
Tools
Copyright © 1997-2020 Ericsson AB. All Rights Reserved.

Tools 3.4.1
September 22, 2020

Copyright © 1997-2020 Ericsson AB. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance
with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless
required by applicable law or agreed to in writing, software distributed under the License is distributed on an
"AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See
the License for the specific language governing permissions and limitations under the License. Ericsson AB. All
Rights Reserved..

September 22, 2020

1.1 cover

1 Tools User's Guide

The Tools application contains a number of stand-alone tools, which are useful when developing Erlang programs.

cover
A coverage analysis tool for Erlang.

cprof
A profiling tool that shows how many times each function is called. Uses a kind of local call trace breakpoints
containing counters to achieve very low runtime performance degradation.

emacs - (erlang.el and erlang-start.el)
This package provides support for the programming language Erlang in Emacs. The package provides an
editing mode with lots of bells and whistles, compilation support, and it makes it possible for the user to start
Erlang shells that run inside Emacs.

eprof
A time profiling tool; measure how time is used in Erlang programs. Erlang programs. Predecessor of fprof
(see below).

fprof
Another Erlang profiler; measure how time is used in your Erlang programs. Uses trace to file to minimize
runtime performance impact, and displays time for calling and called functions.

instrument
Utility functions for obtaining and analysing resource usage in an instrumented Erlang runtime system.

lcnt
A lock profiling tool for the Erlang runtime system.

make
A make utility for Erlang similar to UNIX make.

tags
A tool for generating Emacs TAGS files from Erlang source files.

xref
A cross reference tool. Can be used to check dependencies between functions, modules, applications and
releases.

1.1 cover
1.1.1 Introduction
The module cover provides a set of functions for coverage analysis of Erlang programs, counting how many times
each executable line is executed.

Coverage analysis can be used to verify test cases, making sure all relevant code is covered, and may be helpful when
looking for bottlenecks in the code.

1.1.2 Getting Started With Cover
Example
Assume that a test case for the following program should be verified:

Ericsson AB. All Rights Reserved.: Tools | 1

1.1 cover

-module(channel).
-behaviour(gen_server).

-export([start_link/0,stop/0]).
-export([alloc/0,free/1]). % client interface
-export([init/1,handle_call/3,terminate/2]). % callback functions

start_link() ->
 gen_server:start_link({local,channel},channel,[],[]).

stop() ->
 gen_server:call(channel,stop).

%%%-Client interface functions---

alloc() ->
 gen_server:call(channel,alloc).

free(Channel) ->
 gen_server:call(channel,{free,Channel}).

%%%-gen_server callback functions--

init(_Arg) ->
 {ok,channels()}.

handle_call(stop,Client,Channels) ->
 {stop,normal,ok,Channels};

handle_call(alloc,Client,Channels) ->
 {Ch,Channels2} = alloc(Channels),
 {reply,{ok,Ch},Channels2};

handle_call({free,Channel},Client,Channels) ->
 Channels2 = free(Channel,Channels),
 {reply,ok,Channels2}.

terminate(_Reason,Channels) ->
 ok.

%%%-Internal functions---

channels() ->
 [ch1,ch2,ch3].

alloc([Channel|Channels]) ->
 {Channel,Channels};
alloc([]) ->
 false.

free(Channel,Channels) ->
 [Channel|Channels].

The test case is implemented as follows:

-module(test).
-export([s/0]).

s() ->
 {ok,Pid} = channel:start_link(),
 {ok,Ch1} = channel:alloc(),
 ok = channel:free(Ch1),
 ok = channel:stop().

2 | Ericsson AB. All Rights Reserved.: Tools

1.1 cover

Preparation
First of all, Cover must be started. This spawns a process which owns the Cover database where all coverage data
will be stored.

1> cover:start().
{ok,<0.30.0>}

To include other nodes in the coverage analysis, use start/1. All cover compiled modules will then be loaded on
all nodes, and data from all nodes will be summed up when analysing. For simplicity this example only involves the
current node.

Before any analysis can take place, the involved modules must be Cover compiled. This means that some extra
information is added to the module before it is compiled into a binary which then is loaded. The source file of the
module is not affected and no .beam file is created.

2> cover:compile_module(channel).
{ok,channel}

Each time a function in the Cover compiled module channel is called, information about the call will be added to
the Cover database. Run the test case:

3> test:s().
ok

Cover analysis is performed by examining the contents of the Cover database. The output is determined by two
parameters, Level and Analysis. Analysis is either coverage or calls and determines the type of the
analysis. Level is either module, function, clause, or line and determines the level of the analysis.

Coverage Analysis
Analysis of type coverage is used to find out how much of the code has been executed and how much has not been
executed. Coverage is represented by a tuple {Cov,NotCov}, where Cov is the number of executable lines that have
been executed at least once and NotCov is the number of executable lines that have not been executed.

If the analysis is made on module level, the result is given for the entire module as a tuple {Module,
{Cov,NotCov}}:

4> cover:analyse(channel,coverage,module).
{ok,{channel,{14,1}}}

For channel, the result shows that 14 lines in the module are covered but one line is not covered.

If the analysis is made on function level, the result is given as a list of tuples {Function,{Cov,NotCov}}, one
for each function in the module. A function is specified by its module name, function name and arity:

Ericsson AB. All Rights Reserved.: Tools | 3

1.1 cover

5> cover:analyse(channel,coverage,function).
{ok,[{{channel,start_link,0},{1,0}},
 {{channel,stop,0},{1,0}},
 {{channel,alloc,0},{1,0}},
 {{channel,free,1},{1,0}},
 {{channel,init,1},{1,0}},
 {{channel,handle_call,3},{5,0}},
 {{channel,terminate,2},{1,0}},
 {{channel,channels,0},{1,0}},
 {{channel,alloc,1},{1,1}},
 {{channel,free,2},{1,0}}]}

For channel, the result shows that the uncovered line is in the function channel:alloc/1.

If the analysis is made on clause level, the result is given as a list of tuples {Clause,{Cov,NotCov}}, one for
each function clause in the module. A clause is specified by its module name, function name, arity and position within
the function definition:

6> cover:analyse(channel,coverage,clause).
{ok,[{{channel,start_link,0,1},{1,0}},
 {{channel,stop,0,1},{1,0}},
 {{channel,alloc,0,1},{1,0}},
 {{channel,free,1,1},{1,0}},
 {{channel,init,1,1},{1,0}},
 {{channel,handle_call,3,1},{1,0}},
 {{channel,handle_call,3,2},{2,0}},
 {{channel,handle_call,3,3},{2,0}},
 {{channel,terminate,2,1},{1,0}},
 {{channel,channels,0,1},{1,0}},
 {{channel,alloc,1,1},{1,0}},
 {{channel,alloc,1,2},{0,1}},
 {{channel,free,2,1},{1,0}}]}

For channel, the result shows that the uncovered line is in the second clause of channel:alloc/1.

Finally, if the analysis is made on line level, the result is given as a list of tuples {Line,{Cov,NotCov}}, one for
each executable line in the source code. A line is specified by its module name and line number.

7> cover:analyse(channel,coverage,line).
{ok,[{{channel,9},{1,0}},
 {{channel,12},{1,0}},
 {{channel,17},{1,0}},
 {{channel,20},{1,0}},
 {{channel,25},{1,0}},
 {{channel,28},{1,0}},
 {{channel,31},{1,0}},
 {{channel,32},{1,0}},
 {{channel,35},{1,0}},
 {{channel,36},{1,0}},
 {{channel,39},{1,0}},
 {{channel,44},{1,0}},
 {{channel,47},{1,0}},
 {{channel,49},{0,1}},
 {{channel,52},{1,0}}]}

For channel, the result shows that the uncovered line is line number 49.

4 | Ericsson AB. All Rights Reserved.: Tools

1.1 cover

Call Statistics
Analysis of type calls is used to find out how many times something has been called and is represented by an
integer Calls.

If the analysis is made on module level, the result is given as a tuple {Module,Calls}. Here Calls is the total
number of calls to functions in the module:

8> cover:analyse(channel,calls,module).
{ok,{channel,12}}

For channel, the result shows that a total of twelve calls have been made to functions in the module.

If the analysis is made on function level, the result is given as a list of tuples {Function,Calls}. Here Calls
is the number of calls to each function:

9> cover:analyse(channel,calls,function).
{ok,[{{channel,start_link,0},1},
 {{channel,stop,0},1},
 {{channel,alloc,0},1},
 {{channel,free,1},1},
 {{channel,init,1},1},
 {{channel,handle_call,3},3},
 {{channel,terminate,2},1},
 {{channel,channels,0},1},
 {{channel,alloc,1},1},
 {{channel,free,2},1}]}

For channel, the result shows that handle_call/3 is the most called function in the module (three calls). All
other functions have been called once.

If the analysis is made on clause level, the result is given as a list of tuples {Clause,Calls}. Here Calls is the
number of calls to each function clause:

10> cover:analyse(channel,calls,clause).
{ok,[{{channel,start_link,0,1},1},
 {{channel,stop,0,1},1},
 {{channel,alloc,0,1},1},
 {{channel,free,1,1},1},
 {{channel,init,1,1},1},
 {{channel,handle_call,3,1},1},
 {{channel,handle_call,3,2},1},
 {{channel,handle_call,3,3},1},
 {{channel,terminate,2,1},1},
 {{channel,channels,0,1},1},
 {{channel,alloc,1,1},1},
 {{channel,alloc,1,2},0},
 {{channel,free,2,1},1}]}

For channel, the result shows that all clauses have been called once, except the second clause of
channel:alloc/1 which has not been called at all.

Finally, if the analysis is made on line level, the result is given as a list of tuples {Line,Calls}. Here Calls is
the number of times each line has been executed:

Ericsson AB. All Rights Reserved.: Tools | 5

1.1 cover

11> cover:analyse(channel,calls,line).
{ok,[{{channel,9},1},
 {{channel,12},1},
 {{channel,17},1},
 {{channel,20},1},
 {{channel,25},1},
 {{channel,28},1},
 {{channel,31},1},
 {{channel,32},1},
 {{channel,35},1},
 {{channel,36},1},
 {{channel,39},1},
 {{channel,44},1},
 {{channel,47},1},
 {{channel,49},0},
 {{channel,52},1}]}

For channel, the result shows that all lines have been executed once, except line number 49 which has not been
executed at all.

Analysis to File
A line level calls analysis of channel can be written to a file using cover:analysis_to_file/1:

12> cover:analyse_to_file(channel).
{ok,"channel.COVER.out"}

The function creates a copy of channel.erl where it for each executable line is specified how many times that line
has been executed. The output file is called channel.COVER.out.

6 | Ericsson AB. All Rights Reserved.: Tools

1.1 cover

File generated from channel.erl by COVER 2001-05-21 at 11:16:38

**

 | -module(channel).
 | -behaviour(gen_server).
 |
 | -export([start_link/0,stop/0]).
 | -export([alloc/0,free/1]). % client interface
 | -export([init/1,handle_call/3,terminate/2]). % callback functions
 |
 | start_link() ->
 1..| gen_server:start_link({local,channel},channel,[],[]).
 |
 | stop() ->
 1..| gen_server:call(channel,stop).
 |
 | %%%-Client interface functions------------------------------------
 |
 | alloc() ->
 1..| gen_server:call(channel,alloc).
 |
 | free(Channel) ->
 1..| gen_server:call(channel,{free,Channel}).
 |
 | %%%-gen_server callback functions---------------------------------
 |
 | init(_Arg) ->
 1..| {ok,channels()}.
 |
 | handle_call(stop,Client,Channels) ->
 1..| {stop,normal,ok,Channels};
 |
 | handle_call(alloc,Client,Channels) ->
 1..| {Ch,Channels2} = alloc(Channels),
 1..| {reply,{ok,Ch},Channels2};
 |
 | handle_call({free,Channel},Client,Channels) ->
 1..| Channels2 = free(Channel,Channels),
 1..| {reply,ok,Channels2}.
 |
 | terminate(_Reason,Channels) ->
 1..| ok.
 |
 | %%%-Internal functions--
 |
 | channels() ->
 1..| [ch1,ch2,ch3].
 |
 | alloc([Channel|Channels]) ->
 1..| {Channel,Channels};
 | alloc([]) ->
 0..| false.
 |
 | free(Channel,Channels) ->
 1..| [Channel|Channels].

Conclusion
By looking at the results from the analyses, it can be deducted that the test case does not cover the case when all
channels are allocated and test.erl should be extended accordingly.
Incidentally, when the test case is corrected a bug in channel should indeed be discovered.

Ericsson AB. All Rights Reserved.: Tools | 7

1.2 cprof - The Call Count Profiler

When the Cover analysis is ready, Cover is stopped and all Cover compiled modules are unloaded. The code for
channel is now loaded as usual from a .beam file in the current path.

13> code:which(channel).
cover_compiled
14> cover:stop().
ok
15> code:which(channel).
"./channel.beam"

1.1.3 Miscellaneous
Performance
Execution of code in Cover compiled modules is slower and more memory consuming than for regularly compiled
modules. As the Cover database contains information about each executable line in each Cover compiled module,
performance decreases proportionally to the size and number of the Cover compiled modules.

To improve performance when analysing cover results it is possible to do multiple calls to analyse and analyse_to_file
at once. You can also use the async_analyse_to_file convenience function.

Executable Lines
Cover uses the concept of executable lines, which is lines of code containing an executable expression such as a
matching or a function call. A blank line or a line containing a comment, function head or pattern in a case- or
receive statement is not executable.

In the example below, lines number 2,4,6,8 and 11 are executable lines:

1: is_loaded(Module,Compiled) ->
2: case get_file(Module,Compiled) of
3: {ok,File} ->
4: case code:which(Module) of
5: ?TAG ->
6: {loaded,File};
7: _ ->
8: unloaded
9: end;
10: false ->
11: false
12: end.

Code Loading Mechanism
When a module is Cover compiled, it is also loaded using the normal code loading mechanism of Erlang. This means
that if a Cover compiled module is re-loaded during a Cover session, for example using c(Module), it will no longer
be Cover compiled.

Use cover:is_compiled/1 or code:which/1 to see if a module is Cover compiled (and still loaded) or not.

When Cover is stopped, all Cover compiled modules are unloaded.

1.2 cprof - The Call Count Profiler
cprof is a profiling tool that can be used to get a picture of how often different functions in the system are called.

cprof uses breakpoints similar to local call trace, but containing counters, to collect profiling data. Therfore there is
no need for special compilation of any module to be profiled.

8 | Ericsson AB. All Rights Reserved.: Tools

1.2 cprof - The Call Count Profiler

cprof presents all profiled modules in decreasing total call count order, and for each module presents all profiled
functions also in decreasing call count order. A call count limit can be specified to filter out all functions below the limit.

Profiling is done in the following steps:

cprof:start/0..3
Starts profiling with zeroed call counters for specified functions by setting call count breakpoints on them.

Mod:Fun()
Runs the code to be profiled.

cprof:pause/0..3
Pauses the call counters for specified functions. This minimises the impact of code running in the background
or in the shell that disturbs the profiling. Call counters are automatically paused when they "hit the ceiling" of
the host machine word size. For a 32 bit host the maximum counter value is 2147483647.

cprof:analyse/0..2
Collects call counters and computes the result.

cprof:restart/0..3
Restarts the call counters from zero for specified functions. Can be used to collect a new set of counters without
having to stop and start call count profiling.

cprof:stop/0..3
Stops profiling by removing call count breakpoints from specified functions.

Functions can be specified as either all in the system, all in one module, all arities of one function, one function, or all
functions in all modules not yet loaded. As for now, BIFs cannot be call count traced.

The analysis result can either be for all modules, or for one module. In either case a call count limit can be given to
filter out the functions with a call count below the limit. The all modules analysis does not contain the module cprof
itself, it can only be analysed by specifying it as a single module to analyse.

Call count tracing is very lightweight compared to other forms of tracing since no trace message has to be generated.
Some measurements indicates performance degradations in the vicinity of 10 percent.

The following sections show some examples of profiling with cprof. See also cprof(3).

1.2.1 Example: Background work
From the Erlang shell:

Ericsson AB. All Rights Reserved.: Tools | 9

1.2 cprof - The Call Count Profiler

1> cprof:start(), cprof:pause(). % Stop counters just after start
3476
2> cprof:analyse().
{30,
 [{erl_eval,11,
 [{{erl_eval,expr,3},3},
 {{erl_eval,'-merge_bindings/2-fun-0-',2},2},
 {{erl_eval,expand_module_name,2},1},
 {{erl_eval,merge_bindings,2},1},
 {{erl_eval,binding,2},1},
 {{erl_eval,expr_list,5},1},
 {{erl_eval,expr_list,3},1},
 {{erl_eval,exprs,4},1}]},
 {orddict,8,
 [{{orddict,find,2},6},
 {{orddict,dict_to_list,1},1},
 {{orddict,to_list,1},1}]},
 {packages,7,[{{packages,is_segmented_1,1},6},
 {{packages,is_segmented,1},1}]},
 {lists,4,[{{lists,foldl,3},3},{{lists,reverse,1},1}]}]}
3> cprof:analyse(cprof).
{cprof,3,[{{cprof,tr,2},2},{{cprof,pause,0},1}]}
4> cprof:stop().
3476

The example showed the background work that the shell performs just to interpret the first command line. Most work
is done by erl_eval and orddict.

What is captured in this example is the part of the work the shell does while interpreting the command line that occurs
between the actual calls to cprof:start() and cprof:analyse().

1.2.2 Example: One module
From the Erlang shell:

1> cprof:start(),R=calendar:day_of_the_week(1896,4,27),cprof:pause(),R.
1
2> cprof:analyse(calendar).
{calendar,9,
 [{{calendar,df,2},1},
 {{calendar,dm,1},1},
 {{calendar,dy,1},1},
 {{calendar,last_day_of_the_month1,2},1},
 {{calendar,last_day_of_the_month,2},1},
 {{calendar,is_leap_year1,1},1},
 {{calendar,is_leap_year,1},1},
 {{calendar,day_of_the_week,3},1},
 {{calendar,date_to_gregorian_days,3},1}]}
3> cprof:stop().
3271

The example tells us that "Aktiebolaget LM Ericsson & Co" was registered on a Monday (since the return value of the
first command is 1), and that the calendar module needed 9 function calls to calculate that.

Using cprof:analyse() in this example also shows approximately the same background work as in the first
example.

1.2.3 Example: In the code
Write a module:

10 | Ericsson AB. All Rights Reserved.: Tools

1.2 cprof - The Call Count Profiler

-module(sort).

-export([do/1]).

do(N) ->
 cprof:stop(),
 cprof:start(),
 do(N, []).

do(0, L) ->
 R = lists:sort(L),
 cprof:pause(),
 R;
do(N, L) ->
 do(N-1, [random:uniform(256)-1 | L]).

From the Erlang shell:

1> c(sort).
{ok,sort}
2> l(random).
{module,random}
3> sort:do(1000).
[0,0,1,1,1,1,1,1,2,2,2,3,3,3,3,3,4,4,4,5,5,5,5,6,6,6,6,6,6|...]
4> cprof:analyse().
{9050,
 [{lists_sort,6047,
 [{{lists_sort,merge3_2,6},923},
 {{lists_sort,merge3_1,6},879},
 {{lists_sort,split_2,5},661},
 {{lists_sort,rmerge3_1,6},580},
 {{lists_sort,rmerge3_2,6},543},
 {{lists_sort,merge3_12_3,6},531},
 {{lists_sort,merge3_21_3,6},383},
 {{lists_sort,split_2_1,6},338},
 {{lists_sort,rmerge3_21_3,6},299},
 {{lists_sort,rmerge3_12_3,6},205},
 {{lists_sort,rmerge2_2,4},180},
 {{lists_sort,rmerge2_1,4},171},
 {{lists_sort,merge2_1,4},127},
 {{lists_sort,merge2_2,4},121},
 {{lists_sort,mergel,2},79},
 {{lists_sort,rmergel,2},27}]},
 {random,2001,
 [{{random,uniform,1},1000},
 {{random,uniform,0},1000},
 {{random,seed0,0},1}]},
 {sort,1001,[{{sort,do,2},1001}]},
 {lists,1,[{{lists,sort,1},1}]}]}
5> cprof:stop().
5369

The example shows some details of how lists:sort/1 works. It used 6047 function calls in the module
lists_sort to complete the work.

This time, since the shell was not involved, no other work was done in the system during the profiling. If you retry the
same example with a freshly started Erlang emulator, but omit the command l(random), the analysis will show a
lot more function calls done by code_server and others to automatically load the module random.

Ericsson AB. All Rights Reserved.: Tools | 11

1.3 The Erlang mode for Emacs

1.3 The Erlang mode for Emacs
1.3.1 Purpose
The purpose of this user guide is to introduce you to the Erlang mode for Emacs and gives some relevant background
information of the functions and features. See also Erlang mode reference manual The purpose of the Erlang mode
itself is to facilitate the developing process for the Erlang programmer.

1.3.2 Pre-requisites
Basic knowledge of Emacs and Erlang/OTP.

1.3.3 Elisp
There are two Elisp modules included in this tool package for Emacs. There is erlang.el that defines the actual erlang
mode and there is erlang-start.el that makes some nice initializations.

1.3.4 Setup on UNIX
To set up the Erlang Emacs mode on a UNIX systems, edit/create the file .emacs in the your home directory.

Below is a complete example of what should be added to a user's .emacs provided that OTP is installed in the
directory /usr/local/otp :

 (setq load-path (cons "/usr/local/otp/lib/tools-<ToolsVer>/emacs"
 load-path))
 (setq erlang-root-dir "/usr/local/otp")
 (setq exec-path (cons "/usr/local/otp/bin" exec-path))
 (require 'erlang-start)

1.3.5 Setup on Windows
To set up the Erlang Emacs mode on a Windows systems, edit/create the file .emacs, the location of the file depends
on the configuration of the system. If the HOME environment variable is set, Emacs will look for the .emacs file in
the directory indicated by the HOME variable. If HOME is not set, Emacs will look for the .emacs file in C:\ .

Below is a complete example of what should be added to a user's .emacs provided that OTP is installed in the
directory C:\Program Files\erl<Ver>:

 (setq load-path (cons "C:/Program Files/erl<Ver>/lib/tools-<ToolsVer>/emacs"
 load-path))
 (setq erlang-root-dir "C:/Program Files/erl<Ver>")
 (setq exec-path (cons "C:/Program Files/erl<Ver>/bin" exec-path))
 (require 'erlang-start)

Note:

In .emacs, the slash character "/" can be used as path separator. But if you decide to use the backslash character "\",
please not that you must use double backslashes, since they are treated as escape characters by Emacs.

1.3.6 Indentation
The "Oxford Advanced Learners Dictionary of Current English" says the following about the word "indent":

"start (a line of print or writing) farther from the margin than the others".

The Erlang mode does, of course, provide this feature. The layout used is based on the common use of the language.

