ERLANG

Event Tracer (ET)

Copyright © 2002-2020 Ericsson AB. All Rights Reserved.
Event Tracer (ET) 1.6.4
September 22, 2020

Copyright © 2002-2020 Ericsson AB. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance
with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless
required by applicable law or agreed to in writing, software distributed under the License is distributed on an
"AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See

the License for the specific language governing permissions and limitations under the License. Ericsson AB. All
Rights Reserved..

September 22, 2020

1.1 Introduction

1 Event Tracer (ET) Users Guide

The Event Tracer (ET) uses the built-in trace mechanism in Erlang and provides tools for collection and graphical
viewing of trace data.

1.1 Introduction

The Event Tracer (ET) uses the built-in trace mechanism in Erlang and provides tools for collection and
graphical viewing of trace data.

The viewed trace datais normally collected from Erlang trace ports or files.

1.1.1 Scope and Purpose

Thismanual describestheEvent Tracer (ET) application, asacomponent of the Erlang/Open Telecom Platform
development environment. It is assumed that the reader is familiar with the Erlang Development Environment, which
isdescribed in a separate User's Guide.

1.1.2 Prerequisites

The following prerequisites is required for understanding the material inthe Event Tracer (ET) User'sGuide:
« familiarity with the Erlang system and Erlang programming in general and the especially the art of Erlang tracing.
The application requires Erlang/OTP release R13BB or later. If you usethe old GS based GUI it does sufficewith R7B.

1.1.3 About This Manual

In addition to thisintroductory chapter, the Event Tr acer s User's Guide contains the following chapters:

e Chapter 2: "Tutorid" provides a walk-through of the various parts of the application. The tutoria is based
on Jayson Vantuyl's article http://souja. net/ 2009/ 04/ maki ng- sense- of - er| angs-
event-tracer. htn.

e Chapter 3: "Description” describes the architecture and typical usage of the application.
e Chapter 4: "Advanced examples' gives some usage examples

1.1.4 Where to Find More Information

Refer to the following documentation for more information about Event Tracer (ET) and about the Erlang/
OTP development system:
« the Reference Manual of theEvent Tracer (ET).

e documentation of basictracinginer | ang: trace/ 4ander| ang: trace_pat t er n/ 3 andthentheutilities
derived from these: dbg, observer,invi sioandet.

e Programming Erlang: Software for a Concurrent World by Joe Armstrong; |SBN: 978-1-93435-600-5

Ericsson AB. All Rights Reserved.: Event Tracer (ET) | 1

1.2 Tutorial

1.2 Tutorial

1.2.1 Visualizing Message Sequence Charts

The easiest way of using ET, isto just useit asagraphical tool for displaying message sequence charts. In order to do
that you need to first start aVi ewer (which by default startsa Col | ect or):

{ok, ViewerPid} = et viewer:start([{title,"Coffee Order"}1),
CollectorPid = et viewer:get collector pid(ViewerPid).

Then you send eventsto the Col | ect or withthefunctionet _col | ect or: report _event/ 6 likethis:
et collector:report event(CollectorPid,85,from,to,message,extra stuff).

The Vi ewer will automatically pull eventsfrom the Col | ect or and display them on the screen.

The number (in this case 85) isan integer from 1 to 100 that specifiesthe "detail level" of the message. The higher the
number, the more important it is. This provides a crude form of priority filtering.

Thef r omt 0, and message parametersare exactly what they soundlike. f r omandt o arevisualizedintheVi ewer
as"lifelines’, with the message passing from one to the other. If f r omand t o are the same value, then it is displayed
next to thelifelineasan "action". Theext r a_st uf f valueissimply datathat you can attach that will be displayed
when someone actually clicks on the action or messagein the Vi ewer window.

Themodule et / exanpl es/ et _di spl ay_denv. er| illustrates how it can be used:
-module(et display demo).
-export([test/0]).

test() ->
{ok, Viewer} = et viewer:start([{title,"Coffee Order"}, {max actors,10}]),
Drink = {drink,iced chai latte},
Size = {size,grande},
Milk = {milk,whole},
Flavor = {flavor,vanilla},
C = et viewer:get collector pid(Viewer),
et collector:report event(C,99,customer,barristal,place order, [Drink,Size,Milk,Flavorl]),
et collector:report event(C,80,barristal, register,enter order, [Drink,Size,Flavor]),
et collector:report event(C,80,register,barristal,give total,"$5"),

(
(
et collector:report event(C,80,barristal,barristal,get cup, [Drink,Sizel),
et collector:report event(C,80,barristal,barrista2,give cup,[]),
et collector:report event(C,90,barristal, customer, request money,"$5"),
et collector:report event(C,90,customer,barristal,pay money, "$5"),
et collector:report event(C,80,barrista2,barrista2,get chai mix,[]),
et collector:report event(C,80,barrista2,barrista2,add flavor, [Flavor]),
et collector:report event(C,80,barrista2,barrista2,add milk, [Milk]),
et collector:report event(C,80,barrista2,barrista2,add ice,[]),
et collector:report event(C,80,barrista2,barrista2,swirl,[]),
et collector:report event(C,80,barrista2,customer,give tasty beverage, [Drink,Sizel),

ok.

When you runthe et _di spl ay_deno: t est (). function in the example above, the Vi ewer window will look
likethis:

2 | Ericsson AB. All Rights Reserved.: Event Tracer (ET)

1.2 Tutorial

Coffee Order (Tilter: all)

File Viewer Collector Filters andscaling Help

[Hide From=Tao il level
[| Hide {excluded actors)

100

| | e

customer barristal register barristaz

place order

enter order

give total

get cup

give cup

reguest monewy

get chai mix

add flawor

add milk

add ice

swirl

give tasty beverage

N[E

|1 (13)

Figure 2.1: Screenshot of the Viewer window

1.2.2 Four Modules

The event tracer framework is made up of four modules:
e et

e et _collector

e et_viewer

e et _selector

In addition, you'll probably want to familiarize yourself with the dbg module and possibly seq_t r ace module as
well.

Ericsson AB. All Rights Reserved.: Event Tracer (ET) | 3

1.2 Tutorial

1.2.3 The Event Tracer Interface

Theet moduleisnot likeother modules. It containsafunctioncalledet : t r ace_ne/ 5. Whichisafunctionthat does
not do any useful stuff at all. Its sole purposeisto be afunction that iseasy to trace. A call to it may be something like:

et:trace me(85,from,to,message,extra stuff).

The parametersto et : trace_ne/ 5 arethe ssme asto et _col | ector:report _event/ 6 in the previous
chapter. The big difference between the two is in the semantics of the two functions. The second actually reports an
Event tothe Col | ect or whilethe first does nothing, it just returns the atom hopef ul | y_traced. In order to
makethe parameterstoet : t race_ne/ 5 turnupintheCol | ect or, tracing of that function must be activated and
the Col | ect or must beregistered asaTr acer of theRaw Trace Dat a.

Erlang tracing is a seething pile of pain that involves reasonably complex knowledge of clever ports, tracing
return formats, and specialized tracing Mat chSpecs (which are really their own special kind of hell). The tracing
mechanism is very powerful indeed, but it can be hard to grasp.

Luckily there is a simplified way to start tracing of et : t race_me/ 5 function calls. The idea is that you should
instrument your code with callsto et : trace_ne/ 5 in strategic places where you have interesting information
available in your program. Then you just start the Col | ect or with global tracing enabled:

et viewer:start([{trace global, true}, {trace pattern, {et,max}}]).

Thiswill start aCol | ect or, aVi ewer and also start the tracing of et : t race_ne/ 5 function calls. The Raw
Trace Dat a iscollected by the Col | ect or and aview of it is displayed on the screen by the Vi ewer . You can
define your own "views' of the data by implementing your own Fi | t er functions and register theminthe Vi ewer .

1.2.4 The Collector and Viewer

These two pieces work in concert. Basically, the Col | ect or receives Raw Trace Dat a and processes it into
Event s inaet gpecific format (definedinet/i ncl ude/ et. hrl). The Vi ewer interrogates the Col | ect or
and displays an interactive representation of the data.

