upgraded or downgraded in arunning system.
Thisfileisused by the functionsin syst ool s when generating arelease upgradefiler el up.

File Syntax

The application upgrade fileisto be called Appl i cat i on. appup, where Appl i cat i on isthe application name.
Thefileisto belocated in the ebi n directory for the application.

The . appup file contains one single Erlang term, which defines the instructions used to upgrade or downgrade the
application. The file has the following syntax:

{Vsn,
[{UpFromVsn, Instructions}, ...1,
[{DownToVsn, Instructions}, ...]}.

Vsn = string()
Current application version.
UpFronvsn = string() | binary()

An earlier application version to upgrade from. If it isastring, it isinterpreted as a specific version number. If it
isabinary, it isinterpreted as aregular expression that can match multiple version numbers.

DownToVsn = string() | binary()

An earlier application version to downgrade to. If it isastring, it isinterpreted as a specific version number. If it
isabinary, it isinterpreted as aregular expression that can match multiple version numbers.

I nstructions

A list of release upgrade instructions, see Release Upgrade Instructions. It is recommended to use high-level
instructions only. These are automatically translated to low-level instructions by syst ool s when creating the
rel upfile.

To avoid duplication of upgrade instructions, it is allowed to use regular expressions to specify UpFr omvsn and
DownToVsn. To be considered aregular expression, the version identifier must be specified asabinary. For example,
the following match all versions 2. 1. x, where x isany number:

<<"2\\.1\\.[0-9]+">>
Notice that the regular expression must match the complete version string, so this example works for, for example,
2.1.1,butnotfor2. 1. 1. 1.
Release Upgrade Instructions

Release upgrade instructions are interpreted by the rel ease handler when an upgrade or downgrade is made. For more
information about release handling, see OTP Design Principlesin System Documentation.

A processis said to use a module Mod if Mod islisted in the Modul es part of the child specification used to start
the process, seesuper vi sor (3) . Inthe case of gen_event , an event manager processis said to use Mbd if Mod
isan installed event handler.

Ericsson AB. All Rights Reserved.: System Architecture Support Libraries (SASL) | 33

appup

High-Level Instructions

{update, Mod}
{update, Mod, supervisor}
{update, Mod, Change}
{update, Mod, DepMods}
{update, Mod, Change, DepMods}
{update, Mod, Change, PrePurge, PostPurge, DepMods}
{update, Mod, Timeout, Change, PrePurge, PostPurge, DepMods}
{update, Mod, ModType, Timeout, Change, PrePurge, PostPurge, DepMods}
Mod = atom()
ModType = static | dynamic
Timeout = int()>0 | default | infinity
Change = soft | {advanced,Extra}
Extra = term()
PrePurge = PostPurge = soft purge | brutal purge
DepMods = [Mod]

Synchronized code replacement of processes using module Mod.

All those processes are suspended using sys: suspend, the new module version is loaded, and then the processes
areresumed using sys: r esurre.

Change

Defaults to soft and defines the type of code change. If it is set to {advanced, Extra},
implemented processes using gen_server, gen_fsm gen_statem or gen_event transform their
internal state by calling the callback function code_change. Specia processes cal the calback function
syst em code_change/ 4. In both cases, the term Ext r a is passed as an argument to the callback function.

Pr ePur ge

Defaultsto br ut al _pur ge. It controls what action to take with processes executing old code before loading
the new module version. If thevalueisbr ut al _pur ge, the processes arekilled. If thevalueissof t _pur ge,
rel ease_handl er:install _rel ease/1returns{error, {ol d_processes, Mod}}.

Post Pur ge

Defaults to br ut al _pur ge. It controls what action to take with processes that are executing old code when
the new module version has been loaded. If the valueisbr ut al _pur ge, the code is purged when the release
is made permanent and the processes are killed. If thevalueissof t _pur ge, the release handler purgesthe old
code when no remaining processes execute the code.

DepMods

Defaultsto[] and defines other modulesthat Mbd isdependent on. Inther el up file, instructionsfor suspending
processes using Mbd come before instructions for suspending processes using modules in DepMbds when
upgrading, and conversely when downgrading. In case of circular dependencies, the order of the instructionsin
theappup fileiskept.

Ti meout

Defines the time-out when suspending processes. If no value or def aul t is specified, the default value for
sys: suspend isused.