12 | Ericsson AB. All Rights Reserved.: Tools

1.3 The Erlang mode for Emacs

It is strongly recommended to use this feature and avoid to indent lines in a nonstandard way. Some motivations are:

• Code using the same layout is easy to read and maintain.

• Since several features of Erlang mode is based on the standard layout they might not work correctly if a
nonstandard layout is used.

The indentation features can be used to reindent large sections of a file. If some lines use nonstandard indentation
they will be reindented.

1.3.7 Editing
• M-x erlang-mode RET - This command activates the Erlang major mode for the current buffer. When this

mode is active the mode line contain the word "Erlang".

When the Erlang mode is correctly installed, it is automatically activated when a file ending in .erl or .hrl is
opened in Emacs.

When a file is saved the name in the -module(). line is checked against the file name. Should they mismatch Emacs
can change the module specifier so that it matches the file name. By default, the user is asked before the change is
performed.

An "electric" command is a character that in addition to just inserting the character performs some type of action. For
example the ";" character is typed in a situation where is ends a function clause a new function header is generated.
The electric commands are as follows:

• erlang-electric-comma - Insert a comma character and possibly a new indented line.

• erlang-electric-semicolon - Insert a semicolon character and possibly a prototype for the next line.

• erlang-electric-gt - "Insert a '>'-sign and possible a new indented line.

To disable all electric commands set the variable erlang-electric-commands to the empty list. In short, place
the following line in your .emacs-file:

 (setq erlang-electric-commands '())

1.3.8 Syntax highlighting
It is possible for Emacs to use colors when displaying a buffer. By "syntax highlighting", we mean that syntactic
components, for example keywords and function names, will be colored.

The basic idea of syntax highlighting is to make the structure of a program clearer. For example, the highlighting will
make it easier to spot simple bugs. Have not you ever written a variable in lower-case only? With syntax highlighting
a variable will colored while atoms will be shown with the normal text color.

1.3.9 Tags
Tags is a standard Emacs package used to record information about source files in large development projects. In
addition to listing the files of a project, a tags file normally contains information about all functions and variables that
are defined. By far, the most useful command of the tags system is its ability to find the definition of functions in any
file in the project. However the Tags system is not limited to this feature, for example, it is possible to do a text search
in all files in a project, or to perform a project-wide search and replace.

In order to use the Tags system a file named TAGS must be created. The file can be seen as a database over all functions,
records, and macros in all files in the project. The TAGS file can be created using two different methods for Erlang.
The first is the standard Emacs utility "etags", the second is by using the Erlang module tags.

Ericsson AB. All Rights Reserved.: Tools | 13

1.4 fprof - The File Trace Profiler

1.3.10 Etags
etags is a program that is part of the Emacs distribution. It is normally executed from a command line, like a unix
shell or a DOS box.

The etags program of fairly modern versions of Emacs and XEmacs has native support for Erlang. To check if your
version does include this support, issue the command etags --help at a the command line prompt. At the end of
the help text there is a list of supported languages. Unless Erlang is a member of this list I suggest that you should
upgrade to a newer version of Emacs.

As seen in the help text -- unless you have not upgraded your Emacs yet (well, what are you waiting around here for?
Off you go and upgrade!) -- etags associate the file extensions .erl and .hrl with Erlang.

Basically, the etags utility is ran using the following form:

 etags file1.erl file2.erl

This will create a file named TAGS in the current directory.

The etags utility can also read a list of files from its standard input by supplying a single dash in place of the file
names. This feature is useful when a project consists of a large number of files. The standard UNIX command find
can be used to generate the list of files, e.g:

 find . -name "*.[he]rl" -print | etags -

The above line will create a TAGS file covering all the Erlang source files in the current directory, and in the
subdirectories below.

Please see the GNU Emacs Manual and the etags man page for more info.

1.3.11 Shell
The look and feel on an Erlang shell inside Emacs should be the same as in a normal Erlang shell. There is just one
major difference, the cursor keys will actually move the cursor around just like in any normal Emacs buffer. The
command line history can be accessed by the following commands:

• C-up or M-p (comint-previous-input) - Move to the previous line in the input history.

• C-down or M-n (comint-next-input) - Move to the next line in the input history.

If the Erlang shell buffer would be killed the command line history is saved to a file. The command line history is
automatically retrieved when a new Erlang shell is started.

1.3.12 Compilation
The classic edit-compile-bugfix cycle for Erlang is to edit the source file in an editor, save it to a file and switch to
an Erlang shell. In the shell the compilation command is given. Should the compilation fail you have to bring out the
editor and locate the correct line.

With the Erlang editing mode the entire edit-compile-bugfix cycle can be performed without leaving Emacs. Emacs
can order Erlang to compile a file and it can parse the error messages to automatically place the point on the erroneous
lines.

1.4 fprof - The File Trace Profiler
fprof is a profiling tool that can be used to get a picture of how much processing time different functions consumes
and in which processes.

fprof uses tracing with timestamps to collect profiling data. Therfore there is no need for special compilation of
any module to be profiled.

14 | Ericsson AB. All Rights Reserved.: Tools

1.4 fprof - The File Trace Profiler

fprof presents wall clock times from the host machine OS, with the assumption that OS scheduling will randomly
load the profiled functions in a fair way. Both own time i.e the time used by a function for its own execution, and
accumulated time i.e execution time including called functions.

Profiling is essentially done in 3 steps:

1
Tracing; to file, as mentioned in the previous paragraph.

2
Profiling; the trace file is read and raw profile data is collected into an internal RAM storage on the node.
During this step the trace data may be dumped in text format to file or console.

3
Analysing; the raw profile data is sorted and dumped in text format either to file or console.

Since fprof uses trace to file, the runtime performance degradation is minimized, but still far from negligible,
especially not for programs that use the filesystem heavily by themselves. Where you place the trace file is also
important, e.g on Solaris /tmp is usually a good choice, while any NFS mounted disk is a lousy choice.

Fprof can also skip the file step and trace to a tracer process of its own that does the profiling in runtime.

The following sections show some examples of how to profile with Fprof. See also the reference manual fprof(3).

1.4.1 Profiling from the source code
If you can edit and recompile the source code, it is convenient to insert fprof:trace(start) and
fprof:trace(stop) before and after the code to be profiled. All spawned processes are also traced. If you want
some other filename than the default try fprof:trace(start, "my_fprof.trace").

Then read the trace file and create the raw profile data with fprof:profile(), or perhaps
fprof:profile(file, "my_fprof.trace") for non-default filename.

Finally create an informative table dumped on the console with fprof:analyse(), or on file with
fprof:analyse(dest, []), or perhaps even fprof:analyse([{dest, "my_fprof.analysis"},
{cols, 120}]) for a wider listing on non-default filename.

See the fprof(3) manual page for more options and arguments to the functions trace, profile and analyse.

1.4.2 Profiling a function
If you have one function that does the task that you want to profile, and the function returns when the profiling should
stop, it is convenient to use fprof:apply(Module, Function, Args) and related for the tracing step.

If the tracing should continue after the function returns, for example if it is a start function that spawns processes to
be profiled, you can use fprof:apply(M, F, Args, [continue | OtherOpts]). The tracing has to be
stopped at a suitable later time using fprof:trace(stop).

1.4.3 Immediate profiling
It is also possible to trace immediately into the profiling process that creates the raw profile data, that is to short circuit
the tracing and profiling steps so that the filesystem is not used.

Do something like this:

{ok, Tracer} = fprof:profile(start),
fprof:trace([start, {tracer, Tracer}]),
%% Code to profile
fprof:trace(stop);

This puts less load on the filesystem, but much more on the Erlang runtime system.

Ericsson AB. All Rights Reserved.: Tools | 15

1.5 lcnt - The Lock Profiler

1.5 lcnt - The Lock Profiler
Internally in the Erlang runtime system locks are used to protect resources from being updated from multiple threads
in a fatal way. Locks are necessary to ensure that the runtime system works properly but it also introduces a couple
of limitations. Lock contention and locking overhead.

With lock contention we mean when one thread locks a resource and another thread, or threads, tries to acquire the
same resource at the same time. The lock will deny the other thread access to the resource and the thread will be
blocked from continuing its execution. The second thread has to wait until the first thread has completed its access to
the resource and unlocked it. The lcnt tool measures these lock conflicts.

Locks have an inherent cost in execution time and memory space. It takes time initialize, destroy, aquiring or releasing
locks. To decrease lock contention it some times necessary to use finer grained locking strategies. This will usually
also increase the locking overhead and hence there is a tradeoff between lock contention and overhead. In general,
lock contention increases with the number of threads running concurrently. The lcnt tool does not measure locking
overhead.

1.5.1 Enabling lock-counting
For investigation of locks in the emulator we use an internal tool called lcnt (short for lock-count). The VM needs
to be compiled with this option enabled. To compile a lock-counting VM along with a normal VM, use:

cd $ERL_TOP
./configure --enable-lock-counter

Start the lock-counting VM like this:

$ERL_TOP/bin/erl -emu_type lcnt

To verify that lock counting is enabled check that [lock-counting] appears in the status text when the VM is
started.

Erlang/OTP 20 [erts-9.0] [64-bit] [smp:8:8] [ds:8:8:10] [async-threads:10] [hipe]
 [kernel-poll:false] [lock-counting]

1.5.2 Getting started
Once you have a lock counting enabled VM the module lcnt can be used. The module is intended to be used from
the current running nodes shell. To access remote nodes use lcnt:clear(Node) and lcnt:collect(Node).

All locks are continuously monitored and its statistics updated. Use lcnt:clear/0 to initially clear all counters
before running any specific tests. This command will also reset the duration timer internally.

To retrieve lock statistics information, use lcnt:collect/0,1. The collect operation will start a lcnt server if it
not already started. All collected data will be built into an Erlang term and uploaded to the server and a duration time
will also be uploaded. This duration is the time between lcnt:clear/0,1 and lcnt:collect/0,1.

Once the data is collected to the server it can be filtered, sorted and printed in many different ways.

See the reference manual for a description of each function.

1.5.3 Example of usage
From the Erlang shell:

16 | Ericsson AB. All Rights Reserved.: Tools

1.5 lcnt - The Lock Profiler

Erlang R13B03 (erts-5.7.4) [source] [smp:8:8] [rq:8] [async-threads:0] [hipe]
 [kernel-poll:false] [lock-counting]
1> lcnt:rt_opt({copy_save, true}).
false
2> lcnt:clear(), big:bang(1000), lcnt:collect().
ok
3> lcnt:conflicts().
 lock id #tries #collisions collisions [%] time [us] duration [%]
 ----- --- ------- ------------ --------------- ---------- -------------
 alcu_allocator 50 4113692 158921 3.8632 215464 4.4962
 pix_lock 256 4007140 4882 0.1218 12221 0.2550
 run_queue 8 2287246 6949 0.3038 9825 0.2050
 proc_main 1029 3115778 25755 0.8266 1199 0.0250
 proc_msgq 1029 2467022 1910 0.0774 1048 0.0219
 proc_status 1029 5708439 2435 0.0427 706 0.0147
 message_pre_alloc_lock 8 2008569 134 0.0067 90 0.0019
 timeofday 1 54065 8 0.0148 22 0.0005
 gc_info 1 7071 7 0.0990 5 0.0001
ok

Another way to to profile a specific function is to use lcnt:apply/3 or lcnt:apply/1 which does
lcnt:clear/0 before the function and lcnt:collect/0 after its invocation. This method should only be used
in micro-benchmarks since it sets copy_save to true for the duration of the function call, which may cause the
emulator to run out of memory if attempted under load.

Erlang R13B03 (erts-5.7.4) [source] [smp:8:8] [rq:8] [async-threads:0] [hipe]
 [kernel-poll:false] [lock-counting]
1> lcnt:apply(fun() -> big:bang(1000) end).
4384.338
2> lcnt:conflicts().
 lock id #tries #collisions collisions [%] time [us] duration [%]
 ----- --- ------- ------------ --------------- ---------- -------------
 alcu_allocator 50 4117913 183091 4.4462 234232 5.1490
 run_queue 8 2050398 3801 0.1854 6700 0.1473
 pix_lock 256 4007080 4943 0.1234 2847 0.0626
 proc_main 1028 3000178 28247 0.9415 1022 0.0225
 proc_msgq 1028 2293677 1352 0.0589 545 0.0120
 proc_status 1028 5258029 1744 0.0332 442 0.0097
 message_pre_alloc_lock 8 2009322 147 0.0073 82 0.0018
 timeofday 1 48616 9 0.0185 13 0.0003
 gc_info 1 7455 12 0.1610 9 0.0002
ok

The process locks are sorted after its class like all other locks. It is convenient to look at specific processes and ports
as classes. We can do this by swapping class and class identifiers with lcnt:swap_pid_keys/0.

Ericsson AB. All Rights Reserved.: Tools | 17

1.5 lcnt - The Lock Profiler

3> lcnt:swap_pid_keys().
ok
4> lcnt:conflicts([{print, [name, tries, ratio, time]}]).
 lock #tries collisions [%] time [us]
 ----- ------- --------------- ----------
 alcu_allocator 4117913 4.4462 234232
 run_queue 2050398 0.1854 6700
 pix_lock 4007080 0.1234 2847
 message_pre_alloc_lock 2009322 0.0073 82
 <nonode@nohost.660.0> 13493 1.4452 41
 <nonode@nohost.724.0> 13504 1.1404 36
 <nonode@nohost.803.0> 13181 1.6235 35
 <nonode@nohost.791.0> 13534 0.8202 22
 <nonode@nohost.37.0> 8744 5.8326 22
 <nonode@nohost.876.0> 13335 1.1174 19
 <nonode@nohost.637.0> 13452 1.3678 19
 <nonode@nohost.799.0> 13497 1.8745 18
 <nonode@nohost.469.0> 11009 2.5343 18
 <nonode@nohost.862.0> 13131 1.2566 16
 <nonode@nohost.642.0> 13216 1.7327 15
 <nonode@nohost.582.0> 13156 1.1098 15
 <nonode@nohost.622.0> 13420 0.7303 14
 <nonode@nohost.596.0> 13141 1.6437 14
 <nonode@nohost.592.0> 13346 1.2064 13
 <nonode@nohost.526.0> 13076 1.1701 13
ok

1.5.4 Example with Mnesia Transaction Benchmark
From the Erlang shell:

Erlang R13B03 (erts-5.7.4) [source] [smp:8:8] [rq:8] [async-threads:0] [hipe]
 [kernel-poll:false] [lock-counting]

Eshell V5.7.4 (abort with ^G)
1> Conf=[{db_nodes, [node()]}, {driver_nodes, [node()]}, {replica_nodes, [node()]},
 {n_drivers_per_node, 10}, {n_branches, 1000}, {n_accounts_per_branch, 10},
 {replica_type, ram_copies}, {stop_after, 60000}, {reuse_history_id, true}].
[{db_nodes,[nonode@nohost]},
 {driver_nodes,[nonode@nohost]},
 {replica_nodes,[nonode@nohost]},
 {n_drivers_per_node,10},
 {n_branches,1000},
 {n_accounts_per_branch,10},
 {replica_type,ram_copies},
 {stop_after,60000},
 {reuse_history_id,true}]
2> mnesia_tpcb:init([{use_running_mnesia, false}|Conf]).
ignore

Initial configuring of the benchmark is done. It is time to profile the actual benchmark and Mnesia

3> lcnt:apply(fun() -> {ok,{time, Tps,_,_,_,_}} = mnesia_tpcb:run([{use_running_mnesia,
 true}|Conf]), Tps/60 end).
12037.483333333334
ok
4> lcnt:swap_pid_keys().
ok

18 | Ericsson AB. All Rights Reserved.: Tools

1.5 lcnt - The Lock Profiler

The id header represents the number of unique identifiers under a class when the option {combine, true} is
used (which is on by default). It will otherwise show the specific identifier. The db_tab listing shows 722287 unique
locks, it is one for each ets-table created and Mnesia creates one for each transaction.

5> lcnt:conflicts().
 lock id #tries #collisions collisions [%] time [us] duration [%]
 ----- --- ------- ------------ --------------- ---------- -------------
 alcu_allocator 50 56355118 732662 1.3001 2934747 4.8862
 db_tab 722287 94513441 63203 0.0669 1958797 3.2613
 timeofday 1 2701048 175854 6.5106 1746079 2.9071
 pix_lock 256 24306168 163214 0.6715 918309 1.5289
 run_queue 8 11813811 152637 1.2920 357040 0.5945
 message_pre_alloc_lock 8 17671449 57203 0.3237 263043 0.4380
 mnesia_locker 4 17477633 1618548 9.2607 97092 0.1617
 mnesia_tm 4 9891408 463788 4.6888 86353 0.1438
 gc_info 1 823460 628 0.0763 24826 0.0413
 meta_main_tab_slot 16 41393400 7193 0.0174 11393 0.0190
 <nonode@nohost.1108.0> 4 4331412 333 0.0077 7148 0.0119
 timer_wheel 1 203185 30 0.0148 3108 0.0052
 <nonode@nohost.1110.0> 4 4291098 210 0.0049 885 0.0015
 <nonode@nohost.1114.0> 4 4294702 288 0.0067 442 0.0007
 <nonode@nohost.1113.0> 4 4346066 235 0.0054 390 0.0006
 <nonode@nohost.1106.0> 4 4348159 287 0.0066 379 0.0006
 <nonode@nohost.1111.0> 4 4279309 290 0.0068 325 0.0005
 <nonode@nohost.1107.0> 4 4292190 302 0.0070 315 0.0005
 <nonode@nohost.1112.0> 4 4208858 265 0.0063 276 0.0005
 <nonode@nohost.1109.0> 4 4377502 267 0.0061 276 0.0005
ok

The listing shows mnesia_locker, a process, has highly contended locks.

6> lcnt:inspect(mnesia_locker).
 lock id #tries #collisions collisions [%] time [us] duration [%]
 ----- --- ------- ------------ --------------- ---------- -------------
 mnesia_locker proc_msgq 5449930 59374 1.0894 69781 0.1162
 mnesia_locker proc_main 4462782 1487374 33.3284 14398 0.0240
 mnesia_locker proc_status 7564921 71800 0.9491 12913 0.0215
 mnesia_locker proc_link 0 0 0.0000 0 0.0000
ok

Listing without class combiner.

Ericsson AB. All Rights Reserved.: Tools | 19

1.5 lcnt - The Lock Profiler

7> lcnt:conflicts([{combine, false}, {print, [name, id, tries, ratio, time]}]).
 lock id #tries collisions [%] time [us]
 ----- --- ------- --------------- ----------
 db_tab mnesia_transient_decision 722250 3.9463 1856852
 timeofday undefined 2701048 6.5106 1746079
 alcu_allocator ets_alloc 7490696 2.2737 692655
 alcu_allocator ets_alloc 7081771 2.3294 664522
 alcu_allocator ets_alloc 7047750 2.2520 658495
 alcu_allocator ets_alloc 5883537 2.3177 610869
 pix_lock 58 11011355 1.1924 564808
 pix_lock 60 4426484 0.7120 262490
 alcu_allocator ets_alloc 1897004 2.4248 219543
 message_pre_alloc_lock undefined 4211267 0.3242 128299
 run_queue 3 2801555 1.3003 116792
 run_queue 2 2799988 1.2700 100091
 run_queue 1 2966183 1.2712 78834
 mnesia_locker proc_msgq 5449930 1.0894 69781
 message_pre_alloc_lock undefined 3495672 0.3262 65773
 message_pre_alloc_lock undefined 4189752 0.3174 58607
 mnesia_tm proc_msgq 2094144 1.7184 56361
 run_queue 4 2343585 1.3115 44300
 db_tab branch 1446529 0.5229 38244
 gc_info undefined 823460 0.0763 24826
ok

In this scenario the lock that protects ets-table mnesia_transient_decision has spent most of its waiting for.
That is 1.8 seconds in a test that run for 60 seconds. The time is also spread on eight different scheduler threads.

8> lcnt:inspect(db_tab, [{print, [name, id, tries, colls, ratio, duration]}]).
 lock id #tries #collisions collisions [%] duration [%]
 ----- --- ------- ------------ --------------- -------------
 db_tab mnesia_transient_decision 722250 28502 3.9463 3.0916
 db_tab branch 1446529 7564 0.5229 0.0637
 db_tab account 1464500 8203 0.5601 0.0357
 db_tab teller 1464529 8110 0.5538 0.0291
 db_tab history 722250 3767 0.5216 0.0232
 db_tab mnesia_stats 750332 7057 0.9405 0.0180
 db_tab mnesia_trans_store 61 0 0.0000 0.0000
 db_tab mnesia_trans_store 61 0 0.0000 0.0000
 db_tab mnesia_trans_store 53 0 0.0000 0.0000
 db_tab mnesia_trans_store 53 0 0.0000 0.0000
 db_tab mnesia_trans_store 53 0 0.0000 0.0000
 db_tab mnesia_trans_store 53 0 0.0000 0.0000
 db_tab mnesia_trans_store 53 0 0.0000 0.0000
 db_tab mnesia_trans_store 53 0 0.0000 0.0000
 db_tab mnesia_trans_store 53 0 0.0000 0.0000
 db_tab mnesia_trans_store 53 0 0.0000 0.0000
 db_tab mnesia_trans_store 53 0 0.0000 0.0000
 db_tab mnesia_trans_store 53 0 0.0000 0.0000
 db_tab mnesia_trans_store 53 0 0.0000 0.0000
 db_tab mnesia_trans_store 53 0 0.0000 0.0000
ok

1.5.5 Deciphering the output
Typically high time values are bad and this is often the thing to look for. However, one should also look for high lock
acquisition frequencies (#tries) since locks generate overhead and because high frequency could become problematic
if they begin to have conflicts even if it is not shown in a particular test.

20 | Ericsson AB. All Rights Reserved.: Tools

1.6 Xref - The Cross Reference Tool

1.5.6 See Also
LCNT Reference Manual

1.6 Xref - The Cross Reference Tool
Xref is a cross reference tool that can be used for finding dependencies between functions, modules, applications and
releases. It does so by analyzing the defined functions and the function calls.

In order to make Xref easy to use, there are predefined analyses that perform some common tasks. Typically, a module
or a release can be checked for calls to undefined functions. For the somewhat more advanced user there is a small,
but rather flexible, language that can be used for selecting parts of the analyzed system and for doing some simple
graph analyses on selected calls.

The following sections show some features of Xref, beginning with a module check and a predefined analysis. Then
follow examples that can be skipped on the first reading; not all of the concepts used are explained, and it is assumed
that the reference manual has been at least skimmed.

1.6.1 Module Check
Assume we want to check the following module:

 -module(my_module).

 -export([t/1]).

 t(A) ->
 my_module:t2(A).

 t2(_) ->
 true.