Y ou might wonder why these aren't just onemodule. The Col | ect or isageneric full-fledged framework that allows
processes to "subscribe” to the Event s that it collects. One Col | ect or can serve several Vi ewer s. The typical
caseisthat you have one Vi ewer that visualizes Event s in oneflavor and another Vi ewer that visualizesthemin
another flavor. If you for example are tracing atext based protocol like HTM. (or Megaco/ H. 248) it would be useful
to be able to display the Event s as plain text as well as the internal representation of the message. The architecture
does aso allow you to implement your own Vi ewer program as long as it complies to the protocol between the
Col I ect or/ Vi ewer protocol. Currently two kinds of Vi ewer s exists. That isthe old GS based one and the new
based onwx W dget s. But if you feel for it you may implement your own Vi ewer , which for example could display
the Event s as ASCII art or whatever you feel useful.

The Vi ewer will by default create aCol | ect or for you. With afew options and some configuration settings you
can start collecting Event s.

TheCol | ect or API doesalso allow you to save the collected Event s to file and later load them in alater session.

1.2.5 The Selector

This is perhaps the most central module in the entirety of the et suite. The Col | ect or needs "filters' to convert
theRaw Trace Dat a into "events' that it can display. Theet _sel ect or module providesthe default Fi | t er
and some API callsto managethe Trace Patt ern. The Sel ect or provides various functions that achieve the
following:

e Convert Raw Trace Dat a into an appropriate Event

« Magicaly noticetracesof theet : t race_ne/ 5 function and make appropriate Event s

4 | Ericsson AB. All Rights Reserved.: Event Tracer (ET)

1.2 Tutorial

e Carefully prevent trandating the Raw Tr ace Dat a twice
e ManageaTrace Pattern

TheTrace Patternisbasicaly atupleof anodul e andadetail | evel (either aninteger or the atom max
for full detail). In most casesthe Trace Pattern {et, max} does suffice. But if you do not want any runtime
dependency of et you can implement your own t r ace_ne/ 5 function in some module and refer to that module
intheTrace Pattern.

The specified module flows from your instantiation of the Vi ewer , to the Col | ect or that it automatically creates,
getsstashed in asthe Tr ace Pat t er n, and eventually goes down into the bowels of the Sel ect or .

The module that you specify gets passed down (eventually) into Sel ect or 's default Fi | t er . The format of the
et:trace_ne/ 5 function cal ishardcoded inthat Fi | t er .

1.2.6 How To Put It Together

The Col | ect or automaticaly registersitself to listen for trace Event s, so al you have to do is enable them.

For those people who want to do general tracing, consult the dbg module on how to trace whatever you're interested
inand let it work its magic. If you just want et : t r ace_ne/ 5 to work, do the following:

* CreateaCol | ector
* CreateaVi ewer (thiscan do step #1 for you)
e Turnon and pare down debugging

Themodule et / exanpl es/ et _trace_denp. erl| achievesthis.
-module(et trace demo).
-export([test/0]).

test() ->
et viewer:start([
{title,"Coffee Order"},
{trace global, true},
{trace pattern,{et,max}},
{max_actors, 10}

1),

%% dbg:p(all,call),

%% dbg:tpl(et, trace me, 5, []),

Drink = {drink,iced _chai_latte},

{size,grande},

{milk,whole},

Flavor = {flavor,vanilla},

et:trace me(99,customer,barristal,place_order, [Drink,Size,Milk, Flavor]),
et:trace me(80,barristal, register,enter order, [Drink,Size,Flavor]),
et:trace me(80, register,barristal,give total, "$5"),

et:trace me(80,barristal,barristal,get cup,[Drink,Sizel]),

et:trace me(80,barristal,barrista2,give cup,[]),

et:trace me(90,barristal, customer, request money,"$5"),

et:trace me(90,customer,barristal,pay money,"$5"),

et:trace me(80,barrista2,barrista2,get chai mix,[]),

et:trace me(80,barrista2,barrista2,add_flavor, [Flavor]),

et:trace me(80,barrista2,barrista2,add milk, [Milk]),

et:trace me(80,barrista2,barrista2,add ice,[]),

et:trace me(80,barrista2,barrista2,swirl,[]),

et:trace me(80,barrista2,customer,give tasty beverage, [Drink,Size]),
ok.

Running through the above, the most important points are:
* Turnon global tracing

Ericsson AB. All Rights Reserved.: Event Tracer (ET) | 5

1.2 Tutorial

e SetaTrace Pattern
e Téell dbg to trace function Calls
» Tdl it specificaly totracetheet : t race_ne/ 5 function

Whenyouruntheet _trace_deno: t est () function above, the Vi ewer window will look like this screenshot:

Coffee Order (filter: all)

File Viewer Collector Filters and scaling Help

[Hide From=Tao il level

. 100
[Hide {excluded actors)

| | e

customer barristal register barristaz

place order

enter order

giwve total

get cup

give cup

reguest money

get chai mix

add flawvor

add milk

add ice

swirl

give tasty bewveflage

1(13)

N[E

Figure 2.2: Screenshot of the Viewer window

6 | Ericsson AB. All Rights Reserved.: Event Tracer (ET)

1.3 Description

1.3 Description

1.3.1 Overview

The two major components of theEvent Tracer (ET) tool isagraphical sequence chart viewer (et _vi ewer)
and its backing storage (et _col | ector). One Col | ect or may be used as backing storage for several
simultaneous Vi ewer s where each one may display a different view of the same trace data.

The interface between the Col | ect or and its Vi ewer s is public in order to enable other types of Vi ewer s.
However in the following text we will focus on usage of theet _vi ewer .

The main start function is et _vi ewer: start/ 1. By default it will start both an et _col | ect or and an
et _viewer:

% erl -pa et/examples
Erlang R13BO3 (erts-5.7.4) [64-bit] [smp:4:4] [rq:4] [async-threads:0] [kernel-poll:false]

Eshell V5.7.4 (abort with ~G)
1> {ok, Viewer} = et viewer:start([]).
{ok,<0.40.0>}

A Vi ewer getstrace Event s fromitsCol | ect or by polling it regularly for more Event s to display. Event s
are for example reported to the Col | ect or withet col | ector:report_event/ 6:

2> Collector = et viewer:get collector pid(Viewer).

<0.39.0>

3> et collector:report event(Collector, 60, my shell, mnesia tm, start outer,

3> "Start outer transaction"),

3> et collector:report event(Collector, 40, mnesia tm, my shell, new tid,

3> "New transaction id is 4711"),

3> et collector:report event(Collector, 20, my shell, mnesia locker, try write lock,
3> "Acquire write lock for {my tab, key}"),

3> et collector:report event(Collector, 10, mnesia locker, my shell, granted,

3> "You got the write lock for {my tab, key}"),

3> et collector:report event(Collector, 60, my shell, do commit,

3> "Perform transaction commit"),

3> et collector:report event(Collector, 40, my shell, mnesia locker, release tid,

3> "Release all locks for transaction 4711"),

3> et collector:report event(Collector, 60, my shell, mnesia tm, delete transaction,
3> "End of outer transaction"),

3> et collector:report event(Collector, 20, my shell, end outer,

3> "Transaction returned {atomic, ok}").

{ok, {table handle,<0.39.0>,16402,trace ts,
#Fun<et collector.0.62831470>}}

This actually is a simulation of the process Event s caused by a Vhesi a transaction that writes a record in a local
table:

mnesia:transaction(fun() -> mnesia:write({my tab, key, val}) end).