ModType

Defaultsto dynami c. It specifiesif the code is "dynamic", that is, if a process using the module spontaneously
switches to new code, or if it is "static". When doing an advanced update and upgrade, the new version of a
dynamic module is loaded before the process is asked to change code. When downgrading, the process is asked
to change code before loading the new version. For static modules, the new version is loaded before the process
is asked to change code, both in the case of upgrading and downgrading. Callback modules are dynamic.

34 | Ericsson AB. All Rights Reserved.: System Architecture Support Libraries (SASL)

appup

updat e with argument super vi sor isused when changing the start specification of a supervisor.

{load module, Mod}

{load _module, Mod, DepMods}

{load module, Mod, PrePurge, PostPurge, DepMods}
Mod = atom()
PrePurge = PostPurge = soft purge | brutal purge
DepMods = [Mod]

Simple code replacement of the module Mod.
For a description of Pr ePur ge and Post Pur ge, seeupdat e above.

DepMods defaultsto [] and defines which other modules Mod is dependent on. In the r el up file, instructions
for loading these modules come before the instruction for loading Mod when upgrading, and conversely when
downgrading.

{add_module, Mod}
{add_module, Mod, DepMods}
Mod = atom()
DepMods = [Mod]

L oads a new module Mod.

DepMods defaultsto[] and defineswhich other modules Mod isdependent on. Inther el up file, instructionsrelated
to these modules come before the instruction for loading Mbd when upgrading, and conversely when downgrading.

{delete module, Mod}
{delete module, Mod, DepMods}
Mod = atom()

Deletes amodule Mod using the low-level instructionsr enmove and pur ge.

DepMods defaultsto[] and defineswhich other modules Mod isdependent on. Inther el up file, instructionsrelated
to these modules come before the instruction for removing Mod when upgrading, and conversely when downgrading.

{add_application, Application}
{add _application, Application, Type}
Application = atom()
Type = permanent | transient | temporary | load | none

Adding an application means that the modules defined by the nodul es key in the . app file are loaded using
add_nodul e.

Type defaults to per manent and specifies the start type of the application. If Type = pernmanent
| transient | tenporary, the application is loaded and started in the corresponding way, see
application(3).If Type = | oad, theapplicationisonly loaded. If Type = none, the application is not
loaded and not started, although the code for its modulesis |oaded.

{remove application, Application}
Application = atom()

Removing an application means that the application is stopped, the modules are unloaded using del et e_nodul e,
and then the application specification is unloaded from the application controller.

Ericsson AB. All Rights Reserved.: System Architecture Support Libraries (SASL) | 35

appup

{restart _application, Application}
Application = atom()

Restarting an application means that the application is stopped and then started again, similar to using the instructions
renove_appl i cationandadd_appl i cati oninseguence. Notethat, evenif the application has been started
before the release upgrade is performed, restart _appl i cati on may only | oad it rather than start it,
depending on the application'sst art type: If Type = | oad, theapplicationisonly loaded. If Type = none,
the application is not loaded and not started, although the code for its modulesis |oaded.

Low-Level Instructions

{load object code, {App, Vsn, [Mod]}}
App = Mod = atom()
Vsn = string()

Reads each Mod from directory App- Vsn/ ebi n asabinary. It does not load the modules. The instruction isto be
placed first in the script to read all new code from the file to make the suspend-load-resume cycle less time-consuming.

point of no _return

If a crash occurs after this instruction, the system cannot recover and is restarted from the old release version. The
instruction must only occur once in ascript. It isto be placed after all | oad_obj ect _code instructions.

{load, {Mod, PrePurge, PostPurge}}
Mod = atom()
PrePurge = PostPurge = soft purge | brutal purge

Before this instruction occurs, Mod must have been loaded using | oad_obj ect _code. Thisinstruction loads the
module. Pr ePur ge isignored. For a description of Post Pur ge, seethe high-level instruction updat e earlier.

{remove, {Mod, PrePurge, PostPurge}}
Mod = atom()
PrePurge = PostPurge = soft purge | brutal purge

Makes the current version of Mod old. Pr ePur ge isignored. For a description of Post Pur ge, see the high-level
instruction updat e earlier.