Cross reference data are read from BEAM files, so the first step when checking an edited module is to compile it:

 1> c(my_module, debug_info).
 ./my_module.erl:10: Warning: function t2/1 is unused
 {ok, my_module}

The debug_info option ensures that the BEAM file contains debug information, which makes it possible to find
unused local functions.

The module can now be checked for calls to deprecated functions, calls to undefined functions, and for unused local
functions:

 2> xref:m(my_module)
 [{deprecated,[]},
 {undefined,[{{my_module,t,1},{my_module,t2,1}}]},
 {unused,[{my_module,t2,1}]}]

m/1 is also suitable for checking that the BEAM file of a module that is about to be loaded into a running a system
does not call any undefined functions. In either case, the code path of the code server (see the module code) is used
for finding modules that export externally called functions not exported by the checked module itself, so called library
modules.

Ericsson AB. All Rights Reserved.: Tools | 21

1.6 Xref - The Cross Reference Tool

1.6.2 Predefined Analysis
In the last example the module to analyze was given as an argument to m/1, and the code path was (implicitly) used as
library path. In this example an xref server will be used, which makes it possible to analyze applications and releases,
and also to select the library path explicitly.

Each Xref server is referred to by a unique name. The name is given when creating the server:

 1> xref:start(s).
 {ok,<0.27.0>}

Next the system to be analyzed is added to the Xref server. Here the system will be OTP, so no library path will be
needed. Otherwise, when analyzing a system that uses OTP, the OTP modules are typically made library modules
by setting the library path to the default OTP code path (or to code_path, see the reference manual). By default,
the names of read BEAM files and warnings are output when adding analyzed modules, but these messages can be
avoided by setting default values of some options:

 2> xref:set_default(s, [{verbose,false}, {warnings,false}]).
 ok
 3> xref:add_release(s, code:lib_dir(), {name, otp}).
 {ok,otp}

add_release/3 assumes that all subdirectories of the library directory returned by code:lib_dir() contain
applications; the effect is that of reading all applications' BEAM files.

It is now easy to check the release for calls to undefined functions:

 4> xref:analyze(s, undefined_function_calls).
 {ok, [...]}

We can now continue with further analyses, or we can delete the Xref server:

 5> xref:stop(s).

The check for calls to undefined functions is an example of a predefined analysis, probably the most useful one.
Other examples are the analyses that find unused local functions, or functions that call some given functions. See the
analyze/2,3 functions for a complete list of predefined analyses.

Each predefined analysis is a shorthand for a query, a sentence of a tiny language providing cross reference data as
values of predefined variables. The check for calls to undefined functions can thus be stated as a query:

 4> xref:q(s, "(XC - UC) || (XU - X - B)").
 {ok,[...]}

The query asks for the restriction of external calls except the unresolved calls to calls to functions that are externally
used but neither exported nor built-in functions (the || operator restricts the used functions while the | operator
restricts the calling functions). The - operator returns the difference of two sets, and the + operator to be used below
returns the union of two sets.

The relationships between the predefined variables XU, X, B and a few others are worth elaborating upon. The
reference manual mentions two ways of expressing the set of all functions, one that focuses on how they are defined:
X + L + B + U, and one that focuses on how they are used: UU + LU + XU. The reference also mentions
some facts about the variables:

• F is equal to L + X (the defined functions are the local functions and the external functions);

22 | Ericsson AB. All Rights Reserved.: Tools

1.6 Xref - The Cross Reference Tool

• U is a subset of XU (the unknown functions are a subset of the externally used functions since the compiler
ensures that locally used functions are defined);

• B is a subset of XU (calls to built-in functions are always external by definition, and unused built-in functions
are ignored);

• LU is a subset of F (the locally used functions are either local functions or exported functions, again ensured by
the compiler);

• UU is equal to F - (XU + LU) (the unused functions are defined functions that are neither used externally
nor locally);

• UU is a subset of F (the unused functions are defined in analyzed modules).

Using these facts, the two small circles in the picture below can be combined.

Figure 6.1: Definition and use of functions

It is often clarifying to mark the variables of a query in such a circle. This is illustrated in the picture below for
some of the predefined analyses. Note that local functions used by local functions only are not marked in the
locals_not_used circle.

Ericsson AB. All Rights Reserved.: Tools | 23

1.6 Xref - The Cross Reference Tool

Figure 6.2: Some predefined analyses as subsets of all functions

1.6.3 Expressions
The module check and the predefined analyses are useful, but limited. Sometimes more flexibility is needed, for
instance one might not need to apply a graph analysis on all calls, but some subset will do equally well. That flexibility
is provided with a simple language. Below are some expressions of the language with comments, focusing on elements
of the language rather than providing useful examples. The analyzed system is assumed to be OTP, so in order to run
the queries, first evaluate these calls:

 xref:start(s).
 xref:add_release(s, code:root_dir()).

xref:q(s, "(Fun) xref : Mod").
All functions of the xref module.

xref:q(s, "xref : Mod * X").
All exported functions of the xref module. The first operand of the intersection operator * is implicitly
converted to the more special type of the second operand.

xref:q(s, "(Mod) tools").
All modules of the Tools application.

xref:q(s, '"xref_.*" : Mod').
All modules with a name beginning with xref_.

xref:q(s, "# E | X ").
Number of calls from exported functions.

xref:q(s, "XC || L ").
All external calls to local functions.

xref:q(s, "XC * LC").
All calls that have both an external and a local version.

xref:q(s, "(LLin) (LC * XC)").
The lines where the local calls of the last example are made.

xref:q(s, "(XLin) (LC * XC)").
The lines where the external calls of the example before last are made.

xref:q(s, "XC * (ME - strict ME)").
External calls within some module.

xref:q(s, "E ||| kernel").
All calls within the Kernel application.

24 | Ericsson AB. All Rights Reserved.: Tools

1.6 Xref - The Cross Reference Tool

xref:q(s, "closure E | kernel || kernel").
All direct and indirect calls within the Kernel application. Both the calling and the used functions of indirect
calls are defined in modules of the kernel application, but it is possible that some functions outside the kernel
application are used by indirect calls.

xref:q(s, "{toolbar,debugger}:Mod of ME").
A chain of module calls from toolbar to debugger, if there is such a chain, otherwise false. The chain
of calls is represented by a list of modules, toolbar being the first element and debuggerthe last element.

xref:q(s, "closure E | toolbar:Mod || debugger:Mod").
All (in)direct calls from functions in toolbar to functions in debugger.

xref:q(s, "(Fun) xref -> xref_base").
All function calls from xref to xref_base.

xref:q(s, "E * xref -> xref_base").
Same interpretation as last expression.

xref:q(s, "E || xref_base | xref").
Same interpretation as last expression.

xref:q(s, "E * [xref -> lists, xref_base -> digraph]").
All function calls from xref to lists, and all function calls from xref_base to digraph.

xref:q(s, "E | [xref, xref_base] || [lists, digraph]").
All function calls from xref and xref_base to lists and digraph.

xref:q(s, "components EE").
All strongly connected components of the Inter Call Graph. Each component is a set of exported or unused
local functions that call each other (in)directly.

xref:q(s, "X * digraph * range (closure (E | digraph) | (L * digraph))").
All exported functions of the digraph module used (in)directly by some function in digraph.

xref:q(s, "L * yeccparser:Mod - range (closure (E |
yeccparser:Mod) | (X * yeccparser:Mod))").

The interpretation is left as an exercise.

1.6.4 Graph Analysis
The list representation of graphs is used analyzing direct calls, while the digraph representation is suited
for analyzing indirect calls. The restriction operators (|, || and |||) are the only operators that accept both
representations. This means that in order to analyze indirect calls using restriction, the closure operator (which
creates the digraph representation of graphs) has to be applied explicitly.

As an example of analyzing indirect calls, the following Erlang function tries to answer the question: if we want to
know which modules are used indirectly by some module(s), is it worth while using the function graph rather than the
module graph? Recall that a module M1 is said to call a module M2 if there is some function in M1 that calls some
function in M2. It would be nice if we could use the much smaller module graph, since it is available also in the light
weight modulesmode of Xref servers.

 t(S) ->
 {ok, _} = xref:q(S, "Eplus := closure E"),
 {ok, Ms} = xref:q(S, "AM"),
 Fun = fun(M, N) ->
 Q = io_lib:format("# (Mod) (Eplus | ~p : Mod)", [M]),
 {ok, N0} = xref:q(S, lists:flatten(Q)),
 N + N0
 end,
 Sum = lists:foldl(Fun, 0, Ms),
 ok = xref:forget(S, 'Eplus'),
 {ok, Tot} = xref:q(S, "# (closure ME | AM)"),
 100 * ((Tot - Sum) / Tot).

Comments on the code:

Ericsson AB. All Rights Reserved.: Tools | 25

1.6 Xref - The Cross Reference Tool

• We want to find the reduction of the closure of the function graph to modules. The direct expression for doing
that would be (Mod) (closure E | AM), but then we would have to represent all of the transitive closure
of E in memory. Instead the number of indirectly used modules is found for each analyzed module, and the sum
over all modules is calculated.

• A user variable is employed for holding the digraph representation of the function graph for use in many
queries. The reason is efficiency. As opposed to the = operator, the := operator saves a value for subsequent
analyses. Here might be the place to note that equal subexpressions within a query are evaluated only once; =
cannot be used for speeding things up.

• Eplus | ~p : Mod. The | operator converts the second operand to the type of the first operand. In this
case the module is converted to all functions of the module. It is necessary to assign a type to the module
(: Mod), otherwise modules like kernel would be converted to all functions of the application with the same
name; the most general constant is used in cases of ambiguity.

• Since we are only interested in a ratio, the unary operator # that counts the elements of the operand is used. It
cannot be applied to the digraph representation of graphs.

• We could find the size of the closure of the module graph with a loop similar to one used for the function graph,
but since the module graph is so much smaller, a more direct method is feasible.

When the Erlang function t/1 was applied to an Xref server loaded with the current version of OTP, the returned
value was close to 84 (percent). This means that the number of indirectly used modules is approximately six times
greater when using the module graph. So the answer to the above stated question is that it is definitely worth while
using the function graph for this particular analysis. Finally, note that in the presence of unresolved calls, the graphs
may be incomplete, which means that there may be indirectly used modules that do not show up.

26 | Ericsson AB. All Rights Reserved.: Tools

1.6 Xref - The Cross Reference Tool

2 Reference Manual

The Tools application contains a number of stand-alone tools, which are useful when developing Erlang programs.

cover
A coverage analysis tool for Erlang.

cprof
A profiling tool that shows how many times each function is called. Uses a kind of local call trace breakpoints
containing counters to achieve very low runtime performance degradation.

erlang.el- Erlang mode for Emacs
Editing support such as indentation, syntax highlighting, electric commands, module name verification,
comment support including paragraph filling, skeletons, tags support and more for erlang source code.

eprof
A time profiling tool; measure how time is used in Erlang programs. Predecessor of fprof (see below).

fprof
Another Erlang profiler; measure how time is used in your Erlang programs. Uses trace to file to minimize
runtime performance impact, and displays time for calling and called functions.

instrument
Utility functions for obtaining and analysing resource usage in an instrumented Erlang runtime system.

lcnt
A lock profiling tool for the Erlang runtime system.

make
A make utility for Erlang similar to UNIX make.

tags
A tool for generating Emacs TAGS files from Erlang source files.

xref
A cross reference tool. Can be used to check dependencies between functions, modules, applications and
releases.

Ericsson AB. All Rights Reserved.: Tools | 27

cover

cover
Erlang module

The module cover provides a set of functions for coverage analysis of Erlang programs, counting how many times
each executable line of code is executed when a program is run.
An executable line contains an Erlang expression such as a matching or a function call. A blank line or a line containing
a comment, function head or pattern in a case- or receive statement is not executable.

Coverage analysis can be used to verify test cases, making sure all relevant code is covered, and may also be helpful
when looking for bottlenecks in the code.

Before any analysis can take place, the involved modules must be Cover compiled. This means that some extra
information is added to the module before it is compiled into a binary which then is loaded. The source file of the
module is not affected and no .beam file is created.

Each time a function in a Cover compiled module is called, information about the call is added to an internal database
of Cover. The coverage analysis is performed by examining the contents of the Cover database. The output Answer
is determined by two parameters, Level and Analysis.

• Level = module

Answer = {Module,Value}, where Module is the module name.

• Level = function

Answer = [{Function,Value}], one tuple for each function in the module. A function is specified by its
module name M, function name F and arity A as a tuple {M,F,A}.

• Level = clause

Answer = [{Clause,Value}], one tuple for each clause in the module. A clause is specified by its module
name M, function name F, arity A and position in the function definition C as a tuple {M,F,A,C}.

• Level = line

Answer = [{Line,Value}], one tuple for each executable line in the module. A line is specified by its
module name M and line number in the source file N as a tuple {M,N}.

• Analysis = coverage

Value = {Cov,NotCov} where Cov is the number of executable lines in the module, function, clause or line
that have been executed at least once and NotCov is the number of executable lines that have not been executed.

• Analysis = calls

Value = Calls which is the number of times the module, function, or clause has been called. In the case of
line level analysis, Calls is the number of times the line has been executed.

Distribution

Cover can be used in a distributed Erlang system. One of the nodes in the system must then be selected as the main
node, and all Cover commands must be executed from this node. The error reason not_main_node is returned if
an interface function is called on one of the remote nodes.

Use cover:start/1 and cover:stop/1 to add or remove nodes. The same Cover compiled code will be loaded
on each node, and analysis will collect and sum up coverage data results from all nodes.

To only collect data from remote nodes without stopping cover on those nodes, use cover:flush/1

If the connection to a remote node goes down, the main node will mark it as lost. If the node comes back it will be
added again. If the remote node was alive during the disconnected periode, cover data from before and during this
periode will be included in the analysis.

28 | Ericsson AB. All Rights Reserved.: Tools

cover

Exports

start() -> {ok,Pid} | {error,Reason}
Types:

Pid = pid()

Reason = {already_started,Pid}

Starts the Cover server which owns the Cover internal database. This function is called automatically by the other
functions in the module.

local_only() -> ok | {error,too_late}
Only support running Cover on the local node. This function must be called before any modules have been compiled
or any nodes added. When running in this mode, modules will be Cover compiled in a more efficient way, but the
resulting code will only work on the same node they were compiled on.

start(Nodes) -> {ok,StartedNodes} | {error,not_main_node} |
{error,local_only}
Types:

Nodes = StartedNodes = [atom()]

Starts a Cover server on the each of given nodes, and loads all cover compiled modules. This call will fail if
cover:local_only/0 has been called.

compile(ModFiles) -> Result | [Result]
compile(ModFiles, Options) -> Result | [Result]
compile_module(ModFiles) -> Result | [Result]
compile_module(ModFiles, Options) -> Result | [Result]
Types:

ModFiles = ModFile | [ModFile]

ModFile = Module | File

 Module = atom()

 File = string()

Options = [Option]

 Option = {i,Dir} | {d,Macro} | {d,Macro,Value} | export_all

See compile:file/2.

Result = {ok,Module} | {error,File} | {error,not_main_node}

Compiles a module for Cover analysis. The module is given by its module name Module or by its file name File.
The .erl extension may be omitted. If the module is located in another directory, the path has to be specified.

Options is a list of compiler options which defaults to []. Only options defining include file directories and macros
are passed to compile:file/2, everything else is ignored.

If the module is successfully Cover compiled, the function returns {ok,Module}. Otherwise the function returns
{error,File}. Errors and warnings are printed as they occur.

If a list of ModFiles is given as input, a list of Result will be returned. The order of the returned list is undefined.

Note that the internal database is (re-)initiated during the compilation, meaning any previously collected coverage data
for the module will be lost.

Ericsson AB. All Rights Reserved.: Tools | 29

cover

compile_directory() -> [Result] | {error,Reason}
compile_directory(Dir) -> [Result] | {error,Reason}
compile_directory(Dir, Options) -> [Result] | {error,Reason}
Types:

Dir = string()

Options = [Option]

See compile_module/1,2

Result = {ok,Module} | {error,File} | {error,not_main_node}

See compile_module/1,2

Reason = eacces | enoent

Compiles all modules (.erl files) in a directory Dir for Cover analysis the same way as compile_module/1,2
and returns a list with the return values.

Dir defaults to the current working directory.

The function returns {error,eacces} if the directory is not readable or {error,enoent} if the directory does
not exist.

compile_beam(ModFiles) -> Result | [Result]
Types:

ModFiles = ModFile | [ModFile]

ModFile = Module | BeamFile

 Module = atom()

 BeamFile = string()

Result = {ok,Module} | {error,BeamFile} | {error,Reason}

 Reason = non_existing | {no_abstract_code,BeamFile} |
{encrypted_abstract_code,BeamFile} |
{already_cover_compiled,no_beam_found,Module} | not_main_node

Does the same as compile/1,2, but uses an existing .beam file as base, i.e. the module is not compiled from
source. Thus compile_beam/1 is faster than compile/1,2.

Note that the existing .beam file must contain abstract code, i.e. it must have been compiled with the debug_info
option. If not, the error reason {no_abstract_code,BeamFile} is returned. If the abstract code is encrypted,
and no key is available for decrypting it, the error reason {encrypted_abstract_code,BeamFile} is
returned.

If only the module name (i.e. not the full name of the .beam file) is given to this function, the .beam file is found
by calling code:which(Module). If no .beam file is found, the error reason non_existing is returned. If the
module is already cover compiled with compile_beam/1, the .beam file will be picked from the same location
as the first time it was compiled. If the module is already cover compiled with compile/1,2, there is no way to
find the correct .beam file, so the error reason {already_cover_compiled,no_beam_found,Module}
is returned.

{error,BeamFile} is returned if the compiled code cannot be loaded on the node.

If a list of ModFiles is given as input, a list of Result will be returned. The order of the returned list is undefined.

compile_beam_directory() -> [Result] | {error,Reason}
compile_beam_directory(Dir) -> [Result] | {error,Reason}
Types:

30 | Ericsson AB. All Rights Reserved.: Tools

cover

Dir = string()

Result = See compile_beam/1

Reason = eacces | enoent

Compiles all modules (.beam files) in a directory Dir for Cover analysis the same way as compile_beam/1 and
returns a list with the return values.

Dir defaults to the current working directory.

The function returns {error,eacces} if the directory is not readable or {error,enoent} if the directory does
not exist.

analyse() -> {result,Ok,Fail} | {error,not_main_node}
analyse(Modules) -> OneResult | {result,Ok,Fail} | {error,not_main_node}
analyse(Analysis) -> {result,Ok,Fail} | {error,not_main_node}
analyse(Level) -> {result,Ok,Fail} | {error,not_main_node}
analyse(Modules, Analysis) -> OneResult | {result,Ok,Fail} |
{error,not_main_node}
analyse(Modules, Level) -> OneResult | {result,Ok,Fail} |
{error,not_main_node}
analyse(Analysis, Level) -> {result,Ok,Fail} | {error,not_main_node}
analyse(Modules, Analysis, Level) -> OneResult | {result,Ok,Fail} |
{error,not_main_node}
Types:

Modules = Module | [Module]

Module = atom()

Analysis = coverage | calls

Level = line | clause | function | module

OneResult = {ok,{Module,Value}} | {ok,[{Item,Value}]} | {error, Error}

 Item = Line | Clause | Function

 Line = {M,N}

 Clause = {M,F,A,C}

 Function = {M,F,A}

 M = F = atom()

 N = A = C = integer()

 Value = {Cov,NotCov} | Calls

 Cov = NotCov = Calls = integer()

 Error = {not_cover_compiled,Module}

Ok = [{Module,Value}] | [{Item,Value}]

Fail = [Error]

Performs analysis of one or more Cover compiled modules, as specified by Analysis and Level (see above), by
examining the contents of the internal database.

Analysis defaults to coverage and Level defaults to function.

If Modules is an atom (one module), the return will be OneResult, else the return will be {result,Ok,Fail}.

If Modules is not given, all modules that have data in the cover data table, are analysed. Note that this includes both
cover compiled modules and imported modules.

Ericsson AB. All Rights Reserved.: Tools | 31

cover

If a given module is not Cover compiled, this is indicated by the error reason {not_cover_compiled,Module}.

analyse_to_file() -> {result,Ok,Fail} | {error,not_main_node}
analyse_to_file(Modules) -> Answer | {result,Ok,Fail} | {error,not_main_node}
analyse_to_file(Options) -> {result,Ok,Fail} | {error,not_main_node}
analyse_to_file(Modules,Options) -> Answer | {result,Ok,Fail} |
{error,not_main_node}
Types:

Modules = Module | [Module]

Module = atom()

OutFile = OutDir = string()

Options = [Option]

Option = html | {outfile,OutFile} | {outdir,OutDir}

Answer = {ok,OutFile} | {error,Error}

Ok = [OutFile]

Fail = [Error]

Error = {not_cover_compiled,Module} | {file,File,Reason} |
{no_source_code_found,Module}

 File = string()

 Reason = term()

Makes copies of the source file for the given modules, where it for each executable line is specified how many times
it has been executed.

The output file OutFile defaults to Module.COVER.out, or Module.COVER.html if the option html was
used.

If Modules is an atom (one module), the return will be Answer, else the return will be a list, {result,Ok,Fail}.

If Modules is not given, all modules that have data in the cover data table, are analysed. Note that this includes both
cover compiled modules and imported modules.

If a module is not Cover compiled, this is indicated by the error reason {not_cover_compiled,Module}.

If the source file and/or the output file cannot be opened using file:open/2, the function returns {error,
{file,File,Reason}} where File is the file name and Reason is the error reason.

If a module was cover compiled from the .beam file, i.e. using compile_beam/1 or
compile_beam_directory/0,1, it is assumed that the source code can be found in the same directory as the
.beam file, in ../src relative to that directory, or using the source path in Module:module_info(compile).
When using the latter, two paths are examined: first the one constructed by joining ../src and the tail of the compiled
path below a trailing src component, then the compiled path itself. If no source code is found, this is indicated by
the error reason {no_source_code_found,Module}.

async_analyse_to_file(Module) ->
async_analyse_to_file(Module,Options) ->
async_analyse_to_file(Module, OutFile) ->
async_analyse_to_file(Module, OutFile, Options) -> pid()
Types:

Module = atom()

OutFile = string()

32 | Ericsson AB. All Rights Reserved.: Tools

cover

Options = [Option]

Option = html

Error = {not_cover_compiled,Module} | {file,File,Reason} |
{no_source_code_found,Module} | not_main_node

 File = string()

 Reason = term()

This function works exactly the same way as analyse_to_file except that it is asynchronous instead of synchronous.
The spawned process will link with the caller when created. If an Error occurs while doing the cover analysis the
process will crash with the same error reason as analyse_to_file would return.

modules() -> [Module] | {error,not_main_node}
Types:

Module = atom()

Returns a list with all modules that are currently Cover compiled.

imported_modules() -> [Module] | {error,not_main_node}
Types:

Module = atom()

Returns a list with all modules for which there are imported data.

imported() -> [File] | {error,not_main_node}
Types:

File = string()

Returns a list with all imported files.

which_nodes() -> [Node] | {error,not_main_node}
Types:

Node = atom()

Returns a list with all nodes that are part of the coverage analysis. Note that the current node is not returned. This
node is always part of the analysis.

is_compiled(Module) -> {file,File} | false | {error,not_main_node}
Types:

Module = atom()

Beam = string()

Returns {file,File} if the module Module is Cover compiled, or false otherwise. File is the .erl file used
by cover:compile_module/1,2 or the .beam file used by compile_beam/1.

reset(Module) ->
reset() -> ok | {error,not_main_node}
Types:

Module = atom()

Resets all coverage data for a Cover compiled module Module in the Cover database on all nodes. If the argument
is omitted, the coverage data will be reset for all modules known by Cover.