At this stage when we have a couple of Event s, it is time to show how it looks like in the graphical interface of
et _viewer:

Ericsson AB. All Rights Reserved.: Event Tracer (ET) | 7

1.3 Description

el_wx_wviewer (filter: all)

File Viewer Collector Filters and scaling Help

| Hide From=To il level
[Hide (excluded actors)

my shell mnesia tm mnesia locker =1

start outer J

new tid

try write lock

granted

do commit

release tid

delete transactilon
»

end outer

-

108 A

Figure 3.1: A simulated Mnesia transaction which writes one record

In the sequence chart, the actors (which symbolically has performed the Event) are shown as named vertical bars.
The order of the actors may be altered by dragging (hold mouse button 1 pressed during the operation) the name tag
of an actor and drop it elsewhere;

8 | Ericsson AB. All Rights Reserved.: Event Tracer (ET)

1.3 Description

el_wx_wviewer (filter: all)

File Viewer Collector Filters and scaling Help

| Hide From=To il level
[Hide (excluded actors)

my shell mnesia locker mnesia tm 1

start outer J

new tid

try write lock

™

granted

do commit

release tid

™

delete transactilon

end outer

1(8)

Figure 3.2: Two actors has switched places

An Event may be an action performed by one single actor (blue text label) or it may involve two actors and is then
depicted as an arrow directed from one actor to another (red text label). Details of an Event can be shown by clicking
(press and rel ease the mouse button 1) on the event label text or onthe arrow. When doing that aCont ent s Vi ewer
window pops up. It may look like this:

Ericsson AB. All Rights Reserved.: Event Tracer (ET) | 9

1.3 Description

- et _wx_contents_wviewer (filter: all] -)X
File Hide Search Filters

DETAIL LEVEL: 20

LABEL: try write lock

FROM: my shell

TO: mnesia locker

PARSED : 2010-02-02T15:23:00.3544398
CONTENTS @

Acguire write lock for [my tab, key]

Figure 3.3: Details of a write lock message

1.3.2 Filters and dictionary

TheEvent Tracer (ET) usesnamed filtersin various contexts. An Event Tracefilterisan Er | ang f un that
takes some trace data as input and returns a possibly modified version of it:

filter(TraceData) -> false | true | {true, NewEvent}

TraceData = Event | erlang trace data()
Event = #event{}
NewEvent = #event{}

The interface of the filter function is the same as the the filter functions for thegood old | i sts: fi |l ter map/ 2.
If the filter returns f al se it means that the trace data should silently be dropped. t r ue means that the trace data
data already is an Event Recor d and that it should be kept asiit is. t r ue means that the Tr aceDat a aready
isan Event Recor d and that it should be kept asitis. {t rue, NewEvent} means that the original trace data
should be replaced with Event . This provides means to get rid of unwanted Event s as well as enabling alternate
views of an Event .

The first filter that the trace data is exposed for isthe Col | ect or Fil t er. When atrace Event is reported
withet collector:report/2 (oret_collector:report_event/5, 6) the first thing that happens, is
that a message is sent to the Col | ect or process to fetch a handle that contains some useful stuff, such as the
Col l ector Filter Fun andanEtstableidentifier. ThentheCol | ector Filter Fun isappliedand if it
returnstrue (or{true, NewEvent}),the Event will be stored in an Etstable. As an optimization, subsequent
calstoet col | ector: report -functions can use the handle directly instead of the Col | ect or Pi d.

All filters (registered ina Col | ect or orinaVi ewer) must be able to handle an Event record asinput. The
Col ector Filter (that isthe filter named al |) is alittle bit special, as its input a'so may be raw Er | ang
Trace Data

The Col | ect or manages a key/value based dictionary, where the filters are stored. Updates of the dictionary is
propagated to all subscribing processes. WhenaVi ewer isstarteditisregistered asasubscriber of dictionary updates.

In each Vi ewer there is only one filter that is active and all trace Event s that the Vi ewer gets from the
Col | ect or will passthru that filter. By writing clever filtersit is possible to customize how the Event s lookslike

10 | Ericsson AB. All Rights Reserved.: Event Tracer (ET)

1.3 Description

in the viewer. The following filter in et / exanpl es/ et _deno. er| replaces the actor names mesi a_t mand
mmesi a_| ocker and leaves everything else in the record asit was:

mgr_actors(E) when is record(E, event) ->
Actor = fun(A) ->

case A of
mnesia tm -> trans_mgr;
mnesia locker -> lock mgr;
_ -> A

end

end,
{true, E#event{from = Actor(E#event.from),
to = Actor(E#event.to),
contents = [{orig from, E#event.from},
{orig to, E#event.to},
{orig contents, E#event.contents}]}}.

If we now add thefilter to the running Col | ect or :
4> Fun = fun(E) -> et demo:mgr_actors(E) end.

#Fun<erl_eval.6.13229925>

5> et _collector:dict_insert(Collector, {filter, mgr_actors}, Fun).
ok

you will see that the Fi | t er menu in all viewers have got a new entry called ngr _act or s. Select it, and a new
Vi ewer window will pop up:

Ericsson AB. All Rights Reserved.: Event Tracer (ET) | 11

1.3 Description

et_wx_wviewer (filter: mgr_actors)

File Wiewer Collector Filters and scaling Help

" Hide From=To il level
v Hide (excluded actors)

my shell trans mgr lock mgr

start outer

new tid

try write lock

granted

do commit r

release tid

delete transactilon

B

end outer

11(8)

Figure 3.4: The same trace data in a different view

In order to seethenitty gritty detailsof an Event youmay click ontheEvent inordertostartaCont ent s Vi ewer
for that Event . Inthe Cont ent s Vi ewer there aso is afilter menu that enables inspection of the Event from
other views than the one selected in the viewer. A click onthenew ti d Event will causeaCont ents Vi ewer
window to pop up, showing the Event inthengr _act or s view:

12 | Ericsson AB. All Rights Reserved.: Event Tracer (ET)

1.3 Description

ef_wx_contents_wiewer (filter: mgr_actors)

File Hide Search Filters

DETAIL LEVEL: 20

LABEL: try write lock

FROM: my_ shell

TO! lock mgr

FARSED: Z201l0-02-02T15:22:47.518214
CONTENTS @

[{orig from,my shell},
{orig_to,mnesia_ locker},
{orig contents,"Acguire write lock for {my tab, kevy}"}]

Z

Figure 3.5: The trace Event in the mgr_actors view

Select theal | entry intheFi | t ers menu and anew Contents Vi ewer w ndow will pop up showing the
same trace Event in the collectors view:

et_wx_contents_wiewer (filter: all)

File Hide Search Filters

DETAIL LEVEL: 20

LAHBEL: try write lock

FROM: my shell

TO!: mnesia locker

PARSED: Z2010-02-02T15:22:47.513214
CONTENTS :

Acguire write lock for [my tab, kevy}

Figure 3.6: The same trace Event in the collectors view

1.3.3 Trace clients

Asyou have seen, it ispossibleto usetheet _col | ect or: report_event/5, 6 functions explicitly. By using
those functions you can write your own trace client that reads trace data from any source stored in any format and

Ericsson AB. All Rights Reserved.: Event Tracer (ET) | 13

1.3 Description

just feedthe Col | ect or withit. You may replacethedefault Col | ect or Fi | t er with afilter that converts new
exciting trace data formats to Event Recor ds or you may convert it to an Event Recor d before you invoke
et _coll ector:report/ 2 andthenrely onthedefault Col | ect or Filter tohandlethe new format.

There are also existing functionsin the API that reads from various sourcesand callset _col | ect or: report/ 2:

* ThetraceEvent s that are hosted by theCol | ect or may bestoredtofileand later beloaded by selectingsave
and | oad entriesinthe Vi ewer s Fi | e menu or viatheet _col | ect or API.

* |t isaso possible to perform live tracing of a running system by making use of the built-in trace support in
the Erlang emulator. These Erlang traces can be directed to files or to ports. See the reference manua for
erlang:trace/ 4,erl ang: trace_pattern/3,dbgandttb for moreinfo.

There are also corresponding trace client types that can read the Erlang trace data format from such files or
ports. Theet _col | ector:start_trace_client/ 3 function makes use of these Erlang trace clients and
redirects the trace datato the Col | ect or .

The default Col | ect or Fi |l t er converts the raw Erlang trace data format into Event Recor ds. If you
want to perform this differently you can of course write your own Col | ect or Fi | t er from scratch. But it
may probably save you some efforts if you first apply the default filter in et _sel ect or: parse_event/ 2
before you apply your own conversions of its output.

1.3.4 Global tracing

Setting up an Erlang tracer on a set of nodes and connecting trace clients to the ports of these tracersis not intuitive.
In order to make thisit easier theEvent Tracer hasanotion of global tracing. When used, theet _col | ect or
process will monitor Erlang nodes and when one connects, an Erlang tracer will automatically be started on the newly
connected node. A corresponding trace client will also be started on the Col | ect or node in order to automatically
forward the trace Event s to the Col | ect or. Set the boolean parameter t r ace_gl obal to true for either
theet col |l ector or et _vi ewer in order to activate the global tracing. There is no restriction on how many
concurrent (anonymous) collectors you can have, but you can only have one global Col | ect or as its name is
registeredin gl obal .