{purge, [Mod]}
Mod = atom()

Purges each module Mod, that is, removes the old code. Notice that any process executing purged code is killed.

{suspend, [Mod | {Mod, Timeout}]}
Mod = atom()
Timeout = int()>0 | default | infinity

Tries to suspend al processes using a module Mod. If a process does not respond, it isignored. This can cause the
processto die, either becauseit crasheswhen it spontaneously switchesto new code, or asaresult of a purge operation.
If no Ti meout isspecified or def aul t isspecified, the default value for sys: suspend is used.

{resume, [Mod]}
Mod = atom()

36 | Ericsson AB. All Rights Reserved.: System Architecture Support Libraries (SASL)

appup

Resumes all suspended processes using a module Mod.

{code change, [{Mod, Extra}l}

{code change, Mode, [{Mod, Extra}]}
Mod = atom()
Mode = up | down
Extra = term()

Mode defaultsto up and specifiesif it is an upgrade or downgrade. Thisinstruction sendsacode_change system
message to all processes using a module Mod by calling function sys: change code, passing term Extr a as
argument.

{stop, [Mod]}
Mod = atom()

Stopsall processesusingamodule Mbd by callingsuper vi sor: t er mi nat e_chi | d/ 2. Thisinstructionisuseful
when the simplest way to change code isto stop and restart the processes that run the code.

{start, [Mod]}
Mod = atom()
Starts all stopped processes using amodule Mbd by calling super vi sor: restart _chil d/ 2.

{sync_nodes, Id, [Node]}
{sync_nodes, Id, {M, F, A}}

Id = term()
Node = node()
M = F = atom()
A= [term()]

appl y(M F, A) must returnalist of nodes.

Thisinstruction synchronizes the release installation with other nodes. Each Node must evaluate this command with
thesamel d. Thelocal node waits for al other nodes to evaluate the instruction before execution continues. If anode
goes down, it is considered to be an unrecoverable error, and the local node is restarted from the old release. Thereis
no time-out for thisinstruction, which means that it can hang forever.

{apply, {M, F, A}}
M =F = atom()
A= [term()]

Evauatesappl y(M F, A).

If the instruction appears before instruction point_of _no_return, a falure is caught.
rel ease_handler:install _release/1 then retuns {error,{'EXI T, Reason}}, unless
{error, Error} isthrown or returned. Thenitreturns{error, Error}.

If theinstruction appearsafter instructionpoi nt _of _no_r et ur n andthefunction call fails, the systemisrestarted.

restart new emulator

Thisinstruction is used when the application ERTS, Kernel, STDLIB, or SASL is upgraded. It shuts down the current
emulator and startsanew one. All processes areterminated gracefully, and the new version of ERTS, Kernel, STDLIB,
and SASL are used when the emulator restarts. Only one r est art _new_emul at or instruction is alowed in

Ericsson AB. All Rights Reserved.: System Architecture Support Libraries (SASL) | 37

appup

ther el up file, and it must be placed first. syst ool s: make_r el up/ 3, 4 ensures this when ther el up fileis
generated. Therest of theinstructionsinther el up fileis executed after the restart as a part of the boot script.

An info report is written when the upgrade is completed. To programmatically determine if the upgrade is complete,
cal rel ease_handl er: whi ch_r el eases/ 0, 1 and check if the expected release has statuscur r ent .

The new release must still be made permanent after the upgrade is completed, otherwise the old emulator is started
if there is an emulator restart.

As stated earlier, instruction r est art _new_enul at or causes the emulator to be restarted with new versions
of ERTS>, Kernel, STDLIB, and SASL. However, al other applications do at startup run their old versions in
this new emulator. This is usually no problem, but every now and then incompatible changes occur to the core
applications, which can cause trouble in this setting. Such incompatible changes (when functions are removed) are
normally preceded by a deprecation over two major releases. To ensure that your application is not crashed by an
incompatible change, always remove any call to deprecated functions as soon as possible.

restart emulator

Thisinstructionissimilartor est art _new_enul at or, except it must be placed at the end of ther el up file. Itis
not related to an upgrade of the emulator or the core applications, but can be used by any application when a complete
reboot of the system isrequired.

When generating the relup file, systools: make relup/ 3,4 ensures that there is only one
restart_emul at or instruction and that it isthe last instruction in ther el up file.