Ericsson AB. All Rights Reserved.: Tools | 33

cover

If Module is not Cover compiled, the function returns {error,{not_cover_compiled,Module}}.

export(ExportFile)
export(ExportFile,Module) -> ok | {error,Reason}
Types:

ExportFile = string()

Module = atom()

Reason = {not_cover_compiled,Module} | {cant_open_file,ExportFile,Reason}
| not_main_node

Exports the current coverage data for Module to the file ExportFile. It is recommended to name the ExportFile
with the extension .coverdata, since other filenames cannot be read by the web based interface to cover.

If Module is not given, data for all Cover compiled or earlier imported modules is exported.

This function is useful if coverage data from different systems is to be merged.

See also cover:import/1

import(ExportFile) -> ok | {error,Reason}
Types:

ExportFile = string()

Reason = {cant_open_file,ExportFile,Reason} | not_main_node

Imports coverage data from the file ExportFile created with cover:export/1,2. Any analysis performed after
this will include the imported data.

Note that when compiling a module all existing coverage data is removed, including imported data. If a module is
already compiled when data is imported, the imported data is added to the existing coverage data.

Coverage data from several export files can be imported into one system. The coverage data is then added up when
analysing.

Coverage data for a module cannot be imported from the same file twice unless the module is first reset or compiled.
The check is based on the filename, so you can easily fool the system by renaming your export file.

See also cover:export/1,2

stop() -> ok | {error,not_main_node}
Stops the Cover server and unloads all Cover compiled code.

stop(Nodes) -> ok | {error,not_main_node}
Types:

Nodes = [atom()]

Stops the Cover server and unloads all Cover compiled code on the given nodes. Data stored in the Cover database
on the remote nodes is fetched and stored on the main node.

flush(Nodes) -> ok | {error,not_main_node}
Types:

Nodes = [atom()]

Fetch data from the Cover database on the remote nodes and stored on the main node.

34 | Ericsson AB. All Rights Reserved.: Tools

cover

SEE ALSO
code(3), compile(3)

Ericsson AB. All Rights Reserved.: Tools | 35

cprof

cprof
Erlang module

The cprof module is used to profile a program to find out how many times different functions are called. Breakpoints
similar to local call trace, but containing a counter, are used to minimise runtime performance impact.

Since breakpoints are used there is no need for special compilation of any module to be profiled. For now these
breakpoints can only be set on BEAM code so BIFs cannot be call count traced.

The size of the call counters is the host machine word size. One bit is used when pausing the counter, so the maximum
counter value for a 32-bit host is 2147483647.

The profiling result is delivered as a term containing a sorted list of entries, one per module. Each module entry contains
a sorted list of functions. The sorting order in both cases is of decreasing call count.

Call count tracing is very lightweight compared to other forms of tracing since no trace message has to be generated.
Some measurements indicates performance degradation in the vicinity of 10 percent.

Exports

analyse() -> {AllCallCount, ModAnalysisList}
analyse(Limit) -> {AllCallCount, ModAnalysisList}
analyse(Mod) -> ModAnalysis
analyse(Mod, Limit) -> ModAnalysis
Types:

Limit = integer()

Mod = atom()

AllCallCount = integer()

ModAnalysisList = [ModAnalysis]

ModAnalysis = {Mod, ModCallCount, FuncAnalysisList}

ModCallCount = integer()

FuncAnalysisList = [{{Mod, Func, Arity}, FuncCallCount}]

Func = atom()

Arity = integer()

FuncCallCount = integer()

Collects and analyses the call counters presently in the node for either module Mod, or for all modules (except cprof
itself), and returns:

FuncAnalysisList
A list of tuples, one for each function in a module, in decreasing FuncCallCount order.

ModCallCount
The sum of FuncCallCount values for all functions in module Mod.

AllCallCount
The sum of ModCallCount values for all modules concerned in ModAnalysisList.

ModAnalysisList
A list of tuples, one for each module except cprof, in decreasing ModCallCount order.

If call counters are still running while analyse/0..2 is executing, you might get an inconsistent result. This happens
if the process executing analyse/0..2 gets scheduled out so some other process can increment the counters that
are being analysed, Calling pause() before analysing takes care of the problem.

36 | Ericsson AB. All Rights Reserved.: Tools

cprof

If the Mod argument is given, the result contains a ModAnalysis tuple for module Mod only, otherwise the result
contains one ModAnalysis tuple for all modules returned from code:all_loaded() except cprof itself.

All functions with a FuncCallCount lower than Limit are excluded from FuncAnalysisList. They are still
included in ModCallCount, though. The default value for Limit is 1.

pause() -> integer()
Pause call count tracing for all functions in all modules and stop it for all functions in modules to be loaded. This is
the same as (pause({'_','_','_'})+stop({on_load})).

See also pause/1..3 below.

pause(FuncSpec) -> integer()
pause(Mod, Func) -> integer()
pause(Mod, Func, Arity) -> integer()
Types:

FuncSpec = Mod | {Mod,Func,Arity}, {FS}

Mod = atom()

Func = atom()

Arity = integer()

FS = term()

Pause call counters for matching functions in matching modules. The FS argument can be used to specify the first
argument to erlang:trace_pattern/3. See erlang(3).

The call counters for all matching functions that has got call count breakpoints are paused at their current count.

Return the number of matching functions that can have call count breakpoints, the same as start/0..3 with the
same arguments would have returned.

restart() -> integer()
restart(FuncSpec) -> integer()
restart(Mod, Func) -> integer()
restart(Mod, Func, Arity) -> integer()
Types:

FuncSpec = Mod | {Mod,Func,Arity}, {FS}

Mod = atom()

Func = atom()

Arity = integer()

FS = term()

Restart call counters for the matching functions in matching modules that are call count traced. The FS argument can
be used to specify the first argument to erlang:trace_pattern/3. See erlang(3).

The call counters for all matching functions that has got call count breakpoints are set to zero and running.

Return the number of matching functions that can have call count breakpoints, the same as start/0..3 with the
same arguments would have returned.

Ericsson AB. All Rights Reserved.: Tools | 37

cprof

start() -> integer()
Start call count tracing for all functions in all modules, and also for all functions in modules to be loaded. This is the
same as (start({'_','_','_'})+start({on_load})).

See also start/1..3 below.

start(FuncSpec) -> integer()
start(Mod, Func) -> integer()
start(Mod, Func, Arity) -> integer()
Types:

FuncSpec = Mod | {Mod,Func,Arity}, {FS}

Mod = atom()

Func = atom()

Arity = integer()

FS = term()

Start call count tracing for matching functions in matching modules. The FS argument can be used to specify the first
argument to erlang:trace_pattern/3, for example on_load. See erlang(3).

Set call count breakpoints on the matching functions that has no call count breakpoints. Call counters are set to zero
and running for all matching functions.

Return the number of matching functions that has got call count breakpoints.

stop() -> integer()
Stop call count tracing for all functions in all modules, and also for all functions in modules to be loaded. This is the
same as (stop({'_','_','_'})+stop({on_load})).

See also stop/1..3 below.

stop(FuncSpec) -> integer()
stop(Mod, Func) -> integer()
stop(Mod, Func, Arity) -> integer()
Types:

FuncSpec = Mod | {Mod,Func,Arity}, {FS}

Mod = atom()

Func = atom()

Arity = integer()

FS = term()

Stop call count tracing for matching functions in matching modules. The FS argument can be used to specify the first
argument to erlang:trace_pattern/3, for example on_load. See erlang(3).

Remove call count breakpoints from the matching functions that has call count breakpoints.

Return the number of matching functions that can have call count breakpoints, the same as start/0..3 with the
same arguments would have returned.

See Also
eprof(3), fprof(3), erlang(3), User's Guide

38 | Ericsson AB. All Rights Reserved.: Tools

eprof

eprof
Erlang module

The module eprof provides a set of functions for time profiling of Erlang programs to find out how the execution
time is used. The profiling is done using the Erlang trace BIFs. Tracing of local function calls for a specified set of
processes is enabled when profiling is begun, and disabled when profiling is stopped.

When using Eprof, expect a slowdown in program execution.

Exports

start() -> {ok,Pid} | {error,Reason}
Types:

Pid = pid()

Reason = {already_started,Pid}

Starts the Eprof server which holds the internal state of the collected data.

start_profiling(Rootset) -> profiling | {error, Reason}
start_profiling(Rootset,Pattern) -> profiling | {error, Reason}
start_profiling(Rootset,Pattern,Options) -> profiling | {error, Reason}
Types:

Rootset = [atom() | pid()]

Pattern = {Module, Function, Arity}

Module = Function = atom()

Arity = integer()

Options = [set_on_spawn]

Reason = term()

Starts profiling for the processes in Rootset (and any new processes spawned from them). Information about activity
in any profiled process is stored in the Eprof database.

Rootset is a list of pids and registered names.

The function returns profiling if tracing could be enabled for all processes in Rootset, or error otherwise.

A pattern can be selected to narrow the profiling. For instance a specific module can be selected, and only the code
executed in that module will be profiled.

The set_on_spawn option will active call time tracing for all processes spawned by processes in the rootset. This
is the default behaviour.

stop_profiling() -> profiling_stopped | profiling_already_stopped
Stops profiling started with start_profiling/1 or profile/1.

Ericsson AB. All Rights Reserved.: Tools | 39

eprof

profile(Fun) -> profiling | {error, Reason}
profile(Fun, Options) -> profiling | {error, Reason}
profile(Rootset) -> profiling | {error, Reason}
profile(Rootset,Fun) -> {ok, Value} | {error,Reason}
profile(Rootset,Fun,Pattern) -> {ok, Value} | {error, Reason}
profile(Rootset,Module,Function,Args) -> {ok, Value} | {error, Reason}
profile(Rootset,Module,Function,Args,Pattern) -> {ok, Value} | {error,
Reason}
profile(Rootset,Module,Function,Args,Pattern,Options) -> {ok, Value} |
{error, Reason}
Types:

Rootset = [atom() | pid()]

Fun = fun() -> term() end

Pattern = {Module, Function, Arity}

Module = Function = atom()

Args = [term()]

Arity = integer()

Options = [set_on_spawn]

Value = Reason = term()

This function first spawns a process P which evaluates Fun() or apply(Module,Function,Args). Then, it
starts profiling for P and the processes in Rootset (and any new processes spawned from them). Information about
activity in any profiled process is stored in the Eprof database.

Rootset is a list of pids and registered names.

If tracing could be enabled for P and all processes in Rootset, the function returns {ok,Value} when
Fun()/apply returns with the value Value, or {error,Reason} if Fun()/apply fails with exit reason
Reason. Otherwise it returns {error, Reason} immediately.

The set_on_spawn option will active call time tracing for all processes spawned by processes in the rootset. This
is the default behaviour.

The programmer must ensure that the function given as argument is truly synchronous and that no work continues
after the function has returned a value.

analyze() -> ok
analyze(Type) -> ok
analyze(Type,Options) -> ok
Types:

Type = procs | total

Options = [{filter, Filter} | {sort, Sort}

Filter = [{calls, integer()} | {time, float()}]

Sort = time | calls | mfa

Call this function when profiling has been stopped to display the results per process, that is:

• how much time has been used by each process, and

• in which function calls this time has been spent.

40 | Ericsson AB. All Rights Reserved.: Tools

eprof

Call analyze with total option when profiling has been stopped to display the results per function call, that is in
which function calls the time has been spent.

Time is shown as percentage of total time and as absolute time.

log(File) -> ok
Types:

File = atom() | string()

This function ensures that the results displayed by analyze/0,1,2 are printed both to the file File and the screen.

stop() -> stopped
Stops the Eprof server.

Ericsson AB. All Rights Reserved.: Tools | 41

erlang.el

erlang.el
Erlang module

Possibly the most important feature of an editor designed for programmers is the ability to indent a line of code in
accordance with the structure of the programming language. The Erlang mode does, of course, provide this feature. The
layout used is based on the common use of the language. The mode also provides things as syntax highlighting, electric
commands, module name verification, comment support including paragraph filling, skeletons, tags support etc.

In the following descriptions the use of the word Point means: "Point can be seen as the position of the cursor. More
precisely, the point is the position between two characters while the cursor is drawn over the character following the
point".

Indent
The following command are directly available for indentation.

• TAB (erlang-indent-command) - Indents the current line of code.

• M-C-\ (indent-region) - Indents all lines in the region.

• M-l (indent-for-comment) - Insert a comment character to the right of the code on the line (if any).

Lines containing comment are indented differently depending on the number of %-characters used:

• Lines with one %-character is indented to the right of the code. The column is specified by the variable
comment-column, by default column 48 is used.

• Lines with two %-characters will be indented to the same depth as code would have been in the same situation.

• Lines with three of more %-characters are indented to the left margin.

• C-c C-q (erlang-indent-function) - Indents the current Erlang function.

• M-x erlang-indent-clause RET
-Indent the current Erlang clause.

• M-x erlang-indent-current-buffer RET - Indent the entire buffer.

Edit - Fill Comment
When editing normal text in text mode you can let Emacs reformat the text by the fill-paragraph command.
This command will not work for comments since it will treat the comment characters as words.

The Erlang editing mode provides a command that knows about the Erlang comment structure and can be used to fill
text paragraphs in comments. Ex:

 %% This is just a very simple test to show
 %% how the Erlang fill
 %% paragraph command works.

Clearly, the text is badly formatted. Instead of formatting this paragraph line by line, let's try erlang-fill-
paragraph by pressing M-q. The result is:

 %% This is just a very simple test to show how the Erlang fill
 %% paragraph command works.

Edit - Comment/Uncomment Region
C-c C-c will put comment characters at the beginning of all lines in a marked region. If you want to have two
comment characters instead of one you can do C-u 2 C-c C-c

42 | Ericsson AB. All Rights Reserved.: Tools

erlang.el

C-c C-u will undo a comment-region command.

Edit - Moving the marker
• C-a M-a (erlang-beginning-of-function) - Move the point to the beginning of the current or

preceding Erlang function. With an numeric argument (ex C-u 2 C-a M-a) the function skips backwards
over this many Erlang functions. Should the argument be negative the point is moved to the beginning of a
function below the current function.

• M-C-a (erlang-beginning-of-clause) - As above but move point to the beginning of the current or
preceding Erlang clause.

• C-a M-e (erlang-end-of-function) - Move to the end of the current or following Erlang function.
With an numeric argument (ex C-u 2 C-a M-e) the function skips backwards over this many Erlang
functions. Should the argument be negative the point is moved to the end of a function below the current
function.

• M-C-e (erlang-end-of-clause) - As above but move point to the end of the current or following
Erlang clause.

Edit - Marking
• C-c M-h (erlang-mark-function) - Put the region around the current Erlang function. The point is

placed in the beginning and the mark at the end of the function.

• M-C-h (erlang-mark-clause) Put the region around the current Erlang clause. The point is placed in
the beginning and the mark at the end of the function.

Edit - Function Header Commands
• C-c C-j (erlang-generate-new-clause) - Create a new clause in the current Erlang function. The

point is placed between the parentheses of the argument list.

• C-c C-y (erlang-clone-arguments) - Copy the function arguments of the preceding Erlang clause.
This command is useful when defining a new clause with almost the same argument as the preceding.

Edit - Arrows
• C-c C-a (erlang-align-arrows) - aligns arrows after clauses inside a region.

 Example:

 sum(L) -> sum(L, 0).
 sum([H|T], Sum) -> sum(T, Sum + H);
 sum([], Sum) -> Sum.

 becomes:

 sum(L) -> sum(L, 0).
 sum([H|T], Sum) -> sum(T, Sum + H);
 sum([], Sum) -> Sum.

Syntax highlighting
The syntax highlighting can be activated from the Erlang menu. There are four different alternatives:

• Off: Normal black and white display.

• Level 1: Function headers, reserved words, comments, strings, quoted atoms, and character constants will be
colored.

Ericsson AB. All Rights Reserved.: Tools | 43

erlang.el

• Level 2: The above, attributes, Erlang bif:s, guards, and words in comments enclosed in single quotes will be
colored.

• Level 3: The above, variables, records, and macros will be colored. (This level is also known as the Christmas
tree level.)

Tags
For the tag commands to work it requires that you have generated a tag file. See Erlang mode users guide

• M-. (find-tag) - Find a function definition. The default value is the function name under the point.

• Find Tag (erlang-find-tag) - Like the Elisp-function `find-tag'. Capable of retrieving Erlang modules.
Tags can be given on the forms `tag', `module:', `module:tag'.

• M-+ (erlang-find-next-tag) - Find the next occurrence of tag.

• M-TAB (erlang-complete-tag) - Perform completion on the tag entered in a tag search. Completes to the
set of names listed in the current tags table.

• Tags aprops (tags-apropos) - Display list of all tags in tags table REGEXP matches.

• C-x t s (tags-search) - Search through all files listed in tags table for match for REGEXP. Stops when a
match is found.

Skeletons
A skeleton is a piece of pre-written code that can be inserted into the buffer. Erlang mode comes with a set of predefined
skeletons. The skeletons can be accessed either from the Erlang menu of from commands named tempo-template-
erlang-*, as the skeletons is defined using the standard Emacs package "tempo". Here follows a brief description
of the available skeletons:

• Simple skeletons: If, Case, Receive, Receive After, Receive Loop - Basic code constructs.

• Header elements: Module, Author - These commands insert lines on the form -module(xxx). and -
author('my@home').. They can be used directly, but are also used as part of the full headers described
below.

• Full Headers: Small (minimum requirement), Medium (with fields for basic information about the module), and
Large Header (medium header with some extra layout structure).

• Small Server - skeleton for a simple server not using OTP.

• Application - skeletons for the OTP application behavior

• Supervisor - skeleton for the OTP supervisor behavior

• Supervisor Bridge - skeleton for the OTP supervisor bridge behavior

• gen_server - skeleton for the OTP gen_server behavior

• gen_event - skeleton for the OTP gen_event behavior

• gen_fsm - skeleton for the OTP gen_fsm behavior

• gen_statem (StateName/3) - skeleton for the OTP gen_statem behavior using state name functions

• gen_statem (handle_event/4) - skeleton for the OTP gen_statem behavior using one state function

• Library module - skeleton for a module that does not implement a process.

• Corba callback - skeleton for a Corba callback module.

• Erlang test suite - skeleton for a callback module for the erlang test server.

Shell
• New shell (erlang-shell) - Starts a new Erlang shell.

• C-c C-z, (erlang-shell-display) - Displays an Erlang shell, or starts a new one if there is no shell
started.

44 | Ericsson AB. All Rights Reserved.: Tools

erlang.el

Compile
• C-c C-k, (erlang-compile) - Compiles the Erlang module in the current buffer. You can also use C-u

C-c C-k to debug compile the module with the debug options debug_info and export_all.

• C-c C-l, (erlang-compile-display) - Display compilation output.

• C-u C-x` Start parsing the compiler output from the beginning. This command will place the point on the
line where the first error was found.

• C-x` (erlang-next-error) - Move the point on to the next error. The buffer displaying the compilation
errors will be updated so that the current error will be visible.

Man
On unix you can view the manual pages in emacs. In order to find the manual pages, the variable `erlang-root-dir'
should be bound to the name of the directory containing the Erlang installation. The name should not include the final
slash. Practically, you should add a line on the following form to your ~/.emacs,

 (setq erlang-root-dir "/the/erlang/root/dir/goes/here")

Starting IMenu
• M-x imenu-add-to-menubar RET - This command will create the IMenu menu containing all the

functions in the current buffer.The command will ask you for a suitable name for the menu. Not supported by
Xemacs.

Version
• M-x erlang-version RET - This command displays the version number of the Erlang editing mode.

Remember to always supply the version number when asking questions about the Erlang mode.

Ericsson AB. All Rights Reserved.: Tools | 45

fprof

fprof
Erlang module

This module is used to profile a program to find out how the execution time is used. Trace to file is used to minimize
runtime performance impact.

The fprof module uses tracing to collect profiling data, hence there is no need for special compilation of any module
to be profiled. When it starts tracing, fprof will erase all previous tracing in the node and set the necessary trace
flags on the profiling target processes as well as local call trace on all functions in all loaded modules and all modules
to be loaded. fprof erases all tracing in the node when it stops tracing.

fprof presents both own time i.e how much time a function has used for its own execution, and accumulated time
i.e including called functions. All presented times are collected using trace timestamps. fprof tries to collect cpu
time timestamps, if the host machine OS supports it. Therefore the times may be wallclock times and OS scheduling
will randomly strike all called functions in a presumably fair way.

If, however, the profiling time is short, and the host machine OS does not support high resolution cpu time
measurements, some few OS schedulings may show up as ridiculously long execution times for functions doing
practically nothing. An example of a function more or less just composing a tuple in about 100 times the normal
execution time has been seen, and when the tracing was repeated, the execution time became normal.

Profiling is essentially done in 3 steps:

1
Tracing; to file, as mentioned in the previous paragraph. The trace contains entries for function calls, returns to
function, process scheduling, other process related (spawn, etc) events, and garbage collection. All trace entries
are timestamped.

2
Profiling; the trace file is read, the execution call stack is simulated, and raw profile data is calculated from the
simulated call stack and the trace timestamps. The profile data is stored in the fprof server state. During this
step the trace data may be dumped in text format to file or console.

3
Analysing; the raw profile data is sorted, filtered and dumped in text format either to file or console. The text
format intended to be both readable for a human reader, as well as parsable with the standard erlang parsing
tools.

Since fprof uses trace to file, the runtime performance degradation is minimized, but still far from negligible,
especially for programs that use the filesystem heavily by themselves. Where you place the trace file is also important,
e.g on Solaris /tmp is usually a good choice since it is essentially a RAM disk, while any NFS (network) mounted
disk is a bad idea.

fprof can also skip the file step and trace to a tracer process that does the profiling in runtime.

Exports

start() -> {ok, Pid} | {error, {already_started, Pid}}
Types:

Pid = pid()

Starts the fprof server.

Note that it seldom needs to be started explicitly since it is automatically started by the functions that need a running
server.