In order to further simplify the tracing, you can make use of theet : t race_ne/ 4, 5 functions. These functions are
intended to be invoked from other applications when there are interesting Event s, in your application that needs to
be highlighted. The functions are extremely light weight asthey do nothing besides returning an atom. These functions
are specifically designed to be traced for. Asthe caller explicitly providesthe valuesfor the Event Recor d fields,
thedefault Col | ect or Fi |l t er isableto automatically provide acustomized Event Recor d without any user
defined filter functions.

In normal operation, the et : trace_ne/ 4, 5 cals are amost for free. When tracing is needed, you can either
activate tracing on these functions explicitly. Or you can combine the usage of t r ace_gl obal with the usage of
trace_pattern. Whenset, thet race_patt er n will automatically be activated on all connected nodes.

Onenicethingwiththet r ace_pat t er n isthat it providesavery simpleway of minimizing the amount of generated
trace data by allowing you to explicitly control the detail level of thetracing. Asyou may have seentheet _vi ewer
haveadlider called " Det ai | Level " that allows you to control the detail level of the trace Event s displayed in
the Vi ewer . On the other hand if you set alow detail level inthet r ace_pat t er n, lots of thetrace datawill never
be generated and thus not sent over the socket to the trace client and stored in the Col | ect or .

1.3.5 Viewer window

Almost all functionality available in the et _vi ewer is aso available via shortcuts. Which key that has the same
effect as selecting a menu entry is shown enclosed in parentheses. For example pressing the key r is equivalent to
selecting the menu entry Vi ewer - >Ref r esh.

File menu:

14 | Ericsson AB. All Rights Reserved.: Event Tracer (ET)

1.3 Description

Clear all events in the Collector -Deetesal Event s storedinthe Col | ect or and notifies
al connected Vi ewer s about this.

Load events to the Collector from fil e - Loadsthe Col | ect or with Event s from afile
and notifies all connected Vi ewer s about this.

Save all events in the Collector to fil e-Savesal Event s storedintheCol | ect or tofile.
Print set up - Enablesediting of printer setting, such as paper and layout.
Print current page - Printsthe events on the current page. The page size is dependent of the selected

paper type.
Print all pages - Printsal events. The page size is dependent of the selected paper type.

Cose this Viewer - Closes this Vi ewer window, but keeps all other Vi ewer s windows and the
Col | ect or process.

Cl ose other Viewers, but this-KeepsthisVi ewer window anditsCol | ect or process, but closes
all other Vi ewer s windowsconnected to the same Col | ect or .

Close all Viewers and the Coll ector -ClosestheCol | ect or andal Vi ewer s connected toit.

Viewer menu:

Fi rst - Scrollst hi s viewer to thefirst Event intheCol | ect or.

Last - Scrollst hi s viewer to thelast Event inthe Col | ect or.

Pr ev - Scrollst hi s viewer one page backwards.

Next - Scrollst hi s viewer one page forward.

Ref resh - Clearst hi s viewer and re-read itsEvent s fromthe Col | ect or .

Up - Scrollsafew Event s backwards.

Down - Scrollsafew Event s forward.

Di splay all actors. - Resetthe settings for hidden and/or highlighted actors.

Collector menu:

Fi rst - Scrollsal | viewerstothefirst Event inthe Col | ect or.

Last - Scrollsal | viewerstothelast Event intheCol | ect or.

Pr ev - Scrollsal | viewers one page backwards.

Next - Scrollsal | viewers one page forward.

Ref resh - Clearsal | viewersand re-read their Event s fromthe Col | ect or .

Filters and scaling menu:

ActiveFilter (=) -Statsanew Vi ewer window with the same active filter and scale as the current one.

ActiveFilter (+) - Startsanew Vi ewer window with the same active filter but alarger scale than the
current one.

ActiveFilter (-) -Startsanew Vi ewer window with the same active filter but a smaller scale than the
current one.

all (0) - Startsanew Vi ewer with the Col | ect or Fil t er asactive filter. It will cause al eventsin
the collector to be viewed.

Anot herFil ter (2) -If morefiltersareinserted into the dictionary, these will turn up here as entriesin the
Fi | t er s menu. Thesecond filter will get the shortcut number 2, the next one number 3 etc. The namesare sorted.

Slider and radio buttons:

H de FroneTo - When true, this means that the Vi ewer will hide al Event s where the from-actor equals
to itsto-actor. These events are sometimes called actions.

Ericsson AB. All Rights Reserved.: Event Tracer (ET) | 15

1.3 Description

e Hide (excluded actors) - When true, this means that the Vi ewer will hide all Event s whose actors
are marked as excluded. Excluded actors are normally enclosed in round brackets when they are displayed inthe

Vi ewer .

e Detail |evel -Thisdider controlstheresolution of theVi ewer . Only Event s withadetail level smal | er
than the selected one (default=100=max) are displayed.

Other features:

« Vertical scroll -Usemousewhed and up/down arrows to scroll little. Use page up/down and home/end
buttons to scroll more.

e Display details of an event - Left mouseclick onthe event label or the arrowand anew Cont ent s
Vi ewer window will pop up, displaying the contents of an Event .

* Highlight actor (toggle) -Left mouseclick ontheactor nametag. The actor namewill be enclosed in
sguare brackets[] . When one or more actors are highlighted, only events related to those actors are displayed.
All others are hidden.

e Exclude actor (toggle) - Right mouse click on the actor name tag. The actor name will be enclosed in
round brackets () . When an actor is excluded, all events related to this actor is hidden. If the checkbox Hi de
(excl uded act ors) ischecked, even the name tags and corresponding vertical line of excluded actors will
be hidden.

« DMbve actor - Left mouse button drag and drop on actor name tag. Move the actor by first clicking on the
actor name, keeping the button pressed while moving the cursor to a new location and release the button where
the actor should be moved to.

- Display all actors -Pressthe'a button. Reset the settings for hidden and/or highlighted actors.

1.3.6 Configuration

The Event Recor ds in the Ets table are ordered by their timestamp. Which timestamp that should be used is
controlled viathe event _or der parameter. Default ist r ace_t s which means the time when the trace data was
generated. event _t s means the time when the trace data was parsed (transformed into an Event Recor d).

1.3.7 Contents viewer window
File menu:

* (ose - Close thiswindow.
¢ Save - Save the contents of thiswindow to file.

Filters menu:

e ActiveFilter -Statanew Contents Vi ewer w ndowwith the same active filter.

e AnotherFilter (2) -If morefiltersareinserted into the dictionary, these will turn up here as entriesin the
Fi | t er s menu. The second filter will be number 2, the next one number 3 etc. The names are sorted.

Hide menu:

e Hide actor in viewer - Known actors are shown as a named vertical barsin the Vi ewer window. By
hiding the actor, its vertical bar will be removed and the Vi ewer will be refreshed.

H di ng the actor isonly useful if the max_act or s threshold has been reached, as it then will imply
that the "hidden" actor will be displayed asif it were" UNKNOWN" . If themax_act or s threshold not have been
reached, the actor will re-appear as avertical bar inthe Vi ewer .

e Show actor in viewer - Thisimpliesthat the actor will be added as a known actor in the Vi ewer with
its own vertical bar.

Search menu:

16 | Ericsson AB. All Rights Reserved.: Event Tracer (ET)

1.4 Advanced examples

e Forward fromthis event - Setthisevent to bethefirst event in the viewer and changeits display modeto
be enter forward search mode. The actor of this event (from, to or both) will be added to the list of selected actors.

e Reverse fromthis event - Setthiseventto bethefirst Event inthe Vi ewer and change its display
mode to be enter reverse search mode. The actor of this Event (from, to or both) will be added to the list of
selected actors. Observe, that the Event s will be shown in reverse order.

e Abort search. Display all -Switchthedisplay mode of the Vi ewer to show all Event s regardless
of any ongoing searches. Abort the searches.