See Also

rel ease_handl er (3),rel up(4),supervisor(3),systool s(3)

38 | Ericsson AB. All Rights Reserved.: System Architecture Support Libraries (SASL)

rel

rel

Name

The release resour ce file specifies which applications are included in arelease (system) based on Erlang/OTP.

Thisfileisused by thefunctionsinsyst ool s when generating start scripts(. scri pt,. boot) and release upgrade

files

(rel up).

File Syntax

Therelease resource fileisto be called Nane. r el .

The

. rel file contains one single Erlang term, which is called a release specification. The file has the following

syntax:

{release, {RelName,Vsn}, {erts, EVsn},
[{Application, AppVsn} |

{Application, AppVsn, Type} |
{Application, AppVsn, IncApps} |
{Application, AppVsn, Type, IncApps}1}.

Rel Nanme = string()

Vsn

Release name.
= string()
Release version.

EVsn = string()

ERTS version therelease is intended for.

Application = aton()

Name of an application included in the release.

AppVsn = string()

Version of an application included in the release.

Type = permanent | transient | tenmporary | load | none

Start type of an application included in the release.

If Type = permanent | transient | tenporary, the application isloaded and started in the
corresponding way, seeappl i cati on(3).

If Type = | oad, the applicationis only loaded.
If Type = none, the application is not loaded and not started, although the code for its modulesis loaded.

Defaultsto per manent

I ncApps = [atom()]

A list of applications that are included by an application included in the release. The list must be a subset of the
included applications specified in the application resource file (Appl i cat i on. app) and overrides this value.
Defaults to the same value as in the application resource file.

Ericsson AB. All Rights Reserved.: System Architecture Support Libraries (SASL) | 39

rel

The list of applications must contain the Kernel and STDLIB applications.

See Also
application(3),relup(4),systool s(3)

40 | Ericsson AB. All Rights Reserved.: System Architecture Support Libraries (SASL)

relup

relup

Name

The release upgrade file describes how arelease is upgraded in a running system.

This file is automatically generated by syst ool s: nake_rel up/ 3, 4, using a release resource file (. rel),
application resource files (. app), and application upgrade files (. appup) as input.

File Syntax
In atarget system, the release upgrade file isto be located in directory $ROOT/ r el eases/ Vsn.

Ther el up file contains one single Erlang term, which defines the instructions used to upgrade the release. The file
has the following syntax:

{Vsn,
[{UpFromVsn, Descr, Instructions}, ...],
[{DownToVsn, Descr, Instructions}, ...1}.

Vsn = string()

Current release version.
UpFronvsn = string()

Earlier version of the release to upgrade from.
Descr = tern()

A user-defined parameter passed from the function syst ool s: make_r el up/ 3, 4. It is used in the return
valueof rel ease_handl er:install _rel ease/1, 2.

I nstructions

A list of low-level release upgrade instructions, see appup(4) . It consists of the release upgrade instructions
from the respective application upgrade files (high-level instructions are translated to low-level instructions), in
the same order asin the start script.

DownToVsn = string()

Earlier version of the release to downgrade to.

See Also
app(4),appup(4),rel (4),rel ease_handl er (3),syst ool s(3)

Ericsson AB. All Rights Reserved.: System Architecture Support Libraries (SASL) | 41

script

script

Name

The boot script describes how the Erlang runtime system is started. It contains instructions on which code to load
and which processes and applications to start.

Command er| -boot Nane starts the system with a boot file called Namre. boot , which is generated from the
Name. scri pt file,usingsyst ool s: scri pt 2boot/ 1.

The. scri pt fileisgenerated by syst ool s froma. r el fileandfrom. app files.

File Syntax

The boot script is stored in afile with extension . scri pt . Thefile hasthe following syntax:

{script, {Name, Vsn},
[
{progress, loading},
{preLoaded, [Modl, Mod2, ...]
{path, [Dirl,"$ROOT/Dir",...]
{primLoad, [Modl, Mod2, ...1}

’

}
}.

%kérnel_load_completed},
{progress, loaded},
{kernelProcess, Name, {Mod, Func, Args}},

%ébply, {Mod, Func, Args}},

%b;ogress, started}]}.
Name = string()

Defines the system name.
Vsn = string()

Defines the system version.
{progress, Ternt

Setsthe "progress’ of theinitialization program. Thei ni t : get _st at us/ 0 function returnsthe current value
of the progress, whichis{ | nt er nal St at us, Tern}.