46 | Ericsson AB. All Rights Reserved.: Tools

fprof

stop() -> ok
Same as stop(normal).

stop(Reason) -> ok
Types:

Reason = term()

Stops the fprof server.

The supplied Reason becomes the exit reason for the server process. Default Any Reason other than kill sends
a request to the server and waits for it to clean up, reply and exit. If Reason is kill, the server is bluntly killed.

If the fprof server is not running, this function returns immediately with the same return value.

Note:

When the fprof server is stopped the collected raw profile data is lost.

apply(Func, Args) -> term()
Types:

Func = function() | {Module, Function}

Args = [term()]

Module = atom()

Function = atom()

Same as apply(Func, Args, []).

apply(Module, Function, Args) -> term()
Types:

Args = [term()]

Module = atom()

Function = atom()

Same as apply({Module, Function}, Args, []).

apply(Func, Args, OptionList) -> term()
Types:

Func = function() | {Module, Function}

Args = [term()]

OptionList = [Option]

Module = atom()

Function = atom()

Option = continue | start | {procs, PidList} | TraceStartOption

Calls erlang:apply(Func, Args) surrounded by trace([start, ...]) and trace(stop).

Some effort is made to keep the trace clean from unnecessary trace messages; tracing is started and stopped from a
spawned process while the erlang:apply/2 call is made in the current process, only surrounded by receive
and send statements towards the trace starting process. The trace starting process exits when not needed any more.

Ericsson AB. All Rights Reserved.: Tools | 47

fprof

The TraceStartOption is any option allowed for trace/1. The options [start, {procs, [self() |
PidList]} | OptList] are given to trace/1, where OptList is OptionList with continue, start
and {procs, _} options removed.

The continue option inhibits the call to trace(stop) and leaves it up to the caller to stop tracing at a suitable
time.

apply(Module, Function, Args, OptionList) -> term()
Types:

Module = atom()

Function = atom()

Args = [term()]

Same as apply({Module, Function}, Args, OptionList).

OptionList is an option list allowed for apply/3.

trace(start, Filename) -> ok | {error, Reason} | {'EXIT', ServerPid, Reason}
Types:

Reason = term()

Same as trace([start, {file, Filename}]).

trace(verbose, Filename) -> ok | {error, Reason} | {'EXIT', ServerPid,
Reason}
Types:

Reason = term()

Same as trace([start, verbose, {file, Filename}]).

trace(OptionName, OptionValue) -> ok | {error, Reason} | {'EXIT', ServerPid,
Reason}
Types:

OptionName = atom()

OptionValue = term()

Reason = term()

Same as trace([{OptionName, OptionValue}]).

trace(verbose) -> ok | {error, Reason} | {'EXIT', ServerPid, Reason}
Types:

Reason = term()

Same as trace([start, verbose]).

trace(OptionName) -> ok | {error, Reason} | {'EXIT', ServerPid, Reason}
Types:

OptionName = atom()

Reason = term()

Same as trace([OptionName]).

48 | Ericsson AB. All Rights Reserved.: Tools

fprof

trace({OptionName, OptionValue}) -> ok | {error, Reason} | {'EXIT',
ServerPid, Reason}
Types:

OptionName = atom()

OptionValue = term()

Reason = term()

Same as trace([{OptionName, OptionValue}]).

trace([Option]) -> ok | {error, Reason} | {'EXIT', ServerPid, Reason}
Types:

Option = start | stop | {procs, PidSpec} | {procs, [PidSpec]} | verbose |
{verbose, bool()} | file | {file, Filename} | {tracer, Tracer}

PidSpec = pid() | atom()

Tracer = pid() | port()

Reason = term()

Starts or stops tracing.

PidSpec and Tracer are used in calls to erlang:trace(PidSpec, true, [{tracer, Tracer} |
Flags]), and Filename is used to call dbg:trace_port(file, Filename). Please see the appropriate
documentation.

Option description:

stop
Stops a running fprof trace and clears all tracing from the node. Either option stop or start must be
specified, but not both.

start
Clears all tracing from the node and starts a new fprof trace. Either option start or stop must be
specified, but not both.

verbose| {verbose, bool()}
The options verbose or {verbose, true} adds some trace flags that fprof does not need, but that may
be interesting for general debugging purposes. This option is only allowed with the start option.

cpu_time| {cpu_time, bool()}
The options cpu_time or {cpu_time, true} makes the timestamps in the trace be in CPU time instead
of wallclock time which is the default. This option is only allowed with the start option.

Warning:

Getting correct values out of cpu_time can be difficult. The best way to get correct values is to run using a
single scheduler and bind that scheduler to a specific CPU, i.e. erl +S 1 +sbt db.

{procs, PidSpec}| {procs, [PidSpec]}
Specifies which processes that shall be traced. If this option is not given, the calling process is traced. All
processes spawned by the traced processes are also traced. This option is only allowed with the start option.

file| {file, Filename}
Specifies the filename of the trace. If the option file is given, or none of these options are given, the file
"fprof.trace" is used. This option is only allowed with the start option, but not with the {tracer,
Tracer} option.

{tracer, Tracer}
Specifies that trace to process or port shall be done instead of trace to file. This option is only allowed with the
start option, but not with the {file, Filename} option.

Ericsson AB. All Rights Reserved.: Tools | 49

fprof

profile() -> ok | {error, Reason} | {'EXIT', ServerPid, Reason}
Types:

Reason = term()

Same as profile([]).

profile(OptionName, OptionValue) -> ok | {error, Reason} | {'EXIT',
ServerPid, Reason}
Types:

OptionName = atom()

OptionValue = term()

Reason = term()

Same as profile([{OptionName, OptionValue}]).

profile(OptionName) -> ok | {error, Reason} | {'EXIT', ServerPid, Reason}
Types:

OptionName = atom()

Reason = term()

Same as profile([OptionName]).

profile({OptionName, OptionValue}) -> ok | {error, Reason} | {'EXIT',
ServerPid, Reason}
Types:

OptionName = atom()

OptionValue = term()

Reason = term()

Same as profile([{OptionName, OptionValue}]).

profile([Option]) -> ok | {ok, Tracer} | {error, Reason} | {'EXIT',
ServerPid, Reason}
Types:

Option = file | {file, Filename} | dump | {dump, Dump} | append | start |
stop

Dump = pid() | Dumpfile | []

Tracer = pid()

Reason = term()

Compiles a trace into raw profile data held by the fprof server.

Dumpfile is used to call file:open/2, and Filename is used to call dbg:trace_port(file,
Filename). Please see the appropriate documentation.

Option description:

file| {file, Filename}
Reads the file Filename and creates raw profile data that is stored in RAM by the fprof server. If the
option file is given, or none of these options are given, the file "fprof.trace" is read. The call will
return when the whole trace has been read with the return value ok if successful. This option is not allowed
with the start or stop options.

50 | Ericsson AB. All Rights Reserved.: Tools

fprof

dump| {dump, Dump}
Specifies the destination for the trace text dump. If this option is not given, no dump is generated, if it is dump
the destination will be the caller's group leader, otherwise the destination Dump is either the pid of an I/O
device or a filename. And, finally, if the filename is [] - "fprof.dump" is used instead. This option is not
allowed with the stop option.

append
Causes the trace text dump to be appended to the destination file. This option is only allowed with the {dump,
Dumpfile} option.

start
Starts a tracer process that profiles trace data in runtime. The call will return immediately with the return value
{ok, Tracer} if successful. This option is not allowed with the stop, file or {file, Filename}
options.

stop
Stops the tracer process that profiles trace data in runtime. The return value will be value ok if successful. This
option is not allowed with the start, file or {file, Filename} options.

analyse() -> ok | {error, Reason} | {'EXIT', ServerPid, Reason}
Types:

Reason = term()

Same as analyse([]).

analyse(OptionName, OptionValue) -> ok | {error, Reason} | {'EXIT',
ServerPid, Reason}
Types:

OptionName = atom()

OptionValue = term()

Reason = term()

Same as analyse([{OptionName, OptionValue}]).

analyse(OptionName) -> ok | {error, Reason} | {'EXIT', ServerPid, Reason}
Types:

OptionName = atom()

Reason = term()

Same as analyse([OptionName]).

analyse({OptionName, OptionValue}) -> ok | {error, Reason} | {'EXIT',
ServerPid, Reason}
Types:

OptionName = atom()

OptionValue = term()

Reason = term()

Same as analyse([{OptionName, OptionValue}]).

analyse([Option]) -> ok | {error, Reason} | {'EXIT', ServerPid, Reason}
Types:

Ericsson AB. All Rights Reserved.: Tools | 51

fprof

Option = dest | {dest, Dest} | append | {cols, Cols} | callers | {callers,
bool()} | no_callers | {sort, SortSpec} | totals | {totals, bool()} |
details | {details, bool()} | no_details

Dest = pid() | Destfile

Cols = integer() >= 80

SortSpec = acc | own

Reason = term()

Analyses raw profile data in the fprof server. If called while there is no raw profile data available, {error,
no_profile} is returned.

Destfile is used to call file:open/2. Please see the appropriate documentation.

Option description:

dest| {dest, Dest}
Specifies the destination for the analysis. If this option is not given or it is dest, the destination will be the
caller's group leader, otherwise the destination Dest is either the pid() of an I/O device or a filename. And,
finally, if the filename is [] - "fprof.analysis" is used instead.

append
Causes the analysis to be appended to the destination file. This option is only allowed with the {dest,
Destfile} option.

{cols, Cols}
Specifies the number of columns in the analysis text. If this option is not given the number of columns is set to
80.

callers| {callers, true}
Prints callers and called information in the analysis. This is the default.

{callers, false}| no_callers
Suppresses the printing of callers and called information in the analysis.

{sort, SortSpec}
Specifies if the analysis should be sorted according to the ACC column, which is the default, or the OWN
column. See Analysis Format below.

totals| {totals, true}
Includes a section containing call statistics for all calls regardless of process, in the analysis.

{totals, false}
Supresses the totals section in the analysis, which is the default.

details| {details, true}
Prints call statistics for each process in the analysis. This is the default.

{details, false}| no_details
Suppresses the call statistics for each process from the analysis.

Analysis format
This section describes the output format of the analyse command. See analyse/0.

The format is parsable with the standard Erlang parsing tools erl_scan and erl_parse, file:consult/1 or
io:read/2. The parse format is not explained here - it should be easy for the interested to try it out. Note that some
flags to analyse/1 will affect the format.

The following example was run on OTP/R8 on Solaris 8, all OTP internals in this example are very version dependent.

As an example, we will use the following function, that you may recognise as a slightly modified benchmark function
from the manpage file(3):

52 | Ericsson AB. All Rights Reserved.: Tools

fprof

-module(foo).
-export([create_file_slow/2]).

create_file_slow(Name, N) when integer(N), N >= 0 ->
 {ok, FD} =
 file:open(Name, [raw, write, delayed_write, binary]),
 if N > 256 ->
 ok = file:write(FD,
 lists:map(fun (X) -> <<X:32/unsigned>> end,
 lists:seq(0, 255))),
 ok = create_file_slow(FD, 256, N);
 true ->
 ok = create_file_slow(FD, 0, N)
 end,
 ok = file:close(FD).

create_file_slow(FD, M, M) ->
 ok;
create_file_slow(FD, M, N) ->
 ok = file:write(FD, <<M:32/unsigned>>),
 create_file_slow(FD, M+1, N).

Let us have a look at the printout after running:

1> fprof:apply(foo, create_file_slow, [junk, 1024]).
2> fprof:profile().
3> fprof:analyse().

The printout starts with:

%% Analysis results:
{ analysis_options,
 [{callers, true},
 {sort, acc},
 {totals, false},
 {details, true}]}.

% CNT ACC OWN
[{ totals, 9627, 1691.119, 1659.074}]. %%%

The CNT column shows the total number of function calls that was found in the trace. In the ACC column is the total
time of the trace from first timestamp to last. And in the OWN column is the sum of the execution time in functions
found in the trace, not including called functions. In this case it is very close to the ACC time since the emulator had
practically nothing else to do than to execute our test program.

All time values in the printout are in milliseconds.

The printout continues:

% CNT ACC OWN
[{ "<0.28.0>", 9627,undefined, 1659.074}]. %%

This is the printout header of one process. The printout contains only this one process since we did fprof:apply/3
which traces only the current process. Therefore the CNT and OWN columns perfectly matches the totals above. The
ACC column is undefined since summing the ACC times of all calls in the process makes no sense - you would get
something like the ACC value from totals above multiplied by the average depth of the call stack, or something.

All paragraphs up to the next process header only concerns function calls within this process.

Now we come to something more interesting:

Ericsson AB. All Rights Reserved.: Tools | 53

fprof

{[{undefined, 0, 1691.076, 0.030}],
 { {fprof,apply_start_stop,4}, 0, 1691.076, 0.030}, %
 [{{foo,create_file_slow,2}, 1, 1691.046, 0.103},
 {suspend, 1, 0.000, 0.000}]}.

{[{{fprof,apply_start_stop,4}, 1, 1691.046, 0.103}],
 { {foo,create_file_slow,2}, 1, 1691.046, 0.103}, %
 [{{file,close,1}, 1, 1398.873, 0.019},
 {{foo,create_file_slow,3}, 1, 249.678, 0.029},
 {{file,open,2}, 1, 20.778, 0.055},
 {{lists,map,2}, 1, 16.590, 0.043},
 {{lists,seq,2}, 1, 4.708, 0.017},
 {{file,write,2}, 1, 0.316, 0.021}]}.

The printout consists of one paragraph per called function. The function marked with '%' is the one the paragraph
concerns - foo:create_file_slow/2. Above the marked function are the calling functions - those that has
called the marked, and below are those called by the marked function.

The paragraphs are per default sorted in decreasing order of the ACC column for the marked function. The calling list
and called list within one paragraph are also per default sorted in decreasing order of their ACC column.

The columns are: CNT - the number of times the function has been called, ACC - the time spent in the function
including called functions, and OWN - the time spent in the function not including called functions.

The rows for the calling functions contain statistics for the marked function with the constraint that only the occasions
when a call was made from the row's function to the marked function are accounted for.

The row for the marked function simply contains the sum of all calling rows.

The rows for the called functions contains statistics for the row's function with the constraint that only the occasions
when a call was made from the marked to the row's function are accounted for.

So, we see that foo:create_file_slow/2 used very little time for its own execution. It spent most of its time
in file:close/1. The function foo:create_file_slow/3 that writes 3/4 of the file contents is the second
biggest time thief.

We also see that the call to file:write/2 that writes 1/4 of the file contents takes very little time in itself. What
takes time is to build the data (lists:seq/2 and lists:map/2).

The function 'undefined' that has called fprof:apply_start_stop/4 is an unknown function because that call
was not recorded in the trace. It was only recorded that the execution returned from fprof:apply_start_stop/4
to some other function above in the call stack, or that the process exited from there.

Let us continue down the printout to find:

{[{{foo,create_file_slow,2}, 1, 249.678, 0.029},
 {{foo,create_file_slow,3}, 768, 0.000, 23.294}],
 { {foo,create_file_slow,3}, 769, 249.678, 23.323}, %
 [{{file,write,2}, 768, 220.314, 14.539},
 {suspend, 57, 6.041, 0.000},
 {{foo,create_file_slow,3}, 768, 0.000, 23.294}]}.

If you compare with the code you will see there also that foo:create_file_slow/3 was called only
from foo:create_file_slow/2 and itself, and called only file:write/2, note the number of calls to
file:write/2. But here we see that suspend was called a few times. This is a pseudo function that indicates that
the process was suspended while executing in foo:create_file_slow/3, and since there is no receive or
erlang:yield/0 in the code, it must be Erlang scheduling suspensions, or the trace file driver compensating for
large file write operations (these are regarded as a schedule out followed by a schedule in to the same process).

Let us find the suspend entry:

54 | Ericsson AB. All Rights Reserved.: Tools

fprof

{[{{file,write,2}, 53, 6.281, 0.000},
 {{foo,create_file_slow,3}, 57, 6.041, 0.000},
 {{prim_file,drv_command,4}, 50, 4.582, 0.000},
 {{prim_file,drv_get_response,1}, 34, 2.986, 0.000},
 {{lists,map,2}, 10, 2.104, 0.000},
 {{prim_file,write,2}, 17, 1.852, 0.000},
 {{erlang,port_command,2}, 15, 1.713, 0.000},
 {{prim_file,drv_command,2}, 22, 1.482, 0.000},
 {{prim_file,translate_response,2}, 11, 1.441, 0.000},
 {{prim_file,'-drv_command/2-fun-0-',1}, 15, 1.340, 0.000},
 {{lists,seq,4}, 3, 0.880, 0.000},
 {{foo,'-create_file_slow/2-fun-0-',1}, 5, 0.523, 0.000},
 {{erlang,bump_reductions,1}, 4, 0.503, 0.000},
 {{prim_file,open_int_setopts,3}, 1, 0.165, 0.000},
 {{prim_file,i32,4}, 1, 0.109, 0.000},
 {{fprof,apply_start_stop,4}, 1, 0.000, 0.000}],
 { suspend, 299, 32.002, 0.000}, %
 []}.

We find no particulary long suspend times, so no function seems to have waited in a receive statement. Actually,
prim_file:drv_command/4 contains a receive statement, but in this test program, the message lies in the process
receive buffer when the receive statement is entered. We also see that the total suspend time for the test run is small.

The suspend pseudo function has got an OWN time of zero. This is to prevent the process total OWN time from
including time in suspension. Whether suspend time is really ACC or OWN time is more of a philosophical question.

Now we look at another interesting pseudo function, garbage_collect:

{[{{prim_file,drv_command,4}, 25, 0.873, 0.873},
 {{prim_file,write,2}, 16, 0.692, 0.692},
 {{lists,map,2}, 2, 0.195, 0.195}],
 { garbage_collect, 43, 1.760, 1.760}, %
 []}.

Here we see that no function distinguishes itself considerably, which is very normal.

The garbage_collect pseudo function has not got an OWN time of zero like suspend, instead it is equal to
the ACC time.

Garbage collect often occurs while a process is suspended, but fprof hides this fact by pretending that the suspended
function was first unsuspended and then garbage collected. Otherwise the printout would show garbage_collect
being called from suspend but not which function that might have caused the garbage collection.

Let us now get back to the test code:

{[{{foo,create_file_slow,3}, 768, 220.314, 14.539},
 {{foo,create_file_slow,2}, 1, 0.316, 0.021}],
 { {file,write,2}, 769, 220.630, 14.560}, %
 [{{prim_file,write,2}, 769, 199.789, 22.573},
 {suspend, 53, 6.281, 0.000}]}.

Not unexpectedly, we see that file:write/2 was called from foo:create_file_slow/3 and
foo:create_file_slow/2. The number of calls in each case as well as the used time are also just confirms the
previous results.

We see that file:write/2 only calls prim_file:write/2, but let us refrain from digging into the internals
of the kernel application.

But, if we nevertheless do dig down we find the call to the linked in driver that does the file operations towards the
host operating system:

Ericsson AB. All Rights Reserved.: Tools | 55

fprof

{[{{prim_file,drv_command,4}, 772, 1458.356, 1456.643}],
 { {erlang,port_command,2}, 772, 1458.356, 1456.643}, %
 [{suspend, 15, 1.713, 0.000}]}.

This is 86 % of the total run time, and as we saw before it is the close operation the absolutely biggest contributor.
We find a comparison ratio a little bit up in the call stack:

{[{{prim_file,close,1}, 1, 1398.748, 0.024},
 {{prim_file,write,2}, 769, 174.672, 12.810},
 {{prim_file,open_int,4}, 1, 19.755, 0.017},
 {{prim_file,open_int_setopts,3}, 1, 0.147, 0.016}],
 { {prim_file,drv_command,2}, 772, 1593.322, 12.867}, %
 [{{prim_file,drv_command,4}, 772, 1578.973, 27.265},
 {suspend, 22, 1.482, 0.000}]}.

The time for file operations in the linked in driver distributes itself as 1 % for open, 11 % for write and 87 % for close.
All data is probably buffered in the operating system until the close.

The unsleeping reader may notice that the ACC times for prim_file:drv_command/2 and
prim_file:drv_command/4 is not equal between the paragraphs above, even though it is easy to believe that
prim_file:drv_command/2 is just a passthrough function.

The missing time can be found in the paragraph for prim_file:drv_command/4 where it is evident that not only
prim_file:drv_command/2 is called but also a fun:

{[{{prim_file,drv_command,2}, 772, 1578.973, 27.265}],
 { {prim_file,drv_command,4}, 772, 1578.973, 27.265}, %
 [{{erlang,port_command,2}, 772, 1458.356, 1456.643},
 {{prim_file,'-drv_command/2-fun-0-',1}, 772, 87.897, 12.736},
 {suspend, 50, 4.582, 0.000},
 {garbage_collect, 25, 0.873, 0.873}]}.

And some more missing time can be explained by the fact that prim_file:open_int/4 both calls
prim_file:drv_command/2 directly as well as through prim_file:open_int_setopts/3, which
complicates the picture.

{[{{prim_file,open,2}, 1, 20.309, 0.029},
 {{prim_file,open_int,4}, 1, 0.000, 0.057}],
 { {prim_file,open_int,4}, 2, 20.309, 0.086}, %
 [{{prim_file,drv_command,2}, 1, 19.755, 0.017},
 {{prim_file,open_int_setopts,3}, 1, 0.360, 0.032},
 {{prim_file,drv_open,2}, 1, 0.071, 0.030},
 {{erlang,list_to_binary,1}, 1, 0.020, 0.020},
 {{prim_file,i32,1}, 1, 0.017, 0.017},
 {{prim_file,open_int,4}, 1, 0.000, 0.057}]}.
.
.
.
{[{{prim_file,open_int,4}, 1, 0.360, 0.032},
 {{prim_file,open_int_setopts,3}, 1, 0.000, 0.016}],
 { {prim_file,open_int_setopts,3}, 2, 0.360, 0.048}, %
 [{suspend, 1, 0.165, 0.000},
 {{prim_file,drv_command,2}, 1, 0.147, 0.016},
 {{prim_file,open_int_setopts,3}, 1, 0.000, 0.016}]}.

56 | Ericsson AB. All Rights Reserved.: Tools

fprof

Notes
The actual supervision of execution times is in itself a CPU intensive activity. A message is written on the trace file
for every function call that is made by the profiled code.

The ACC time calculation is sometimes difficult to make correct, since it is difficult to define. This happens especially
when a function occurs in several instances in the call stack, for example by calling itself perhaps through other
functions and perhaps even non-tail recursively.

To produce sensible results, fprof tries not to charge any function more than once for ACC time. The instance highest
up (with longest duration) in the call stack is chosen.

Sometimes a function may unexpectedly waste a lot (some 10 ms or more depending on host machine OS) of OWN
(and ACC) time, even functions that does practically nothing at all. The problem may be that the OS has chosen to
schedule out the Erlang runtime system process for a while, and if the OS does not support high resolution cpu time
measurements fprof will use wallclock time for its calculations, and it will appear as functions randomly burn virtual
machine time.