1.4 Advanced examples

1.4.1 A simulated Mnesia transaction

The Erlang code for running the simulated Mhesi a transaction example in the previous chapter is included in the
et/ exanpl es/ et _deno. erl file

sim trans() ->
sim trans([]).

sim_trans(ExtraOptions) ->

Options = [{dict insert, {filter, mgr actors}, fun mgr _actors/1}],

{ok, Viewer} = et viewer:start link(Options ++ ExtraOptions),

Collector = et viewer:get collector pid(Viewer),

et _collector:report_event(Collector, 60, my shell, mnesia tm, start outer,
"Start outer transaction"),

et _collector:report_event(Collector, 40, mnesia tm, my shell, new tid,
"New transaction id is 4711"),

et _collector:report_event(Collector, 20, my shell, mnesia locker, try write lock,
"Acquire write lock for {my tab, key}"),

et collector:report event(Collector, 10, mnesia locker, my shell, granted,
"You got the write lock for {my tab, key}"),

et collector:report event(Collector, 60, my shell, do commit,
"Perform transaction commit"),

et _collector:report_event(Collector, 40, my shell, mnesia locker, release tid,
"Release all locks for transaction 4711"),

et _collector:report_event(Collector, 60, my shell, mnesia tm, delete transaction,
"End of outer transaction"),

et collector:report event(Collector, 20, my shell, end outer,
"Transaction returned {atomic, ok}"),

{collector, Collector}.

mgr_actors(E) when is record(E, event) ->
Actor = fun(A) ->

case A of
mnesia tm -> trans mgr;
mnesia locker -> lock mgr;
B -> A
end
end,

{true, E#event{from = Actor(E#event.from),
to = Actor(E#event.to),
contents = [{orig from, E#event.from},
{orig to, E#event.to},
{orig contents, E#event.contents}]}}.

If you invoketheet denp: si m trans() function, aVi ewer window will pop up and the sequence trace will
be amost the same as if the following Mhesi a transaction would have been run:

mnesia:transaction(fun() -> mnesia:write({my tab, key, val}) end).

Ericsson AB. All Rights Reserved.: Event Tracer (ET) | 17

1.4 Advanced examples

And the viewer window will look like:

Erlang R13B03 (erts-5.7.4) [64-bit] [smp:4:4] [rq:4] [async-threads:0] [kernel-poll:false]

Eshell V5.7.4 (abort with ~G)

1> {ok, Viewer} = et viewer:start([]).

{0k,<0.40.0>;}

2> et _demo:sim trans().

{ok, {table handle,<0.45.0>,24596,trace ts,
#Fun<et collector.0.62831470>}}

el _wx_viewer (filter: all)

File Viewer Collector Filters and scaling Help

| Hide From=To il level
[Hide (excluded actors)

my shell mnesia tm mnesia locker

start outer J

new tid

try write lock

granted

do commit

release tid

delete transactilon
o

end outer

1(8)

Figure 4.1: A simulated Mnesia transaction which writes one record

1.4.2 Some convenient functions used in the Mnesia transaction
example

Thenodul e_as_act or filter convertstheEvent Recor ds sothe module namesbecomesactors and theinvoked
functions becomes labels. If the information about who the caller was it will be displayed as an arrow directed from

18 | Ericsson AB. All Rights Reserved.: Event Tracer (ET)

1.4 Advanced examples

thecaller tothecalee. The[{ message, {caller}}, {return_trace}] optionstodbg:t pl /2 function
will imply the necessary information in the Erlang traces. Here followsthe nodul e_as_act or filter:

module as actor(E) when is record(E, event) ->
case lists:keysearch(mfa, 1, E#event.contents) of
{value, {mfa, {M, F, A}}} ->
case lists:keysearch(pam result, 1, E#event.contents) of
{value, {pam result, {M2, F2, A2}}} ->
{true, E#event{label = F, from = M2, to = M}};
->
{true, E#event{label = F, from = M, to = M}}
end;
->
false
end.

Thepl ai n_process_i nf ofilter doesnot alter theEvent Recor ds. It merely ensuresthat the event not related
to processes are skipped:

plain_process info(E) when is record(E, event) ->
case E#event.label of

send -> true;
send to non_existing process -> true;
'receive’ -> true;
Spawn -> true;
exit -> true;
link -> true;
unlink -> true;
getting linked -> true;
{seq_send, Label} -> true;
{seq_receive, Label} -> true;
{seq_print, Label} -> true;
{drop, N} -> true;

-> false

end.

The pl ai n_process_i nfo_nol i nk filter does not alter the Event Records. It do makes use of the
pl ai n_process_i nf o, but do aso ensure that the process info related to linking and unlinking is skipped:

plain_process info nolink(E) when is record(E, event) ->
(E#event.label /= link) and
(E#event.label /= unlink) and
(E#event.label /= getting linked) and
plain_process _info(E).

In order to simplify the startup of an et _vi ewer process with the filters mentioned above, plus some others (that
also are found in et / exanpl es/ et _deno. er| src/et_collector.erl the et _deno: start/ 0, 1 functions can
be used:

start() ->
start([]).

start(ExtraOptions) ->
Options = [{trace global, true},
{parent pid, undefined},
{max_actors, infinity},
{max_events, 1000},
{active filter, module as actor}],
et viewer:start link(filters() ++ Options ++ ExtraOptions).

A simple one-liner starts the tool:

Ericsson AB. All Rights Reserved.: Event Tracer (ET) | 19

1.4 Advanced examples

erl -pa ../examples -s et demo

Thefilters are included by the following parameters:

filters() ->
[{dict insert, {filter, module as actor},
fun module as actor/1},
{dict insert, {filter, plain_process info},
fun plain _process info/1},
{dict insert, {filter, plain process info _nolink},
fun plain _process info nolink/1},
{dict insert, {filter, named process info},
fun named process info/1},
{dict insert, {filter, named process info nolink},
fun named process info nolink/1},
{dict insert, {filter, node process info},
fun node process info/1},
{dict insert, {filter, node process info nolink},
fun node process info nolink/1},
{dict insert, {filter, application_as actor},
fun application as actor/1}

1.4.3 Erlang trace of a real Mnesia transaction

Thefollowing piece of codeet _denp: trace_mmesi a/ 0 activates call tracing of both local and external function
callsfor al modulesin the Mnesi a application. The call traces are configured cover all processes (both existing and
those that are spawned in the future) and include timestampsfor trace data. It do also activate tracing of processrelated
eventsfor Mhesi a'sstatic processes plusthe calling process (that isyour shell). Please, observethat thewher ei s/ 1
cal in the following code requires that both the traced Mhesi a application and the et _vi ewer isrunning on the
same node;

trace mnesia() ->
Modules = mnesia:ms(),
Spec = [{message, {caller}}, {return trace}l],
Flags = [send, 'receive', procs, timestamp],
dbg:p(all, [call, timestamp]),
[dbg:tpl(M, [{' ', [1, Spec}]) || M <- Modules],
LocallyRunningServers = [M || M <- Modules, whereis(M) /= undefined],
[dbg:p(whereis(RS), Flags) || RS <- LocallyRunningServers],
dbg:p(self(), Flags),
LocallyRunningServers.

Theet deno: |ive_trans/ 0 function starts the global Col | ect or, startsa Vi ewer , starts Vhesi a, creates
alocal table, activates tracing (as described above) and registers the shell processis as 'my_shell' for clarity. Finaly
asimple Mhesi a transaction that writes asingle record is run:;

20 | Ericsson AB. All Rights Reserved.: Event Tracer (ET)

1.4 Advanced examples

live trans() ->
live trans([]).

live trans(ExtraOptions) ->
Options = [{title, "Mnesia tracer"},
{hide actions, true},
{active filter, named process info nolink}],
et demo:start(Options ++ ExtraOptions),
mnesia:start(),
mnesia:create table(my tab, [{ram copies, [node()1}]),
et demo:trace mnesia(),
register(my shell, self()),

mnesia:transaction(fun() -> mnesia:write({my tab, key, val}) end).