{path, [Dir]}

Di r isastring. Thisargument setsthe load path of the systemto[Di r] . The load path used to load modulesis
obtained from theinitial load path, whichisgivenin the script file, together with any path flags that were supplied
in the command-line arguments. The command-line arguments modify the path as follows:

e -paDirl Dr2 ... DirNaddsthedirectoriesDirN, DirN-1, ..., Dir2, Dirltothe
front of the initial load path.

e -pz Dirl Dir2 ... DirNaddsthedirectoriesDirl, Dir2, ..., DirNtotheendof the
initial load path.

e -path Dirl Dir2 ... DirNdefinesasetof directoriesDir1, Dir2, ..., DirN,whichreplace

the search path given in the script file. Directory namesin the path are interpreted as follows:

« Directory names starting with / are assumed to be absolute path names.
< Directory names not starting with / are assumed to be relative the current working directory.

42 | Ericsson AB. All Rights Reserved.: System Architecture Support Libraries (SASL)

script

e The special $ROOT variable can only be used in the script, not as a command-line argument. The
given directory isrelative the Erlang installation directory.

{primnmLoad, [Mod]}

Loads the modules[Mod] from the directories specified in Pat h. The script interpreter fetches the appropriate
module by callinger| _prim| oader:get file(Md).A faa error that terminates the system occursiif
the module cannot be located.

{kernel _| oad_conpl et ed}

Indicates that all modules that must be loaded befor e any processes are started are loaded. In interactive mode,
al { pri mLoad, [Mod] } commandsinterpreted after this command are ignored, and these modules are loaded
on demand. In embedded mode, ker nel _| oad_conpl et ed isignored, and al modules are loaded during
system start.

{kernel Process, Nanme, {Md, Func, Args}}

Starts the "kernel process’ Name by evaluating appl y(Mod, Func, Args). The start function isto return
{ok, Pid} ori gnore.Thei nit processmonitorsthebehavior of Pi d andterminatesthesystemif Pi d dies.
Kernel processes are key components of the runtime system. Users do not normally add new kernel processes.

{apply, {Md, Func, Args}}.

Theinit processevaluatesappl y(Mod, Func, Args) . Thesystemterminatesif thisresultsinan error. The
boot procedure hangs if this function never returns.

In an interactive system, the code loader provides demand-driven code loading, but in an embedded system the
code loader loads all code immediately. The same version of code is used in both cases. The code server cals
i ni t:get_argumnent (node) todetermineif itisto runin demand mode or non-demand driven mode.

See Also
syst ool s(3)

Ericsson AB. All Rights Reserved.: System Architecture Support Libraries (SASL) | 43

	System Architecture Support Libraries (SASL)
	SASL User's Guide
	Introduction
	Scope
	Prerequisites

	SASL Error Logging
	SASL reports
	Supervisor Report
	Progress Report
	Crash Report
	Example

	Multi-File Error Report Logging
	Report Browser
	Starting Report Browser
	Online Help
	List Reports in Server
	Show Reports
	Search Reports
	Stop Server

	Reference Manual
	sasl
	alarm_handler
	clear_alarm/1
	get_alarms/0
	set_alarm/1

	rb
	filter/1
	filter/2
	grep/1
	h/0
	help/0
	list/0
	list/1
	log_list/0
	log_list/1
	rescan/0
	rescan/1
	show/0
	show/1
	start/0
	start/1
	start_log/1
	stop/0
	stop_log/0

	release_handler
	check_install_release/1
	check_install_release/2
	create_RELEASES/4
	install_file/2
	install_release/1
	install_release/2
	make_permanent/1
	remove_release/1
	reboot_old_release/1
	set_removed/1
	set_unpacked/2
	unpack_release/1
	which_releases/0
	which_releases/1
	upgrade_app/2
	downgrade_app/2
	downgrade_app/3
	upgrade_script/2
	downgrade_script/3
	eval_appup_script/4

	systools
	make_relup/3
	make_relup/4
	make_script/1
	make_script/2
	make_tar/1
	make_tar/2
	script2boot/1

	appup
	rel
	relup
	script