See Also
dbg(3), eprof(3), erlang(3), io(3), Tools User's Guide

Ericsson AB. All Rights Reserved.: Tools | 57

instrument

instrument
Erlang module

The module instrument contains support for studying the resource usage in an Erlang runtime system. Currently,
only the allocation of memory can be studied.

Note:

Note that this whole module is experimental, and the representations used as well as the functionality is likely to
change in the future.

Data Types
block_histogram() = tuple()
A histogram of block sizes where each interval's upper bound is twice as high as the one before it.

The upper bound of the first interval is provided by the function that returned the histogram, and the last interval has
no upper bound.

allocation_summary() =
 {HistogramStart :: integer() >= 0,
 UnscannedSize :: integer() >= 0,
 Allocations ::
 #{Origin :: atom() =>
 #{Type :: atom() => block_histogram()}}}
A summary of allocated block sizes (including their headers) grouped by their Origin and Type.

Origin is generally which NIF or driver that allocated the blocks, or 'system' if it could not be determined.

Type is the allocation category that the blocks belong to, e.g. db_term, message or binary.

If one or more carriers could not be scanned in full without harming the responsiveness of the system,
UnscannedSize is the number of bytes that had to be skipped.

carrier_info_list() =
 {HistogramStart :: integer() >= 0,
 Carriers ::
 [{AllocatorType :: atom(),
 InPool :: boolean(),
 TotalSize :: integer() >= 0,
 UnscannedSize :: integer() >= 0,
 Allocations ::
 {Type :: atom(),
 Count :: integer() >= 0,
 Size :: integer() >= 0},
 FreeBlocks :: block_histogram()}]}
AllocatorType is the type of the allocator that employs this carrier.

InPool is whether the carrier is in the migration pool.

TotalSize is the total size of the carrier, including its header.

Allocations is a summary of the allocated blocks in the carrier.

58 | Ericsson AB. All Rights Reserved.: Tools

instrument

FreeBlocks is a histogram of the free block sizes in the carrier.

If the carrier could not be scanned in full without harming the responsiveness of the system, UnscannedSize is
the number of bytes that had to be skipped.

Exports

allocations() -> {ok, Result} | {error, Reason}
Types:

Result = allocation_summary()
Reason = not_enabled

Shorthand for allocations(#{}).

allocations(Options) -> {ok, Result} | {error, Reason}
Types:

Result = allocation_summary()
Reason = not_enabled
Options =
 #{scheduler_ids => [integer() >= 0],
 allocator_types => [atom()],
 histogram_start => integer() >= 1,
 histogram_width => integer() >= 1}

Returns a summary of all tagged allocations in the system, optionally filtered by allocator type and scheduler id.

Only binaries and allocations made by NIFs and drivers are tagged by default, but this can be configured an a per-
allocator basis with the +M<S>atags emulator option.

If the specified allocator types are not enabled, the call will fail with {error, not_enabled}.

The following options can be used:

allocator_types

The allocator types that will be searched. Note that blocks can move freely between allocator types, so restricting
the search to certain allocators may return unexpected types (e.g. process heaps when searching binary_alloc),
or hide blocks that were migrated out.

Defaults to all alloc_util allocators.

scheduler_ids

The scheduler ids whose allocator instances will be searched. A scheduler id of 0 will refer to the global instance
that is not tied to any particular scheduler. Defaults to all schedulers and the global instance.

histogram_start

The upper bound of the first interval in the allocated block size histograms. Defaults to 128.

histogram_width

The number of intervals in the allocated block size histograms. Defaults to 18.

Example:

Ericsson AB. All Rights Reserved.: Tools | 59

instrument

> instrument:allocations(#{ histogram_start => 128, histogram_width => 15 }).
{ok,{128,0,
 #{udp_inet =>
 #{driver_event_state => {0,0,0,0,0,0,0,0,0,1,0,0,0,0,0}},
 system =>
 #{heap => {0,0,0,0,20,4,2,2,2,3,0,1,0,0,1},
 db_term => {271,3,1,52,80,1,0,0,0,0,0,0,0,0,0},
 code => {0,0,0,5,3,6,11,22,19,20,10,2,1,0,0},
 binary => {18,0,0,0,7,0,0,1,0,0,0,0,0,0,0},
 message => {0,40,78,2,2,0,0,0,0,0,0,0,0,0,0},
 ... }
 spawn_forker =>
 #{driver_select_data_state =>
 {1,0,0,0,0,0,0,0,0,0,0,0,0,0,0}},
 ram_file_drv => #{drv_binary => {0,0,0,0,0,0,1,0,0,0,0,0,0,0,0}},
 prim_file =>
 #{process_specific_data => {2,0,0,0,0,0,0,0,0,0,0,0,0,0,0},
 nif_trap_export_entry => {0,4,0,0,0,0,0,0,0,0,0,0,0,0,0},
 monitor_extended => {0,1,0,0,0,0,0,0,0,0,0,0,0,0,0},
 drv_binary => {0,0,0,0,0,0,1,0,3,5,0,0,0,1,0},
 binary => {0,4,0,0,0,0,0,0,0,0,0,0,0,0,0}},
 prim_buffer =>
 #{nif_internal => {0,4,0,0,0,0,0,0,0,0,0,0,0,0,0},
 binary => {0,4,0,0,0,0,0,0,0,0,0,0,0,0,0}}}}}

carriers() -> {ok, Result} | {error, Reason}
Types:

Result = carrier_info_list()
Reason = not_enabled

Shorthand for carriers(#{}).

carriers(Options) -> {ok, Result} | {error, Reason}
Types:

Result = carrier_info_list()
Reason = not_enabled
Options =
 #{scheduler_ids => [integer() >= 0],
 allocator_types => [atom()],
 histogram_start => integer() >= 1,
 histogram_width => integer() >= 1}

Returns a summary of all carriers in the system, optionally filtered by allocator type and scheduler id.

If the specified allocator types are not enabled, the call will fail with {error, not_enabled}.

The following options can be used:

allocator_types

The allocator types that will be searched. Defaults to all alloc_util allocators.

scheduler_ids

The scheduler ids whose allocator instances will be searched. A scheduler id of 0 will refer to the global instance
that is not tied to any particular scheduler. Defaults to all schedulers and the global instance.

histogram_start

The upper bound of the first interval in the free block size histograms. Defaults to 512.

60 | Ericsson AB. All Rights Reserved.: Tools

instrument

histogram_width

The number of intervals in the free block size histograms. Defaults to 14.

Example:

> instrument:carriers(#{ histogram_start => 512, histogram_width => 8 }).
{ok,{512,
 [{ll_alloc,1048576,0,1048344,71,false,{0,0,0,0,0,0,0,0}},
 {binary_alloc,1048576,0,324640,13,false,{3,0,0,1,0,0,0,2}},
 {eheap_alloc,2097152,0,1037200,45,false,{2,1,1,3,4,3,2,2}},
 {fix_alloc,32768,0,29544,82,false,{22,0,0,0,0,0,0,0}},
 {...}|...]}}

See Also
erts_alloc(3), erl(1)

Ericsson AB. All Rights Reserved.: Tools | 61

lcnt

lcnt
Erlang module

The lcnt module is used to profile the internal ethread locks in the Erlang Runtime System. With lcnt enabled,
internal counters in the runtime system are updated each time a lock is taken. The counters stores information about
the number of acquisition tries and the number of collisions that has occurred during the acquisition tries. The counters
also record the waiting time a lock has caused for a blocked thread when a collision has occurred.

The data produced by the lock counters will give an estimate on how well the runtime system will behave from a
parallelizable view point for the scenarios tested. This tool was mainly developed to help Erlang runtime developers
iron out potential and generic bottlenecks.

Locks in the emulator are named after what type of resource they protect and where in the emulator they are initialized,
those are lock 'classes'. Most of those locks are also instantiated several times, and given unique identifiers, to increase
locking granularity. Typically an instantiated lock protects a disjunct set of the resource, for example ets tables,
processes or ports. In other cases it protects a specific range of a resource, for example pix_lock which protects
index to process mappings, and is given a unique number within the class. A unique lock in lcnt is referenced by
a name (class) and an identifier: {Name, Id}.

Some locks in the system are static and protects global resources, for example bif_timers and the run_queue
locks. Other locks are dynamic and not necessarily long lived, for example process locks and ets-table locks.
The statistics data from short lived locks can be stored separately when the locks are deleted. This behavior is
by default turned off to save memory but can be turned on via lcnt:rt_opt({copy_save, true}). The
lcnt:apply/1,2,3 functions enables this behavior during profiling.

Exports

start() -> {ok, Pid} | {error, {already_started, Pid}}
Types:

Pid = pid()

Starts the lock profiler server. The server only act as a medium for the user and performs filtering and printing of data
collected by lcnt:collect/1.

stop() -> ok
Stops the lock profiler server.

collect() -> ok
Same as collect(node()).

collect(Node) -> ok
Types:

Node = node()

Collects lock statistics from the runtime system. The function starts a server if it is not already started. It then populates
the server with lock statistics. If the server held any lock statistics data before the collect then that data is lost.

clear() -> ok
Same as clear(node()).

62 | Ericsson AB. All Rights Reserved.: Tools

lcnt

clear(Node) -> ok
Types:

Node = node()

Clears the internal lock statistics from the runtime system. This does not clear the data on the server only on runtime
system. All counters for static locks are zeroed, all dynamic locks currently alive are zeroed and all saved locks now
destroyed are removed. It also resets the duration timer.

conflicts() -> ok
Same as conflicts([]).

conflicts([Option]) -> ok
Types:

Option = {sort, Sort} | {reverse, bool()} | {thresholds, [Thresholds]} |
{print, [Print | {Print, integer()}]} | {max_locks, MaxLocks} | {combine,
bool()}

Sort = name | id | type | tries | colls | ratio | time | entry

Thresholds = {tries, integer()} | {colls, integer()} | {time, integer()}

Print = name | id | type | entry | tries | colls | ratio | time | duration

MaxLocks = integer() | none

Prints a list of internal locks and its statistics.

For option description, see lcnt:inspect/2.

locations() -> ok
Same as locations([]).

locations([Option]) -> ok
Types:

Option = {sort, Sort} | {thresholds, [Thresholds]} | {print, [Print |
{Print, integer()}]} | {max_locks, MaxLocks} | {combine, bool()}

Sort = name | id | type | tries | colls | ratio | time | entry

Thresholds = {tries, integer()} | {colls, integer()} | {time, integer()}

Print = name | id | type | entry | tries | colls | ratio | time | duration

MaxLocks = integer() | none

Prints a list of internal lock counters by source code locations.

For option description, see lcnt:inspect/2.

inspect(Lock) -> ok
Same as inspect(Lock, []).

inspect(Lock, [Option]) -> ok
Types:

Lock = Name | {Name, Id | [Id]}

Name = atom() | pid() | port()

Ericsson AB. All Rights Reserved.: Tools | 63

lcnt

Id = atom() | integer() | pid() | port()

Option = {sort, Sort} | {thresholds, [Thresholds]} | {print, [Print
| {Print, integer()}]} | {max_locks, MaxLocks} | {combine, bool()} |
{locations, bool()}

Sort = name | id | type | tries | colls | ratio | time

Thresholds = {tries, integer()} | {colls, integer()} | {time, integer()}

Print = name | id | type | entry | tries | colls | ratio | time | duration

MaxLocks = integer() | none

Prints a list of internal lock counters for a specific lock.

Lock Name and Id for ports and processes are interchangeable with the use of lcnt:swap_pid_keys/0 and is
the reason why pid() and port() options can be used in both Name and Id space. Both pids and ports are special
identifiers with stripped creation and can be recreated with lcnt:pid/2,3 and lcnt:port/1,2.

Option description:

{combine, bool()}
Combine the statistics from different instances of a lock class.
Default: true

{locations, bool()}
Print the statistics by source file and line numbers.
Default: false

{max_locks, MaxLocks}
Maximum number of locks printed or no limit with none.
Default: 20

{print, PrintOptions}
Printing options:

name
Named lock or named set of locks (classes). The same name used for initializing the lock in the VM.

id
Internal id for set of locks, not always unique. This could be table name for ets tables (db_tab), port id for
ports, integer identifiers for allocators, etc.

type
Type of lock: rw_mutex, mutex, spinlock, rw_spinlock or proclock.

entry
In combination with {locations, true} this option prints the lock operations source file and line
number entry-points along with statistics for each entry.

tries
Number of acquisitions of this lock.

colls
Number of collisions when a thread tried to acquire this lock. This is when a trylock is EBUSY, a write
try on read held rw_lock, a try read on write held rw_lock, a thread tries to lock an already locked lock.
(Internal states supervises this).

ratio
The ratio between the number of collisions and the number of tries (acquisitions) in percentage.

time
Accumulated waiting time for this lock. This could be greater than actual wall clock time, it is
accumulated for all threads. Trylock conflicts does not accumulate time.

duration
Percentage of accumulated waiting time of wall clock time. This percentage can be higher than 100%
since accumulated time is from all threads.

Default: [name,id,tries,colls,ratio,time,duration]

64 | Ericsson AB. All Rights Reserved.: Tools

lcnt

{reverse, bool()}
Reverses the order of sorting.
Default: false

{sort, Sort}
Column sorting orders.
Default: time

{thresholds, Thresholds}
Filtering thresholds. Anything values above the threshold value are passed through.
Default: [{tries, 0}, {colls, 0}, {time, 0}]

information() -> ok
Prints lcnt server state and generic information about collected lock statistics.

swap_pid_keys() -> ok
Swaps places on Name and Id space for ports and processes.

load(Filename) -> ok
Types:

Filename = filename()

Restores previously saved data to the server.

save(Filename) -> ok
Types:

Filename = filename()

Saves the collected data to file.

The following functions are used for convenience.

Exports

apply(Fun) -> term()
Types:

Fun = fun()

Same as apply(Fun, []).

apply(Fun, Args) -> term()
Types:

Fun = fun()

Args = [term()]

Same as apply(Module, Function, Args).

apply(Module, Function, Args) -> term()
Types:

Module = atom()

Function = atom()

Ericsson AB. All Rights Reserved.: Tools | 65

lcnt

Args = [term()]

Clears the lock counters and then setups the instrumentation to save all destroyed locks. After setup the function is
called, passing the elements in Args as arguments. When the function returns the statistics are immediately collected
to the server. After the collection the instrumentation is returned to its previous behavior. The result of the applied
function is returned.

Warning:

This function should only be used for micro-benchmarks; it sets copy_save to true for the duration of the call,
which can quickly lead to running out of memory.

pid(Id, Serial) -> pid()
Same as pid(node(), Id, Serial).

pid(Node, Id, Serial) -> pid()
Types:

Node = node()

Id = integer()

Serial = integer()

Creates a process id with creation 0.

port(Id) -> port()
Same as port(node(), Id).

port(Node, Id) -> port()
Types:

Node = node()

Id = integer()

Creates a port id with creation 0.

The following functions control the behavior of the internal counters.

Exports

rt_collect() -> [lock_counter_data()]
Same as rt_collect(node()).

rt_collect(Node) -> [lock_counter_data()]
Types:

Node = node()

Returns a list of raw lock counter data.

rt_clear() -> ok
Same as rt_clear(node()).

66 | Ericsson AB. All Rights Reserved.: Tools

lcnt

rt_clear(Node) -> ok
Types:

Node = node()

Clear the internal counters. Same as lcnt:clear(Node).

rt_mask() -> [category_atom()]
Same as rt_mask(node()).

rt_mask(Node) -> [category_atom()]
Types:

Node = node()

Refer to rt_mask/2 for a list of valid categories. All categories are enabled by default.

rt_mask(Categories) -> ok | {error, copy_save_enabled}
Types:

Categories = [atom()]

Same as rt_mask(node(), Categories).

rt_mask(Node, Categories) -> ok | {error, copy_save_enabled}
Types:

Node = node()

Categories = [atom()]

Sets the lock category mask to the given categories.

This will fail if the copy_save option is enabled; see lcnt:rt_opt/2.

Valid categories are:

• allocator

• db (ETS tables)

• debug

• distribution

• generic

• io

• process

• scheduler

This list is subject to change at any time, as is the category any given lock may belong to.

rt_opt({Type, bool()}) -> bool()
Same as rt_opt(node(), {Type, Opt}).

rt_opt(Node, {Type, bool()}) -> bool()
Types:

Node = node()

Type = copy_save | process_locks

Ericsson AB. All Rights Reserved.: Tools | 67

lcnt

Option description:

{copy_save, bool()}
Retains the statistics of destroyed locks.
Default: false

Warning:

This option will use a lot of memory when enabled, which must be reclaimed with lcnt:rt_clear. Note
that it makes no distinction between locks that were destroyed and locks for which counting was disabled, so
enabling this option will disable changes to the lock category mask.

{process_locks, bool()}
Profile process locks, equal to adding process to the lock category mask; see lcnt:rt_mask/2
Default: true

See Also
LCNT User's Guide

68 | Ericsson AB. All Rights Reserved.: Tools

make

make
Erlang module

The module make provides a set of functions similar to the UNIX type Make functions.

Exports

all() -> up_to_date | error
all(Options) -> up_to_date | error
Types:

Options = [Option]

 Option = noexec | load | netload | {emake, Emake} | <compiler option>

This function determines the set of modules to compile and the compile options to use, by first looking for the emake
make option, if not present reads the configuration from a file named Emakefile (see below). If no such file is
found, the set of modules to compile defaults to all modules in the current working directory.

Traversing the set of modules, it then recompiles every module for which at least one of the following conditions apply:

• there is no object file, or

• the source file has been modified since it was last compiled, or,

• an include file has been modified since the source file was last compiled.

As a side effect, the function prints the name of each module it tries to compile. If compilation fails for a module, the
make procedure stops and error is returned.

Options is a list of make- and compiler options. The following make options exist:

• noexec
No execution mode. Just prints the name of each module that needs to be compiled.

• load
Load mode. Loads all recompiled modules.

• netload
Net load mode. Loads all recompiled modules on all known nodes.

• {emake, Emake}
Rather than reading the Emakefile specify configuration explicitly.

All items in Options that are not make options are assumed to be compiler options and are passed as-is to
compile:file/2. Options defaults to [].

files(ModFiles) -> up_to_date | error
files(ModFiles, Options) -> up_to_date | error
Types:

ModFiles = [Module | File]

 Module = atom()

 File = string()

Options = [Option]

 Option = noexec | load | netload | <compiler option>

files/1,2 does exactly the same thing as all/0,1 but for the specified ModFiles, which is a list of module
or file names. The file extension .erl may be omitted.

Ericsson AB. All Rights Reserved.: Tools | 69

make

The Emakefile (if it exists) in the current directory is searched for compiler options for each module. If a given
module does not exist in Emakefile or if Emakefile does not exist, the module is still compiled.

Emakefile
make:all/0,1 and make:files/1,2 first looks for {emake, Emake} in options, then in the current working
directory for a file named Emakefile. If present Emake should contain elements like this:

Modules.
{Modules,Options}.

Modules is an atom or a list of atoms. It can be

• a module name, e.g. file1

• a module name in another directory, e.g. ../foo/file3

• a set of modules specified with a wildcards, e.g. 'file*'

• a wildcard indicating all modules in current directory, i.e. '*'

• a list of any of the above, e.g. ['file*','../foo/file3','File4']

Options is a list of compiler options.

Emakefile is read from top to bottom. If a module matches more than one entry, the first match is valid. For example,
the following Emakefile means that file1 shall be compiled with the options [debug_info,{i,"../
foo"}], while all other files in the current directory shall be compiled with only the debug_info flag.

{'file1',[debug_info,{i,"../foo"}]}.
{'*',[debug_info]}.

See Also
compile(3)

70 | Ericsson AB. All Rights Reserved.: Tools

tags

tags
Erlang module

A TAGS file is used by Emacs to find function and variable definitions in any source file in large projects. This module
can generate a TAGS file from Erlang source files. It recognises functions, records, and macro definitions.

Exports

file(File [, Options])
Create a TAGS file for the file File.

files(FileList [, Options])
Create a TAGS file for the files in the list FileList.

dir(Dir [, Options])
Create a TAGS file for all files in directory Dir.

dirs(DirList [, Options])
Create a TAGS file for all files in any directory in DirList.

subdir(Dir [, Options])
Descend recursively down the directory Dir and create a TAGS file based on all files found.

subdirs(DirList [, Options])
Descend recursively down all the directories in DirList and create a TAGS file based on all files found.

root([Options])
Create a TAGS file covering all files in the Erlang distribution.

OPTIONS
The functions above have an optional argument, Options. It is a list which can contain the following elements:

• {outfile, NameOfTAGSFile} Create a TAGS file named NameOfTAGSFile.

• {outdir, NameOfDirectory} Create a file named TAGS in the directory NameOfDirectory.

The default behaviour is to create a file named TAGS in the current directory.

Examples
• tags:root([{outfile, "root.TAGS"}]).

This command will create a file named root.TAGS in the current directory. The file will contain references to
all Erlang source files in the Erlang distribution.

• tags:files(["foo.erl", "bar.erl", "baz.erl"], [{outdir, "../projectdir"}]).

Here we create file named TAGS placed it in the directory ../projectdir. The file contains information about
the functions, records, and macro definitions of the three files.

Ericsson AB. All Rights Reserved.: Tools | 71

tags

SEE ALSO
• Richard M. Stallman. GNU Emacs Manual, chapter "Editing Programs", section "Tag Tables". Free Software

Foundation, 1995.

• Anders Lindgren. The Erlang editing mode for Emacs. Ericsson, 1998.

72 | Ericsson AB. All Rights Reserved.: Tools

xref

xref
Erlang module

Xref is a cross reference tool that can be used for finding dependencies between functions, modules, applications and
releases.

Calls between functions are either local calls like f(), or external calls like m:f(). Module data, which are
extracted from BEAM files, include local functions, exported functions, local calls and external calls. By default, calls
to built-in functions (BIF) are ignored, but if the option builtins, accepted by some of this module's functions,
is set to true, calls to BIFs are included as well. It is the analyzing OTP version that decides what functions are
BIFs. Functional objects are assumed to be called where they are created (and nowhere else). Unresolved calls are
calls to apply or spawn with variable module, variable function, or variable arguments. Examples are M:F(a),
apply(M, f, [a]), and spawn(m, f(), Args). Unresolved calls are represented by calls where variable
modules have been replaced with the atom '$M_EXPR', variable functions have been replaced with the atom
'$F_EXPR', and variable number of arguments have been replaced with the number -1. The above mentioned
examples are represented by calls to '$M_EXPR':'$F_EXPR'/1, '$M_EXPR':f/1, and m:'$F_EXPR'/-1.
The unresolved calls are a subset of the external calls.