Now weruntheet deno: |ive_trans/ 0 function:

erl -pa ../examples
Erlang R13BO3 (erts-5.7.4) [64-bit] [smp:4:4] [rq:4]
[async-threads:0] [kernel-poll:false]

Eshell V5.7.4 (abort with "G)
1> et demo:live trans().
{atomic, ok}

Please, explore the different filtersin order to see how the traced transaction can be seen from different point of views:

Ericsson AB. All Rights Reserved.: Event Tracer (ET) | 21

1.4 Advanced examples

Mnesia tracer (filter: named _process_info_nolink) x

File Viewer Collector Filters and scaling Help

v Hide From=To Detail level
) 100
Hide (excluded actors) |
i
my shell mnesia tm mnesia locker
start outer J
new tid
ot
try write lock
»
granted
ot
release tid
»
delete transactjon
-
send
-
1 {260)

Figure 4.2: A real Mnesia transaction which writes one record

1.4.4 Erlang trace of Megaco startup

TheEvent Tracer (ET) tool wasinitialy written in order to demonstrate how messages where sent over the
Megaco protocol. Thiswere back in the old days before the standard bodiesof | ETF and | TU had approved Megaco
(also called H. 248) as an international standard.

In the Megaco application of Erlang/OTP, the code is carefully instrumented with callsto et : t race_ne/ 5. For
each call adetail level isgiven in order to enable dynamic control of the trace level in asimple manner.

The megaco_fil t er module implements a customized filter for Megaco messages. It does also make use of
trace_gl obal combined with usage of thet race_pattern:

22 | Ericsson AB. All Rights Reserved.: Event Tracer (ET)

1.4 Advanced examples

-module(megaco filter).
-export([start/0]).

start() ->
Options =
[{event order, event ts},
{scale, 3},

{max_actors, infinity},
{trace pattern, {megaco, max}},
{trace global, true},
{dict _insert, {filter, megaco filter}, fun filter/1},
{active filter, megaco filter},
{title, "Megaco tracer - Erlang/0TP"}],
et viewer:start(Options).

First we start an Erlang node with aglobal Col | ect or anditsVi ewer .

erl -sname observer
Erlang R13BO3 (erts-5.7.4) [64-bit] [smp:4:4] [rq:4] [async-threads:0] [kernel-poll:false]

Eshell V5.7.4 (abort with ~G)
(observer@falco)1> megaco filter:start().
{0k, <0.48.0>}

Secondly we start another Erlang node which we connect the observer node, before we start the application that we
want to trace. In this case we start a Media Gateway Controller that listens for both TCP and UDP on the text and
binary ports for Megaco:

erl -sname mgc -pa ../../megaco/examples/simple
Erlang R13BO3 (erts-5.7.4) [64-bit] [smp:4:4] [rq:4] [async-threads:0] [kernel-poll:false]

Eshell V5.7.4 (abort with "G)
(mgc@falco)1> net:ping(observer@falco).
pong
(mgc@falco)2> megaco:start().
ok
(mgc@falco)3> megaco simple mgc:start().
{ok, [{ok, 2944,
{megaco_receive handle, {deviceName, "controller"},
megaco_pretty text encoder,[],megaco tcp,dynamic}},
{ok,2944,
{megaco_receive handle, {deviceName, "controller"},
megaco_pretty text encoder,[],megaco udp,dynamic}},
{ok,2945,
{megaco_receive handle, {deviceName, "controller"},
megaco_binary encoder,[],megaco _tcp,dynamic}},
{ok,2945,
{megaco_receive handle, {deviceName, "controller"},
megaco_binary encoder, [],megaco _udp,dynamic}}]}

And finally we start an Erlang node for the Media Gateways and connect to the observer node. Each Media Gateway
connectsto the controller and sends an initial Service Change message. The controller accepts the gateways and sends
areply to each one using the same transport mechanism and message encoding according to the preference of each
gateway. That isall combinations of TCP/IP transport, UDP/IP transport, text encoding and ASN.1 BER encoding:

Ericsson AB. All Rights Reserved.: Event Tracer (ET) | 23

1.4 Advanced examples

Erlang R13BO3 (erts-5.7.4) [64-bit] [smp:4:4] [rq:4] [async-threads:0] [kernel-poll:false]

Eshell V5.7.4 (abort with "G)
(mg@falco)1> net:ping(observer@falco).
pong
(mg@falco)2> megaco _simple mg:start().
[{{deviceName, "gateway tt"},
{error,{start user,megaco _not started}}},
{{deviceName, "gateway tb"},
{error,{start user,megaco _not started}}},
{{deviceName, "gateway ut"},
{error,{start user,megaco _not started}}},
{{deviceName, "gateway ub"},
{error,{start user,megaco _not started}}}]
(mg@falco)3> megaco:start().
ok
(mg@falco)4> megaco simple mg:start().
[{{deviceName, "gateway tt"},
{11
{ok, [{'ActionReply"',0,asnl NOVALUE,asnl NOVALUE,
[{serviceChangeReply,
{'ServiceChangeReply"',
[{megaco term id, false,["root"]}],
{serviceChangeResParms,
{'ServiceChangeResParm',
{deviceName, "controller"},
asnl NOVALUE,asnl NOVALUE,asnl NOVALUE,
asnl NOVALUE}}}}1}13}},
{{deviceName, "gateway tb"},
{11
{ok, [{'ActionReply"',0,asnl NOVALUE,asnl NOVALUE,
[{serviceChangeReply,
{'ServiceChangeReply"',
[{megaco term id, false,["root"]}],
{serviceChangeResParms,
{'ServiceChangeResParm',
{deviceName, "controller"},
asnl NOVALUE,asnl NOVALUE,asnl NOVALUE,
asnl NOVALUE}}}}1}13}},
{{deviceName, "gateway ut"},
{11
{ok, [{'ActionReply"',0,asnl NOVALUE,asnl NOVALUE,
[{serviceChangeReply,
{'ServiceChangeReply"',
[{megaco term id, false,["root"]}],
{serviceChangeResParms,
{'ServiceChangeResParm',
{deviceName, "controller"},
asnl NOVALUE,asnl NOVALUE,asnl NOVALUE,
asnl NOVALUE}}}}1}13}},
{{deviceName, "gateway ub"},
{11
{ok, [{"ActionReply"',0,asnl NOVALUE,asnl NOVALUE,
[{serviceChangeReply,
{'ServiceChangeReply"',
[{megaco _term id, false,["root"]}],
{serviceChangeResParms,
{'ServiceChangeResParm',
{deviceName, "controller"},
asnl NOVALUE,asnl NOVALUE,
asnl NOVALUE,...}}}}1}133}}1]

The Megaco adopted viewer looks like this, when we have clicked on the [gateway_tt] actor name in order to only
display the events regarding that actor:

24 | Ericsson AB. All Rights Reserved.: Event Tracer (ET)

1.4 Advanced examples

File Viewer

Collector

egace trace ang/oOTP z EQaco

Filters and scaling Help

|| Hide From=To
[v Hide (excluded actors)

il level

[gateway_tt]

tcp connect

top connection han

connect handler st

callback: connect

gateway tt@user

preliminary mid

dler starting

arted

return: connect

call or cast - optf

ions prepared #1

encode trans reque

=t(s) msg #1

call or cast - req

uest encoded #1

send reqguest - mul

ti transaction #1

send 146 bytes #1

check message auth

controller

handle reguest #1

receive 127 bytes

receive message

callback: connect

return: connect

check message auth

0(138)

W[

Figure 4.3: The viewer adopted for Megaco

Ericsson AB. All Rights Reserved.: Event Tracer (ET) | 25

1.4 Advanced examples

A pretty printed Megaco message looks like this:

o 2gaco - O] X
File Hide Search Filters
DETAIL LEVEL: &0
LABEL: send reguest - multi transaction #1
FROM: gateway_ tt
TO: preliminary mid
EVENT_ TS5: 2010-02-02T10:59:156. 944503
TREACE_TS: Z010-02-02T10:59:56.244381
CONTENTS:
Transaction = 1 |
Context = - |
ServiceChange = root |

Services |
Method = Restart,

REeason = "201"

Figure 4.4: A textual Megaco message

And the corresponding internal form for the same Megac o message looks like this:

26 | Ericsson AB. All Rights Reserved.: Event Tracer (ET)

1.4 Advanced examples

File Hide Search Filters

DETAIL LEVEL: &0

LABEL: send_reguest - multi transaction
ACTOR: megaco

EVENT_ TS: 2010-02-02T10:59:156. 944503
TRACE_TS: Z010-02-02T10:59:156. 944381
CONTENTS:

[{line,megaco messenger, 3651},
{cnnn_ﬂata.
{megaco_conn_handle, {deviceName, "gateway tt"},preliminary mid},
1,infinity,
{megaco incr timer,7000,2,0,infinitv},
gooon, false, false,10,false, 10,2048, 0, undefined, 30000, infinity, infinity,
F000O0, <2883 .68.0=,
{apply at exit,#Ref<2833.0.0.30>},
megaco_top,#Port<9883.941> ,megaco_pretty_text encoder,[].,1l,asnl_ NOVALUE,
megaco_simple mg, [].undefined,<2883.70.0>,false,true,false,5000,false,
false, false,false, 10000, none, 5000, infinity,plainy}.
[{transactionReguest,
{'TransactionReguest',1,
[{'AEtiDnHEQUESt'4DiaSDl_NGVAhUE.aBnl_NGVﬂLUE4
[{'CommandReguest’',
|zervicelChangeReq,
['S8erviceChangeReguest ',
[{megaco_ term id,false, ["root"]}].
{'ServiceChangeParm',restart,asnl NOVALUE,
asnl_ MNOVALUE, asnl_ NOVALUE,
["=201"],
asnl MNOVALUE, asnl MOVALUE, asnl HNOVALUE,
asnl_ NOVALUE}}},
asnl MOVALUE,asnl NOVALUE}]3}1}311]

Figure 4.5: The internal form of a Megaco message

Ericsson AB. All Rights Reserved.: Event Tracer (ET) | 27

1.4 Advanced examples

2 Reference Manual

The Event Tracer (ET) uses the built-in trace mechanism in Erlang and provides tools for collection and graphical
viewing of trace data.

28 | Ericsson AB. All Rights Reserved.: Event Tracer (ET)

et

et

Erlang module

Interface module for the Event Trace (ET) application

Exports

trace me(DetaillLevel, From, To, Label, Contents) -> hopefully traced
Types:

Detail Level = integer(X) when X =< 0, X >= 100

From = actor ()

To = actor()

Label = atom() | string() | term))

Contents = [{Key, Value}] | term)

actor() =term)
A function that is intended to be traced.

This function is intended to be invoked at strategic places in user applications in order to enable simplified tracing.
The functions are extremely light weight as they do nothing besides returning an atom. The functions are designed for
being traced. The global tracing mechanisminet _col | ect or defaultsto set its trace pattern to these functions.

Thelabel isintended to provide abrief summary of the event. It is preferred to use an atom but a string would also do.

The contents can be any term but in order to simplify post processing of the traced events, aplain list of {Key, Value}
tuplesis preferred.

Some events, such as messages, are directed from some actor to another. Other events (termed actions) may be
undirected and only have one actor.

trace me(DetaillLevel, FromTo, Label, Contents) -> hopefully traced

Invokeset : t race_ne/ 5 with both Fr omand To set to Fr onilo.

phone home(DetaillLevel, FromTo, Label, Contents) -> hopefully traced
phone home(DetaillLevel, From, To, Label, Contents) -> hopefully traced

These functions sends a signal to the outer space and the caller hopes that someone is listening. In other words, they
invokeet : trace_ne/ 4 andet:trace_ne/ 5 respectively.

report event(DetaillLevel, FromTo, Label, Contents) -> hopefully traced
report event(DetailLevel, From, To, Label, Contents) -> hopefully traced

Deprecated functions which for the time being are kept for backwards compatibility. Invokeset : t race_ne/ 4 and
et:trace_ne/ 5 respectively.

Ericsson AB. All Rights Reserved.: Event Tracer (ET) | 29

et _collector

et _collector

Erlang module

Interface module for the Event Trace (ET) application

Exports

start_link(Options) -> {ok, CollectorPid} | {error, Reason}

Types:
Options = [option()]
option() = {parent_pid, pid()} | {event_order, event_order()}
{dict_insert, {filter, collector}, collector fun()} | {dict_insert,
{filter, event filter_nane()}, event filter fun()} | {dict_insert,
{subscriber, pid()}, dict_val()} | {dict_insert, dict_key(), dict_val()}
| {dict_delete, dict_key()} | {trace client, trace client()}
{trace_gl obal, boolean()} | {trace_pattern, trace_pattern()}
{trace_port, integer()} | {trace_max_queue, integer()}

event _order() = trace_ts | event_ts

trace_pattern() = {report_nodul e(), extended _dbg_match_spec()} | undefined
report _nodul e() = atom() | undefined

ext ended_dbg_mat ch_spec() = detail _level () | dbg_match_spec()

detail _level () = mn | max | integer(X) when X =< 0, X >= 100
trace_client() = {event _file, file_nane()} | {dbg_trace_type(),

dbg trace_paraneters()}

file_name() = string()

collector _fun() = trace filter_fun() | event filter_fun()
trace_filter_fun() = fun(TraceData) -> false | true | {true, NewEvent}
event _filter_fun() = fun(Event) -> false | true | {true, NewEvent}
event _filter_name() = atom)

TraceData = erlang_trace_data()

Event = NewkEvent = record(event)

dict_key() = term)

dict_val () = term)

Col lectorPid = pid()

Reason = term()

Start a collector process.

The collector collects trace events and keeps them ordered by their timestamp. The timestamp may either reflect the
time when the actual trace data was generated (trace ts) or when the trace data was transformed into an event record
(event_ts). If the time stamp is missing in the trace data (missing timestamp option to erlang:trace/4) the trace tswill
be set to the event _ts.

Events are reported to the collector directly with the report function or indirectly via one or more trace clients. All
reported events are first filtered thru the collector filter before they are stored by the collector. By replacing the default
collector filter with a customized dito it is possible to allow any trace data as input. The collector filter is a dictionary

30 | Ericsson AB. All Rights Reserved.: Event Tracer (ET)

et _collector

entry with the predefined key {filter, collector} and the value is a fun of arity 1. See et_selector:make_event/1 for
interface details, such as which erlang:trace/1 tuples that are accepted.

The collector hasabuilt-in dictionary service. Any term may be stored asvalue in the dictionary and bound to aunique
key. When new values are inserted with an existing key, the new values will overwrite the existing ones. Processes
may subscribe on dictionary updates by using { subscriber, pid()} as dictionary key. All dictionary updates will be
propagated to the subscriber processes matching the pattern {{subscriber, '_'}, ' '} where the first ' ' is interpreted
asapid().

In global trace mode, the collector will automatically start tracing on all connected Erlang nodes. When a node
connects, a port tracer will be started on that node and a corresponding trace client on the collector node.

Default values:

* parent_pid - self().

e event_order - trace ts.

+ trace global - false.

+ trace pattern - undefined.

e trace port - 4711.

* trace_max_queue - 50.

stop(CollectorPid) -> ok
Types:

Col l ectorPid = pid()
Stop a collector process.

save event file(CollectorPid, FileName, Options) -> ok | {error, Reason}
Types.
Col lectorPid = pid()
Fil eName = string()
Options = [option()]
Reason = term()
option() = event_option() | file_option() | table_option()
event _option() = existing
file_option() = wite | append
table option() = keep | clear
Save the eventsto afile.

By default the currently stored events (existing) are written to a brand new file (write) and the events are kept (keep)
after they have been written to thefile.

Instead of keeping the events after writing them to file, it is possible to remove all stored events after they have
successfully written to file (clear).

The options defaults to existing, write and keep.

Ericsson AB. All Rights Reserved.: Event Tracer (ET) | 31

et _collector

report(Handle, TraceOrEvent) -> {ok, Continuation} | exit(Reason)
report event(Handle, DetaillLevel, FromTo, Label, Contents) -> {ok,
Continuation} | exit(Reason)

report event(Handle, DetaillLevel, From, To, Label, Contents) -> {ok,
Continuation} | exit(Reason)

Types:
Handle = Initial | Continuation
Initial = collector_pid()

collector_pid() = pid()

Conti nuation = record(tabl e _handl e)
TraceOrEvent = record(event) | dbg_ trace_tuple() | end_of trace
Reason = term()

Detail Level = integer(X) when X =< 0, X >= 100
From = actor ()

To = actor()

Fronifo = actor()

Label = aton() | string() | term)

Contents = [{Key, Value}] | term))

actor() =term)

Report an event to the collector.