Warning:

Unresolved calls make module data incomplete, which implies that the results of analyses may be invalid.

Applications are collections of modules. The modules' BEAM files are located in the ebin subdirectory of the
application directory. The name of the application directory determines the name and version of the application.
Releases are collections of applications located in the lib subdirectory of the release directory. There is more to read
about applications and releases in the Design Principles book.

Xref servers are identified by names, supplied when creating new servers. Each Xref server holds a set of releases, a
set of applications, and a set of modules with module data. Xref servers are independent of each other, and all analyses
are evaluated in the context of one single Xref server (exceptions are the functions m/1 and d/1 which do not use
servers at all). The mode of an Xref server determines what module data are extracted from BEAM files as modules
are added to the server. Starting with R7, BEAM files compiled with the option debug_info contain so called debug
information, which is an abstract representation of the code. In functions mode, which is the default mode, function
calls and line numbers are extracted from debug information. In modules mode, debug information is ignored if
present, but dependencies between modules are extracted from other parts of the BEAM files. The modules mode is
significantly less time and space consuming than the functions mode, but the analyses that can be done are limited.

An analyzed module is a module that has been added to an Xref server together with its module data. A library
module is a module located in some directory mentioned in the library path. A library module is said to be used if
some of its exported functions are used by some analyzed module. An unknown module is a module that is neither an
analyzed module nor a library module, but whose exported functions are used by some analyzed module. An unknown
function is a used function that is neither local or exported by any analyzed module nor exported by any library module.
An undefined function is an externally used function that is not exported by any analyzed module or library module.
With this notion, a local function can be an undefined function, namely if it is externally used from some module. All
unknown functions are also undefined functions; there is a figure in the User's Guide that illustrates this relationship.

Starting with R9C, the module attribute tag deprecated can be used to inform Xref about deprecated functions
and optionally when functions are planned to be removed. A few examples show the idea:

-deprecated({f,1}).
The exported function f/1 is deprecated. Nothing is said whether f/1 will be removed or not.

Ericsson AB. All Rights Reserved.: Tools | 73

xref

-deprecated({f,1,"Use g/1 instead"}).
As above but with a descriptive string. The string is currently unused by xref but other tools can make use of
it.

-deprecated({f,'_'}).
All exported functions f/0, f/1 and so on are deprecated.

-deprecated(module).
All exported functions in the module are deprecated. Equivalent to -deprecated({'_','_'})..

-deprecated([{g,1,next_version}]).
The function g/1 is deprecated and will be removed in next version.

-deprecated([{g,2,next_major_release}]).
The function g/2 is deprecated and will be removed in next major release.

-deprecated([{g,3,eventually}]).
The function g/3 is deprecated and will eventually be removed.

-deprecated({'_','_',eventually}).
All exported functions in the module are deprecated and will eventually be removed.

Before any analysis can take place, module data must be set up. For instance, the cross reference and the unknown
functions are computed when all module data are known. The functions that need complete data (analyze, q,
variables) take care of setting up data automatically. Module data need to be set up (again) after calls to any of
the add, replace, remove, set_library_path or update functions.

The result of setting up module data is the Call Graph. A (directed) graph consists of a set of vertices and a set of
(directed) edges. The edges represent calls (From, To) between functions, modules, applications or releases. From
is said to call To, and To is said to be used by From. The vertices of the Call Graph are the functions of all module
data: local and exported functions of analyzed modules; used BIFs; used exported functions of library modules; and
unknown functions. The functions module_info/0,1 added by the compiler are included among the exported
functions, but only when called from some module. The edges are the function calls of all module data. A consequence
of the edges being a set is that there is only one edge if a function is locally or externally used several times on one
and the same line of code.

The Call Graph is represented by Erlang terms (the sets are lists), which is suitable for many analyses. But for analyses
that look at chains of calls, a list representation is much too slow. Instead the representation offered by the digraph
module is used. The translation of the list representation of the Call Graph - or a subgraph thereof - to the digraph
representation does not come for free, so the language used for expressing queries to be described below has a special
operator for this task and a possibility to save the digraph representation for subsequent analyses.

In addition to the Call Graph there is a graph called the Inter Call Graph. This is a graph of calls (From, To) such
that there is a chain of calls from From to To in the Call Graph, and every From and To is an exported function or an
unused local function. The vertices are the same as for the Call Graph.

Calls between modules, applications and releases are also directed graphs. The types of the vertices and edges of
these graphs are (ranging from the most special to the most general): Fun for functions; Mod for modules; App for
applications; and Rel for releases. The following paragraphs will describe the different constructs of the language
used for selecting and analyzing parts of the graphs, beginning with the constants:

• Expression ::= Constants

• Constants ::= Consts | Consts : Type | RegExpr

• Consts ::= Constant | [Constant, ...] | {Constant, ...}

• Constant ::= Call | Const

• Call ::= FunSpec -> FunSpec | {MFA, MFA} | AtomConst -> AtomConst | {AtomConst, AtomConst}

• Const ::= AtomConst | FunSpec | MFA

• AtomConst ::= Application | Module | Release

• FunSpec ::= Module : Function / Arity

• MFA ::= {Module, Function, Arity}

74 | Ericsson AB. All Rights Reserved.: Tools

xref

• RegExpr ::= RegString : Type | RegFunc | RegFunc : Type

• RegFunc ::= RegModule : RegFunction / RegArity

• RegModule ::= RegAtom

• RegFunction ::= RegAtom

• RegArity ::= RegString | Number | _ | -1

• RegAtom ::= RegString | Atom | _

• RegString ::= - a regular expression, as described in the re module, enclosed in double quotes -

• Type ::= Fun | Mod | App | Rel

• Function ::= Atom

• Application ::= Atom

• Module ::= Atom

• Release ::= Atom

• Arity ::= Number | -1

• Atom ::= - same as Erlang atoms -

• Number ::= - same as non-negative Erlang integers -

Examples of constants are: kernel, kernel->stdlib, [kernel, sasl], [pg -> mnesia, {tv,
mnesia}] : Mod. It is an error if an instance of Const does not match any vertex of any graph. If there are more
than one vertex matching an untyped instance of AtomConst, then the one of the most general type is chosen. A list
of constants is interpreted as a set of constants, all of the same type. A tuple of constants constitute a chain of calls
(which may, but does not have to, correspond to an actual chain of calls of some graph). Assigning a type to a list or
tuple of Constant is equivalent to assigning the type to each Constant.

Regular expressions are used as a means to select some of the vertices of a graph. A RegExpr consisting of a
RegString and a type - an example is "xref_.*" : Mod - is interpreted as those modules (or applications or
releases, depending on the type) that match the expression. Similarly, a RegFunc is interpreted as those vertices of the
Call Graph that match the expression. An example is "xref_.*":"add_.*"/"(2|3)", which matches all add
functions of arity two or three of any of the xref modules. Another example, one that matches all functions of arity 10
or more: _:_/"[1-9].+". Here _ is an abbreviation for ".*", that is, the regular expression that matches anything.

The syntax of variables is simple:

• Expression ::= Variable

• Variable ::= - same as Erlang variables -

There are two kinds of variables: predefined variables and user variables. Predefined variables hold set up module
data, and cannot be assigned to but only used in queries. User variables on the other hand can be assigned to, and are
typically used for temporary results while evaluating a query, and for keeping results of queries for use in subsequent
queries. The predefined variables are (variables marked with (*) are available in functions mode only):

E
Call Graph Edges (*).

V
Call Graph Vertices (*).

M
Modules. All modules: analyzed modules, used library modules, and unknown modules.

A
Applications.

R
Releases.

ME
Module Edges. All module calls.

Ericsson AB. All Rights Reserved.: Tools | 75

xref

AE
Application Edges. All application calls.

RE
Release Edges. All release calls.

L
Local Functions (*). All local functions of analyzed modules.

X
Exported Functions. All exported functions of analyzed modules and all used exported functions of library
modules.

F
Functions (*).

B
Used BIFs. B is empty if builtins is false for all analyzed modules.

U
Unknown Functions.

UU
Unused Functions (*). All local and exported functions of analyzed modules that have not been used.

XU
Externally Used Functions. Functions of all modules - including local functions - that have been used in some
external call.

LU
Locally Used Functions (*). Functions of all modules that have been used in some local call.

OL
Functions with an attribute tag on_load (*).

LC
Local Calls (*).

XC
External Calls (*).

AM
Analyzed Modules.

UM
Unknown Modules.

LM
Used Library Modules.

UC
Unresolved Calls. Empty in modules mode.

EE
Inter Call Graph Edges (*).

DF
Deprecated Functions. All deprecated exported functions and all used deprecated BIFs.

DF_1
Deprecated Functions. All deprecated functions to be removed in next version.

DF_2
Deprecated Functions. All deprecated functions to be removed in next version or next major release.

DF_3
Deprecated Functions. All deprecated functions to be removed in next version, next major release, or later.

These are a few facts about the predefined variables (the set operators + (union) and - (difference) as well as the cast
operator (Type) are described below):

• F is equal to L + X.

• V is equal to X + L + B + U, where X, L, B and U are pairwise disjoint (that is, have no elements in
common).

76 | Ericsson AB. All Rights Reserved.: Tools

xref

• UU is equal to V - (XU + LU), where LU and XU may have elements in common. Put in another way:

• V is equal to UU + XU + LU.

• OL is a subset of F.

• E is equal to LC + XC. Note that LC and XC may have elements in common, namely if some function is
locally and externally used from one and the same function.

• U is a subset of XU.

• B is a subset of XU.

• LU is equal to range LC.

• XU is equal to range XC.

• LU is a subset of F.

• UU is a subset of F.

• range UC is a subset of U.

• M is equal to AM + LM + UM, where AM, LM and UM are pairwise disjoint.

• ME is equal to (Mod) E.

• AE is equal to (App) E.

• RE is equal to (Rel) E.

• (Mod) V is a subset of M. Equality holds if all analyzed modules have some local, exported, or unknown
function.

• (App) M is a subset of A. Equality holds if all applications have some module.

• (Rel) A is a subset of R. Equality holds if all releases have some application.

• DF_1 is a subset of DF_2.

• DF_2 is a subset of DF_3.

• DF_3 is a subset of DF.

• DF is a subset of X + B.

An important notion is that of conversion of expressions. The syntax of a cast expression is:

• Expression ::= (Type) Expression

The interpretation of the cast operator depends on the named type Type, the type of Expression, and the structure
of the elements of the interpretation of Expression. If the named type is equal to the expression type, no conversion
is done. Otherwise, the conversion is done one step at a time; (Fun) (App) RE, for instance, is equivalent to
(Fun) (Mod) (App) RE. Now assume that the interpretation of Expression is a set of constants (functions,
modules, applications or releases). If the named type is more general than the expression type, say Mod and Fun
respectively, then the interpretation of the cast expression is the set of modules that have at least one of their functions
mentioned in the interpretation of the expression. If the named type is more special than the expression type, say Fun
and Mod, then the interpretation is the set of all the functions of the modules (in modules mode, the conversion
is partial since the local functions are not known). The conversions to and from applications and releases work
analogously. For instance, (App) "xref_.*" : Mod returns all applications containing at least one module such
that xref_ is a prefix of the module name.

Now assume that the interpretation of Expression is a set of calls. If the named type is more general than the
expression type, say Mod and Fun respectively, then the interpretation of the cast expression is the set of calls (M1, M2)
such that the interpretation of the expression contains a call from some function of M1 to some function of M2. If the
named type is more special than the expression type, say Fun and Mod, then the interpretation is the set of all function
calls (F1, F2) such that the interpretation of the expression contains a call (M1, M2) and F1 is a function of M1 and
F2 is a function of M2 (in modules mode, there are no functions calls, so a cast to Fun always yields an empty set).
Again, the conversions to and from applications and releases work analogously.

Ericsson AB. All Rights Reserved.: Tools | 77

xref

The interpretation of constants and variables are sets, and those sets can be used as the basis for forming new sets by
the application of set operators. The syntax:

• Expression ::= Expression BinarySetOp Expression

• BinarySetOp ::= + | * | -

+, * and - are interpreted as union, intersection and difference respectively: the union of two sets contains the elements
of both sets; the intersection of two sets contains the elements common to both sets; and the difference of two sets
contains the elements of the first set that are not members of the second set. The elements of the two sets must be of
the same structure; for instance, a function call cannot be combined with a function. But if a cast operator can make
the elements compatible, then the more general elements are converted to the less general element type. For instance,
M + F is equivalent to (Fun) M + F, and E - AE is equivalent to E - (Fun) AE. One more example: X
* xref : Mod is interpreted as the set of functions exported by the module xref; xref : Mod is converted
to the more special type of X (Fun, that is) yielding all functions of xref, and the intersection with X (all functions
exported by analyzed modules and library modules) is interpreted as those functions that are exported by some module
and functions of xref.

There are also unary set operators:

• Expression ::= UnarySetOp Expression

• UnarySetOp ::= domain | range | strict

Recall that a call is a pair (From, To). domain applied to a set of calls is interpreted as the set of all vertices From,
and range as the set of all vertices To. The interpretation of the strict operator is the operand with all calls on
the form (A, A) removed.

The interpretation of the restriction operators is a subset of the first operand, a set of calls. The second operand, a
set of vertices, is converted to the type of the first operand. The syntax of the restriction operators:

• Expression ::= Expression RestrOp Expression

• RestrOp ::= |

• RestrOp ::= ||

• RestrOp ::= |||

The interpretation in some detail for the three operators:

|
The subset of calls from any of the vertices.

||
The subset of calls to any of the vertices.

|||
The subset of calls to and from any of the vertices. For all sets of calls CS and all sets of vertices VS,
CS ||| VS is equivalent to CS | VS * CS || VS.

Two functions (modules, applications, releases) belong to the same strongly connected component if they call each
other (in)directly. The interpretation of the components operator is the set of strongly connected components of a
set of calls. The condensation of a set of calls is a new set of calls between the strongly connected components
such that there is an edge between two components if there is some constant of the first component that calls some
constant of the second component.

The interpretation of the of operator is a chain of calls of the second operand (a set of calls) that passes throw all of
the vertices of the first operand (a tuple of constants), in the given order. The second operand is converted to the type
of the first operand. For instance, the of operator can be used for finding out whether a function calls another function
indirectly, and the chain of calls demonstrates how. The syntax of the graph analyzing operators:

• Expression ::= Expression BinaryGraphOp Expression

• Expression ::= UnaryGraphOp Expression

78 | Ericsson AB. All Rights Reserved.: Tools

xref

• UnaryGraphOp ::= components | condensation

• BinaryGraphOp ::= of

As was mentioned before, the graph analyses operate on the digraph representation of graphs. By default, the
digraph representation is created when needed (and deleted when no longer used), but it can also be created explicitly
by use of the closure operator:

• Expression ::= ClosureOp Expression

• ClosureOp ::= closure

The interpretation of the closure operator is the transitive closure of the operand.

The restriction operators are defined for closures as well; closure E | xref : Mod is interpreted as the direct or
indirect function calls from the xref module, while the interpretation of E | xref : Mod is the set of direct calls
from xref. If some graph is to be used in several graph analyses, it saves time to assign the digraph representation
of the graph to a user variable, and then make sure that every graph analysis operates on that variable instead of the
list representation of the graph.

The lines where functions are defined (more precisely: where the first clause begins) and the lines where functions are
used are available in functions mode. The line numbers refer to the files where the functions are defined. This holds
also for files included with the -include and -include_lib directives, which may result in functions defined
apparently in the same line. The line operators are used for assigning line numbers to functions and for assigning sets
of line numbers to function calls. The syntax is similar to the one of the cast operator:

• Expression ::= (LineOp) Expression

• Expression ::= (XLineOp) Expression

• LineOp ::= Lin | ELin | LLin | XLin

• XLineOp ::= XXL

The interpretation of the Lin operator applied to a set of functions assigns to each function the line number where the
function is defined. Unknown functions and functions of library modules are assigned the number 0.

The interpretation of some LineOp operator applied to a set of function calls assigns to each call the set of line numbers
where the first function calls the second function. Not all calls are assigned line numbers by all operators:

• the Lin operator is defined for Call Graph Edges;

• the LLin operator is defined for Local Calls.

• the XLin operator is defined for External Calls.

• the ELin operator is defined for Inter Call Graph Edges.

The Lin (LLin, XLin) operator assigns the lines where calls (local calls, external calls) are made. The ELin operator
assigns to each call (From, To), for which it is defined, every line L such that there is a chain of calls from From to
To beginning with a call on line L.

The XXL operator is defined for the interpretation of any of the LineOp operators applied to a set of function calls.
The result is that of replacing the function call with a line numbered function call, that is, each of the two functions of
the call is replaced by a pair of the function and the line where the function is defined. The effect of the XXL operator
can be undone by the LineOp operators. For instance, (Lin) (XXL) (Lin) E is equivalent to (Lin) E.

The +, -, * and # operators are defined for line number expressions, provided the operands are compatible. The LineOp
operators are also defined for modules, applications, and releases; the operand is implicitly converted to functions.
Similarly, the cast operator is defined for the interpretation of the LineOp operators.

The interpretation of the counting operator is the number of elements of a set. The operator is undefined for closures.
The +, - and * operators are interpreted as the obvious arithmetical operators when applied to numbers. The syntax
of the counting operator:

• Expression ::= CountOp Expression

Ericsson AB. All Rights Reserved.: Tools | 79

xref

• CountOp ::= #

All binary operators are left associative; for instance, A | B || C is equivalent to (A | B) || C. The following
is a list of all operators, in increasing order of precedence:

• +, -

• *

• #

• |, ||, |||

• of

• (Type)

• closure, components, condensation, domain, range, strict

Parentheses are used for grouping, either to make an expression more readable or to override the default precedence
of operators:

• Expression ::= (Expression)

A query is a non-empty sequence of statements. A statement is either an assignment of a user variable or an expression.
The value of an assignment is the value of the right hand side expression. It makes no sense to put a plain expression
anywhere else but last in queries. The syntax of queries is summarized by these productions:

• Query ::= Statement, ...

• Statement ::= Assignment | Expression

• Assignment ::= Variable := Expression | Variable = Expression

A variable cannot be assigned a new value unless first removed. Variables assigned to by the = operator are removed
at the end of the query, while variables assigned to by the := operator can only be removed by calls to forget. There
are no user variables when module data need to be set up again; if any of the functions that make it necessary to set
up module data again is called, all user variables are forgotten.

Types

application() = atom()
arity() = int() | -1
bool() = true | false
call() = {atom(), atom()} | funcall()
constant() = mfa() | module() | application() | release()
directory() = string()
file() = string()
funcall() = {mfa(), mfa()}
function() = atom()
int() = integer() >= 0
library() = atom()
library_path() = path() | code_path
mfa() = {module(), function(), arity()}
mode() = functions | modules
module() = atom()
release() = atom()
string_position() = int() | at_end
variable() = atom()
xref() = atom() | pid()

Exports

add_application(Xref, Directory [, Options]) -> {ok, application()} | Error
Types:

80 | Ericsson AB. All Rights Reserved.: Tools

xref

Directory = directory()

Error = {error, module(), Reason}

Options = [Option] | Option

Option = {builtins, bool()} | {name, application()} | {verbose, bool()} |
{warnings, bool()}

Reason = {application_clash, {application(), directory(), directory()}}
| {file_error, file(), error()} | {invalid_filename, term()} |
{invalid_options, term()} | - see also add_directory -

Xref = xref()

Adds an application, the modules of the application and module data of the modules to an Xref server. The modules
will be members of the application. The default is to use the base name of the directory with the version removed as
application name, but this can be overridden by the name option. Returns the name of the application.

If the given directory has a subdirectory named ebin, modules (BEAM files) are searched for in that directory,
otherwise modules are searched for in the given directory.

If the mode of the Xref server is functions, BEAM files that contain no debug information are ignored.

add_directory(Xref, Directory [, Options]) -> {ok, Modules} | Error
Types:

Directory = directory()

Error = {error, module(), Reason}

Modules = [module()]

Options = [Option] | Option

Option = {builtins, bool()} | {recurse, bool()} | {verbose, bool()} |
{warnings, bool()}

Reason = {file_error, file(), error()} | {invalid_filename, term()} |
{invalid_options, term()} | {unrecognized_file, file()} | - error from
beam_lib:chunks/2 -

Xref = xref()

Adds the modules found in the given directory and the modules' data to an Xref server. The default is not to examine
subdirectories, but if the option recurse has the value true, modules are searched for in subdirectories on all levels
as well as in the given directory. Returns a sorted list of the names of the added modules.

The modules added will not be members of any applications.

If the mode of the Xref server is functions, BEAM files that contain no debug information are ignored.

add_module(Xref, File [, Options]) -> {ok, module()} | Error
Types:

Error = {error, module(), Reason}

File = file()

Options = [Option] | Option

Option = {builtins, bool()} | {verbose, bool()} | {warnings, bool()}

Reason = {file_error, file(), error()} | {invalid_filename, term()} |
{invalid_options, term()} | {module_clash, {module(), file(), file()}} |
{no_debug_info, file()} | - error from beam_lib:chunks/2 -

Xref = xref()

Ericsson AB. All Rights Reserved.: Tools | 81

xref

Adds a module and its module data to an Xref server. The module will not be member of any application. Returns
the name of the module.

If the mode of the Xref server is functions, and the BEAM file contains no debug information, the error message
no_debug_info is returned.

add_release(Xref, Directory [, Options]) -> {ok, release()} | Error
Types:

Directory = directory()

Error = {error, module(), Reason}

Options = [Option] | Option

Option = {builtins, bool()} | {name, release()} | {verbose, bool()} |
{warnings, bool()}

Reason = {application_clash, {application(), directory(), directory()}}
| {file_error, file(), error()} | {invalid_filename, term()} |
{invalid_options, term()} | {release_clash, {release(), directory(),
directory()}} | - see also add_directory -

Xref = xref()

Adds a release, the applications of the release, the modules of the applications, and module data of the modules to an
Xref server. The applications will be members of the release, and the modules will be members of the applications.
The default is to use the base name of the directory as release name, but this can be overridden by the name option.
Returns the name of the release.

If the given directory has a subdirectory named lib, the directories in that directory are assumed to be application
directories, otherwise all subdirectories of the given directory are assumed to be application directories. If there are
several versions of some application, the one with the highest version is chosen.

If the mode of the Xref server is functions, BEAM files that contain no debug information are ignored.

analyze(Xref, Analysis [, Options]) -> {ok, Answer} | Error
Types:

Analysis = undefined_function_calls | undefined_functions |
locals_not_used | exports_not_used | deprecated_function_calls
| {deprecated_function_calls, DeprFlag} | deprecated_functions |
{deprecated_functions, DeprFlag} | {call, FuncSpec} | {use, FuncSpec}
| {module_call, ModSpec} | {module_use, ModSpec} | {application_call,
AppSpec} | {application_use, AppSpec} | {release_call, RelSpec} |
{release_use, RelSpec}

Answer = [term()]

AppSpec = application() | [application()]

DeprFlag = next_version | next_major_release | eventually

Error = {error, module(), Reason}

FuncSpec = mfa() | [mfa()]

ModSpec = module() | [module()]

Options = [Option] | Option

Option = {verbose, bool()}

RelSpec = release() | [release()]

82 | Ericsson AB. All Rights Reserved.: Tools

xref

Reason = {invalid_options, term()} | {parse_error, string_position(),
term()} | {unavailable_analysis, term()} | {unknown_analysis, term()} |
{unknown_constant, string()} | {unknown_variable, variable()}

Xref = xref()

Evaluates a predefined analysis. Returns a sorted list without duplicates of call() or constant(), depending on
the chosen analysis. The predefined analyses, which operate on all analyzed modules, are (analyses marked with (*)
are available in functionsmode only):

undefined_function_calls(*)
Returns a list of calls to undefined functions.

undefined_functions
Returns a list of undefined functions.

locals_not_used(*)
Returns a list of local functions that have not been locally used.

exports_not_used
Returns a list of exported functions that have not been externally used.

deprecated_function_calls(*)
Returns a list of external calls to deprecated functions.

{deprecated_function_calls, DeprFlag}(*)
Returns a list of external calls to deprecated functions. If DeprFlag is equal to next_version, calls to
functions to be removed in next version are returned. If DeprFlag is equal to next_major_release,
calls to functions to be removed in next major release are returned as well as calls to functions to be removed
in next version. Finally, if DeprFlag is equal to eventually, all calls to functions to be removed are
returned, including calls to functions to be removed in next version or next major release.

deprecated_functions
Returns a list of externally used deprecated functions.

{deprecated_functions, DeprFlag}
Returns a list of externally used deprecated functions. If DeprFlag is equal to next_version, functions
to be removed in next version are returned. If DeprFlag is equal to next_major_release, functions
to be removed in next major release are returned as well as functions to be removed in next version. Finally,
if DeprFlag is equal to eventually, all functions to be removed are returned, including functions to be
removed in next version or next major release.

{call, FuncSpec}(*)
Returns a list of functions called by some of the given functions.

{use, FuncSpec}(*)
Returns a list of functions that use some of the given functions.

{module_call, ModSpec}
Returns a list of modules called by some of the given modules.

{module_use, ModSpec}
Returns a list of modules that use some of the given modules.

{application_call, AppSpec}
Returns a list of applications called by some of the given applications.

{application_use, AppSpec}
Returns a list of applications that use some of the given applications.

{release_call, RelSpec}
Returns a list of releases called by some of the given releases.

{release_use, RelSpec}
Returns a list of releases that use some of the given releases.

d(Directory) -> [DebugInfoResult] | [NoDebugInfoResult] | Error
Types:

Ericsson AB. All Rights Reserved.: Tools | 83

xref

Directory = directory()

DebugInfoResult = {deprecated, [funcall()]} | {undefined, [funcall()]} |
{unused, [mfa()]}

Error = {error, module(), Reason}

NoDebugInfoResult = {deprecated, [mfa()]} | {undefined, [mfa()]}

Reason = {file_error, file(), error()} | {invalid_filename, term()} |
{unrecognized_file, file()} | - error from beam_lib:chunks/2 -

The modules found in the given directory are checked for calls to deprecated functions, calls to undefined functions,
and for unused local functions. The code path is used as library path.

If some of the found BEAM files contain debug information, then those modules are checked and a list of tuples is
returned. The first element of each tuple is one of:

• deprecated, the second element is a sorted list of calls to deprecated functions;

• undefined, the second element is a sorted list of calls to undefined functions;

• unused, the second element is a sorted list of unused local functions.

If no BEAM file contains debug information, then a list of tuples is returned. The first element of each tuple is one of:

• deprecated, the second element is a sorted list of externally used deprecated functions;

• undefined, the second element is a sorted list of undefined functions.

forget(Xref) -> ok
forget(Xref, Variables) -> ok | Error
Types:

Error = {error, module(), Reason}

Reason = {not_user_variable, term()}

Variables = [variable()] | variable()

Xref = xref()

forget/1 and forget/2 remove all or some of the user variables of an xref server.

format_error(Error) -> Chars
Types:

Error = {error, module(), term()}

Chars = [char() | Chars]

Given the error returned by any function of this module, the function format_error returns a descriptive string of
the error in English. For file errors, the function format_error/1 in the file module is called.

get_default(Xref) -> [{Option, Value}]
get_default(Xref, Option) -> {ok, Value} | Error
Types:

Error = {error, module(), Reason}

Option = builtins | recurse | verbose | warnings

Reason = {invalid_options, term()}

Value = bool()

Xref = xref()

Returns the default values of one or more options.

84 | Ericsson AB. All Rights Reserved.: Tools

xref

get_library_path(Xref) -> {ok, LibraryPath}
Types:

LibraryPath = library_path()

Xref = xref()

Returns the library path.

info(Xref) -> [Info]
info(Xref, Category) -> [{Item, [Info]}]
info(Xref, Category, Items) -> [{Item, [Info]}]
Types:

Application = [] | [application()]

Category = modules | applications | releases | libraries

Info = {application, Application} | {builtins, bool()} | {directory,
directory()} | {library_path, library_path()} | {mode, mode()} |
{no_analyzed_modules, int()} | {no_applications, int()} | {no_calls,
{NoResolved, NoUnresolved}} | {no_function_calls, {NoLocal,
NoResolvedExternal, NoUnresolved}} | {no_functions, {NoLocal, NoExternal}}
| {no_inter_function_calls, int()} | {no_releases, int()} | {release,
Release} | {version, Version}

Item = module() | application() | release() | library()

Items = Item | [Item]

NoLocal = NoExternal = NoResolvedExternal, NoResolved = NoUnresolved =
int()

Release = [] | [release()]

Version = [int()]

Xref = xref()

The info functions return information as a list of pairs {Tag, term()} in some order about the state and the module
data of an Xref server.

info/1 returns information with the following tags (tags marked with (*) are available in functions mode only):

• library_path, the library path;

• mode, the mode;

• no_releases, number of releases;

• no_applications, total number of applications (of all releases);

• no_analyzed_modules, total number of analyzed modules;

• no_calls (*), total number of calls (in all modules), regarding instances of one function call in different lines
as separate calls;

• no_function_calls (*), total number of local calls, resolved external calls and unresolved calls;

• no_functions (*), total number of local and exported functions;

• no_inter_function_calls (*), total number of calls of the Inter Call Graph.

info/2 and info/3 return information about all or some of the analyzed modules, applications, releases or library
modules of an Xref server. The following information is returned for every analyzed module:

• application, an empty list if the module does not belong to any application, otherwise a list of the
application name;

• builtins, whether calls to BIFs are included in the module's data;

Ericsson AB. All Rights Reserved.: Tools | 85

xref

• directory, the directory where the module's BEAM file is located;

• no_calls (*), number of calls, regarding instances of one function call in different lines as separate calls;

• no_function_calls (*), number of local calls, resolved external calls and unresolved calls;

• no_functions (*), number of local and exported functions;

• no_inter_function_calls (*), number of calls of the Inter Call Graph;

The following information is returned for every application:

• directory, the directory where the modules' BEAM files are located;

• no_analyzed_modules, number of analyzed modules;

• no_calls (*), number of calls of the application's modules, regarding instances of one function call in
different lines as separate calls;

• no_function_calls (*), number of local calls, resolved external calls and unresolved calls of the
application's modules;

• no_functions (*), number of local and exported functions of the application's modules;

• no_inter_function_calls (*), number of calls of the Inter Call Graph of the application's modules;

• release, an empty list if the application does not belong to any release, otherwise a list of the release name;

• version, the application's version as a list of numbers. For instance, the directory "kernel-2.6" results in the
application name kernel and the application version [2,6]; "kernel" yields the name kernel and the version
[].

The following information is returned for every release:

• directory, the release directory;

• no_analyzed_modules, number of analyzed modules;

• no_applications, number of applications;

• no_calls (*), number of calls of the release's modules, regarding instances of one function call in different
lines as separate calls;

• no_function_calls (*), number of local calls, resolved external calls and unresolved calls of the release's
modules;

• no_functions (*), number of local and exported functions of the release's modules;

• no_inter_function_calls (*), number of calls of the Inter Call Graph of the release's modules.

The following information is returned for every library module:

• directory, the directory where the library module's BEAM file is located.

For every number of calls, functions etc. returned by the no_ tags, there is a query returning the same number. Listed
below are examples of such queries. Some of the queries return the sum of a two or more of the no_ tags numbers.
mod (app, rel) refers to any module (application, release).

• no_analyzed_modules

• "# AM" (info/1)

• "# (Mod) app:App" (application)

• "# (Mod) rel:Rel" (release)

• no_applications

• "# A" (info/1)

• no_calls. The sum of the number of resolved and unresolved calls:

• "# (XLin) E + # (LLin) E" (info/1)

• "T = E | mod:Mod, # (LLin) T + # (XLin) T" (module)

• "T = E | app:App, # (LLin) T + # (XLin) T" (application)

86 | Ericsson AB. All Rights Reserved.: Tools

xref

• "T = E | rel:Rel, # (LLin) T + # (XLin) T" (release)

• no_functions. Functions in library modules and the functions module_info/0,1 are not counted by
info. Assuming that "Extra := _:module_info/\"(0|1)\" + LM" has been evaluated, the sum of
the number of local and exported functions are:

• "# (F - Extra)" (info/1)

• "# (F * mod:Mod - Extra)" (module)

• "# (F * app:App - Extra)" (application)

• "# (F * rel:Rel - Extra)" (release)

• no_function_calls. The sum of the number of local calls, resolved external calls and unresolved calls:

• "# LC + # XC" (info/1)

• "# LC | mod:Mod + # XC | mod:Mod" (module)

• "# LC | app:App + # XC | app:App" (application)

• "# LC | rel:Rel + # XC | mod:Rel" (release)

• no_inter_function_calls

• "# EE" (info/1)

• "# EE | mod:Mod" (module)

• "# EE | app:App" (application)

• "# EE | rel:Rel" (release)

• no_releases

• "# R" (info/1)

m(Module) -> [DebugInfoResult] | [NoDebugInfoResult] | Error
m(File) -> [DebugInfoResult] | [NoDebugInfoResult] | Error
Types:

DebugInfoResult = {deprecated, [funcall()]} | {undefined, [funcall()]} |
{unused, [mfa()]}

Error = {error, module(), Reason}

File = file()

Module = module()

NoDebugInfoResult = {deprecated, [mfa()]} | {undefined, [mfa()]}

Reason = {file_error, file(), error()} | {interpreted, module()} |
{invalid_filename, term()} | {cover_compiled, module()} | {no_such_module,
module()} | - error from beam_lib:chunks/2 -

The given BEAM file (with or without the .beam extension) or the file found by calling code:which(Module)
is checked for calls to deprecated functions, calls to undefined functions, and for unused local functions. The code
path is used as library path.

If the BEAM file contains debug information, then a list of tuples is returned. The first element of each tuple is one of:

• deprecated, the second element is a sorted list of calls to deprecated functions;

• undefined, the second element is a sorted list of calls to undefined functions;

• unused, the second element is a sorted list of unused local functions.

If the BEAM file does not contain debug information, then a list of tuples is returned. The first element of each tuple
is one of:

• deprecated, the second element is a sorted list of externally used deprecated functions;

Ericsson AB. All Rights Reserved.: Tools | 87

xref

• undefined, the second element is a sorted list of undefined functions.

q(Xref, Query [, Options]) -> {ok, Answer} | Error
Types:

Answer = false | [constant()] | [Call] | [Component] | int() | [DefineAt]
| [CallAt] | [AllLines]

Call = call() | ComponentCall

ComponentCall = {Component, Component}

Component = [constant()]

DefineAt = {mfa(), LineNumber}

CallAt = {funcall(), LineNumbers}

AllLines = {{DefineAt, DefineAt}, LineNumbers}

Error = {error, module(), Reason}

LineNumbers = [LineNumber]

LineNumber = int()

Options = [Option] | Option

Option = {verbose, bool()}

Query = string() | atom()

Reason = {invalid_options, term()} | {parse_error, string_position(),
term()} | {type_error, string()} | {type_mismatch, string(), string()}
| {unknown_analysis, term()} | {unknown_constant, string()} |
{unknown_variable, variable()} | {variable_reassigned, string()}

Xref = xref()

Evaluates a query in the context of an Xref server, and returns the value of the last statement. The syntax of the value
depends on the expression:

• A set of calls is represented by a sorted list without duplicates of call().

• A set of constants is represented by a sorted list without duplicates of constant().

• A set of strongly connected components is a sorted list without duplicates of Component.

• A set of calls between strongly connected components is a sorted list without duplicates of ComponentCall.

• A chain of calls is represented by a list of constant(). The list contains the From vertex of every call and
the To vertex of the last call.

• The of operator returns false if no chain of calls between the given constants can be found.

• The value of the closure operator (the digraph representation) is represented by the atom 'closure()'.

• A set of line numbered functions is represented by a sorted list without duplicates of DefineAt.

• A set of line numbered function calls is represented by a sorted list without duplicates of CallAt.

• A set of line numbered functions and function calls is represented by a sorted list without duplicates of
AllLines.

For both CallAt and AllLines it holds that for no list element is LineNumbers an empty list; such elements have
been removed. The constants of component and the integers of LineNumbers are sorted and without duplicates.

remove_application(Xref, Applications) -> ok | Error
Types:

Applications = application() | [application()]

Error = {error, module(), Reason}

88 | Ericsson AB. All Rights Reserved.: Tools

xref

Reason = {no_such_application, application()}

Xref = xref()

Removes applications and their modules and module data from an Xref server.

remove_module(Xref, Modules) -> ok | Error
Types:

Error = {error, module(), Reason}

Modules = module() | [module()]

Reason = {no_such_module, module()}

Xref = xref()

Removes analyzed modules and module data from an Xref server.

remove_release(Xref, Releases) -> ok | Error
Types:

Error = {error, module(), Reason}

Reason = {no_such_release, release()}

Releases = release() | [release()]

Xref = xref()

Removes releases and their applications, modules and module data from an Xref server.

replace_application(Xref, Application, Directory [, Options]) -> {ok,
application()} | Error
Types:

Application = application()

Directory = directory()

Error = {error, module(), Reason}

Options = [Option] | Option

Option = {builtins, bool()} | {verbose, bool()} | {warnings, bool()}

Reason = {no_such_application, application()} |
- see also add_application -

Xref = xref()

Replaces the modules of an application with other modules read from an application directory. Release membership
of the application is retained. Note that the name of the application is kept; the name of the given directory is not used.

replace_module(Xref, Module, File [, Options]) -> {ok, module()} | Error
Types:

Error = {error, module(), Reason}

File = file()

Module = module()

Options = [Option] | Option

Option = {verbose, bool()} | {warnings, bool()}

ReadModule = module()

Reason = {module_mismatch, module(), ReadModule} | {no_such_module,
module()} | - see also add_module -

Ericsson AB. All Rights Reserved.: Tools | 89

xref

Xref = xref()

Replaces module data of an analyzed module with data read from a BEAM file. Application membership of the module
is retained, and so is the value of the builtins option of the module. An error is returned if the name of the read
module differs from the given module.

The update function is an alternative for updating module data of recompiled modules.

set_default(Xref, Option, Value) -> {ok, OldValue} | Error
set_default(Xref, OptionValues) -> ok | Error
Types:

Error = {error, module(), Reason}

OptionValues = [OptionValue] | OptionValue

OptionValue = {Option, Value}

Option = builtins | recurse | verbose | warnings

Reason = {invalid_options, term()}

Value = bool()

Xref = xref()

Sets the default value of one or more options. The options that can be set this way are:

• builtins, with initial default value false;

• recurse, with initial default value false;

• verbose, with initial default value false;

• warnings, with initial default value true.

The initial default values are set when creating an Xref server.

set_library_path(Xref, LibraryPath [, Options]) -> ok | Error
Types:

Error = {error, module(), Reason}

LibraryPath = library_path()

Options = [Option] | Option

Option = {verbose, bool()}

Reason = {invalid_options, term()} | {invalid_path, term()}

Xref = xref()

Sets the library path. If the given path is a list of directories, the set of library modules is determined by choosing the
first module encountered while traversing the directories in the given order, for those modules that occur in more than
one directory. By default, the library path is an empty list.

The library path code_path is used by the functions m/1 and d/1, but can also be set explicitly. Note however
that the code path will be traversed once for each used library module while setting up module data. On the other
hand, if there are only a few modules that are used but not analyzed, using code_path may be faster than setting
the library path to code:get_path().

If the library path is set to code_path, the set of library modules is not determined, and the info functions will
return empty lists of library modules.

start(NameOrOptions) -> Return
Types:

90 | Ericsson AB. All Rights Reserved.: Tools

xref

NameOrOptions = Name | Options

Name = atom()

Options = [Option] | Option

Option = {xref_mode, mode()} | term()

Return = {ok, pid()} | {error, {already_started, pid()}}

Creates an Xref server. The process may optionally be given a name. The default mode is functions. Options that
are not recognized by Xref are passed on to gen_server:start/4.

start(Name, Options) -> Return
Types:

Name = atom()

Options = [Option] | Option

Option = {xref_mode, mode()} | term()

Return = {ok, pid()} | {error, {already_started, pid()}}

Creates an Xref server with a given name. The default mode is functions. Options that are not recognized by Xref
are passed on to gen_server:start/4.

stop(Xref)
Types:

Xref = xref()

Stops an Xref server.

update(Xref [, Options]) -> {ok, Modules} | Error
Types:

Error = {error, module(), Reason}

Modules = [module()]

Options = [Option] | Option

Option = {verbose, bool()} | {warnings, bool()}

Reason = {invalid_options, term()} | {module_mismatch, module(),
ReadModule} | - see also add_module -

Xref = xref()

Replaces the module data of all analyzed modules the BEAM files of which have been modified since last read by an
add function or update. Application membership of the modules is retained, and so is the value of the builtins
option. Returns a sorted list of the names of the replaced modules.

variables(Xref [, Options]) -> {ok, [VariableInfo]}
Types:

Options = [Option] | Option

Option = predefined | user | {verbose, bool()}

Reason = {invalid_options, term()}

VariableInfo = {predefined, [variable()]} | {user, [variable()]}

Xref = xref()

Returns a sorted lists of the names of the variables of an Xref server. The default is to return the user variables only.

Ericsson AB. All Rights Reserved.: Tools | 91

xref

See Also
beam_lib(3), digraph(3), digraph_utils(3), re(3), TOOLS User's Guide

92 | Ericsson AB. All Rights Reserved.: Tools

	Tools
	Tools User's Guide
	cover
	Introduction
	Getting Started With Cover
	Example
	Preparation
	Coverage Analysis
	Call Statistics
	Analysis to File
	Conclusion

	Miscellaneous
	Performance
	Executable Lines
	Code Loading Mechanism

	cprof - The Call Count Profiler
	Example: Background work
	Example: One module
	Example: In the code

	The Erlang mode for Emacs
	Purpose
	Pre-requisites
	Elisp
	Setup on UNIX
	Setup on Windows
	Indentation
	Editing
	Syntax highlighting
	Tags
	Etags
	Shell
	Compilation

	fprof - The File Trace Profiler
	Profiling from the source code
	Profiling a function
	Immediate profiling

	lcnt - The Lock Profiler
	 Enabling lock-counting
	Getting started
	 Example of usage
	 Example with Mnesia Transaction Benchmark
	 Deciphering the output
	See Also

	Xref - The Cross Reference Tool
	Module Check
	Predefined Analysis
	Expressions
	Graph Analysis

	Reference Manual
	cover
	start/0
	local_only/0
	start/1
	compile/1
	compile/2
	compile_module/1
	compile_module/2
	compile_directory/0
	compile_directory/1
	compile_directory/2
	compile_beam/1
	compile_beam_directory/0
	compile_beam_directory/1
	analyse/0
	analyse/1
	analyse/1
	analyse/1
	analyse/2
	analyse/2
	analyse/2
	analyse/3
	analyse_to_file/0
	analyse_to_file/1
	analyse_to_file/1
	analyse_to_file/2
	async_analyse_to_file/1
	async_analyse_to_file/2
	async_analyse_to_file/2
	async_analyse_to_file/3
	modules/0
	imported_modules/0
	imported/0
	which_nodes/0
	is_compiled/1
	reset/1
	reset/0
	export/1
	export/2
	import/1
	stop/0
	stop/1
	flush/1

	cprof
	analyse/0
	analyse/1
	analyse/1
	analyse/2
	pause/0
	pause/1
	pause/2
	pause/3
	restart/0
	restart/1
	restart/2
	restart/3
	start/0
	start/1
	start/2
	start/3
	stop/0
	stop/1
	stop/2
	stop/3

	eprof
	start/0
	start_profiling/1
	start_profiling/2
	start_profiling/3
	stop_profiling/0
	profile/1
	profile/2
	profile/1
	profile/2
	profile/3
	profile/4
	profile/5
	profile/6
	analyze/0
	analyze/1
	analyze/2
	log/1
	stop/0

	erlang.el
	fprof
	start/0
	stop/0
	stop/1
	apply/2
	apply/3
	apply/3
	apply/4
	trace/2
	trace/2
	trace/2
	trace/1
	trace/1
	trace/1
	trace/1
	profile/0
	profile/2
	profile/1
	profile/1
	profile/1
	analyse/0
	analyse/2
	analyse/1
	analyse/1
	analyse/1

	instrument
	allocations/0
	allocations/1
	carriers/0
	carriers/1

	lcnt
	start/0
	stop/0
	collect/0
	collect/1
	clear/0
	clear/1
	conflicts/0
	conflicts/1
	locations/0
	locations/1
	inspect/1
	inspect/2
	information/0
	swap_pid_keys/0
	load/1
	save/1
	apply/1
	apply/2
	apply/3
	pid/2
	pid/3
	port/1
	port/2
	rt_collect/0
	rt_collect/1
	rt_clear/0
	rt_clear/1
	rt_mask/0
	rt_mask/1
	rt_mask/1
	rt_mask/2
	rt_opt/1
	rt_opt/2

	make
	all/0
	all/1
	files/1
	files/2

	tags
	file/1
	files/1
	dir/1
	dirs/1
	subdir/1
	subdirs/1
	root/1

	xref
	add_application/2
	add_directory/2
	add_module/2
	add_release/2
	analyze/2
	d/1
	forget/1
	forget/2
	format_error/1
	get_default/1
	get_default/2
	get_library_path/1
	info/1
	info/2
	info/3
	m/1
	m/1
	q/2
	remove_application/2
	remove_module/2
	remove_release/2
	replace_application/3
	replace_module/3
	set_default/3
	set_default/2
	set_library_path/2
	start/1
	start/2
	stop/1
	update/1
	variables/1