All eventsarefiltered thru the collector filter, which optionally may transform or discard the event. Thefirst call should
use the pid of the collector process as report handle, while subsequent calls should use the table handle.

make key(Type, Stuff) -> Key

Types:
Type = record(table_handle) | trace ts | event _ts
Stuff = record(event) | Key
Key = record(event_ts) | record(trace_ts)

Make a key out of an event record or an old key.

get global pid() -> CollectorPid | exit(Reason)
Types:

CollectorPid = pid()

Reason = term()

Return athe identity of the globally registered collector if thereisany.

change pattern(CollectorPid, RawPattern) -> {old pattern, TracePattern}
Types:
Col l ectorPid = pid()
RawPattern = {report_nodul e(), extended_dbg match_spec()}
report _nodul e() = atom() | undefined
ext ended_dbg_mat ch_spec() = detail _level () | dbg_match_spec()
RawPattern = detail _|evel ()

32 | Ericsson AB. All Rights Reserved.: Event Tracer (ET)

et _collector

detail _level () = mn | max | integer(X) when X =< 0, X >= 100
TracePattern = {report_nodul e(), dbg _match_spec_natch_spec()}

Change active trace pattern globally on al trace nodes.

dict insert(CollectorPid, {filter, collector}, FilterFun) -> ok
dict insert(CollectorPid, {subscriber, SubscriberPid}, Void) -> ok
dict insert(CollectorPid, Key, Val) -> ok
Types:

Col l ectorPid = pid()

FilterFun = filter_fun()

SubscriberPid = pid()

Void = term)

Key = term)

Val = term()
Insert adictionary entry and send a{et, {dict_insert, Key, Val}} tupleto all registered subscribers.

If the entry isanew subscriber, it will imply that the new subscriber processfirst will get one message for each already
stored dictionary entry, before it and al old subscribers will get this particular entry. The collector process links to
and then supervises the subscriber process. If the subscriber processdiesit will imply that it gets unregistered as with
anormal dict_delete/2.

dict lookup(CollectorPid, Key) -> [Val]
Types:

Col lectorPid = pid()

FilterFun = filter_fun()

Col lectorPid = pid()

Key = term))

Val = term()

Lookup adictionary entry and return zero or one value.

dict delete(CollectorPid, Key) -> ok
Types:
Col l ectorPid = pid()
SubscriberPid = pid()
Key = {subscriber, SubscriberPid} | term)
Delete adictionary entry and send a{ et, { dict_delete, Key}} tuple to all registered subscribers.

If the deleted entry isaregistered subscriber, it will imply that the subscriber process getsis unregistered as subscriber
aswell asit getsit final message.

dict match(CollectorPid, Pattern) -> [Match]

Types:
Col l ectorPid = pid()
Pattern ="' _' | {key_pattern(), val_pattern()}

key pattern() = ets_match_object pattern()

Ericsson AB. All Rights Reserved.: Event Tracer (ET) | 33

et _collector

val _pattern() = ets_nmatch_object _pattern()
Mat ch = {key(), val ()}

key() = term()

val () = term))

Match some dictionary entries

multicast(CollectorPid, Msg) -> ok
Types:
Col | ectorPid
Col l ectorPid
Msg = term()
Sends a message to al registered subscribers.

pid()
pid()

start _trace client(CollectorPid, Type, Parameters) -> file loaded |
{trace client pid, pid()} | exit(Reason)
Types:

Type = dbg_trace_client_type()

Paraneters = dbg_trace_client _paraneters()

Pid = dbg_trace_client_pid()

Load raw Erlang trace from afile, port or process.

iterate(Handle, Prev, Limit) -> NewAcc
Short for iterate(Handle, Prev, Limit, undefined, Prev) -> NewAcc

iterate(Handle, Prev, Limit, Fun, Acc) -> NewAcc

Types:
Handl e = collector_pid() | table_handle()
Prev = first | last | event_key()

Limt = done() | forward() | backward()

collector_pid() = pid()

tabl e_handl e() = record(table_handl e)

event _key() = record(event) | record(event _ts) | record(trace_ts)
done() =0

forward() = infinity | integer(X) where X > 0

backward() = '-infinity' | integer(X) where X < 0

Fun = fun(Event, Acc) -> NewAcc

Acc = NewAcc = term))

Iterate over the currently stored events.

Iterates over the currently stored eventsand applies afunction for each event. Theiteration may be performed forwards
or backwards and may be limited to a maximum number of events (abs(Limit)).

clear table(Handle) -> ok
Types:

34 | Ericsson AB. All Rights Reserved.: Event Tracer (ET)

et _collector

Handl e = collector_pid() | table_handle()

collector_pid() = pid()

tabl e_handl e() = record(tabl e_handle)
Clear the event table.

Ericsson AB. All Rights Reserved.: Event Tracer (ET) | 35

et selector

et _selector

Erlang module

Exports

make pattern(RawPattern) -> TracePattern
Types:
RawPattern = detail _|evel ()
TracePattern = erlang_trace_pattern_match_spec()
detail level() = mn | max | integer(X) when X >= 0, X =< 100
Makes a trace pattern suitable to feed change_pattern/1
Min detail level deactivatestracing of callstoet : trace_ne/ 4,5
Max detail level activatestracing of all callstoet:trace _nme/ 4,5

integer(X) detail level activatestracing of all callstoet : t race_ne/ 4, 5 whose detail level argument islesser than
X.

Seeasoerl ang: trace_pattern/2for moreinfoaboutitsmat ch_spec()

change pattern(Pattern) -> ok

Types:
Pattern = detail _level () | enpty_match_spec() |
erlang_trace_pattern_match_spec()
detail _level() = mn | max | integer(X) when X >= 0, X =< 100
enpty_match_spec() =[]

Activates/deactivates tracing by changing the current trace pattern.

m n detail level deactivatestracing of calstoet :trace_ne/ 4,5

max detail level activatestracing of all callstoet:trace_ne/ 4,5

i nt eger (X) detail level activatestracing of al callstoet : t race_ne/ 4, 5 whose detail level argument is lesser
than X.

An empty match spec deactivatestracing of callstoet : trace_ne/ 4,5

Other match specs activates tracing of «cdls to et:trace _nme/4,5 accordingly with
erlang:trace_pattern/ 2.

parse _event(Mod, ValidTraceData) -> false | true | {true, Event}
Types.

Mod = nmodul e_nane() | undefined

nodul e_nanme() = atom()

Val i dTraceData = erlang_trace_data() | record(event)

erlang trace _data() = {trace, Pid, Label, Info} | {trace, Pid, Label,
Info, Extra} | {trace_ts, Pid, Label, Info, ReportedTS} | {trace_ts, Pid,
Label, Info, Extra, ReportedTS} | {seq_trace, Label, Info} | {seq_trace,
Label, Info, ReportedTS} | {drop, Number O Droppedltens}

36 | Ericsson AB. All Rights Reserved.: Event Tracer (ET)

et selector

Transforms trace data and makes an event record out of it.
Seeerl ang: t race/ 3 for moreinfo about the semantics of the trace data.
An event record consists of the following fields:
detail_level
Noise has a high level as opposed to essentials.
trace ts
Time when the trace was generated. Same as event_tsif omitted in trace data.
event_ts
Time when the event record was created.
from
From actor, such as sender of a message.
to
To actor, such asreceiver of message.
label
Label intended to provide a brief event summary.
contents
All nitty gritty details of the event.
Seeet:trace_ne/4andet:trace_ne/5 for details.
Returns:
{true, Event}
where Event is an #event{} record representing the trace data
true
means that the trace data already is an event record and that it isvalid asit is. No transformation is needed.
false
means that the trace data is uninteresting and should be dropped

Ericsson AB. All Rights Reserved.: Event Tracer (ET) | 37

et viewer

et viewer

Erlang module

Exports

file(FileName) -> {ok, ViewerPid} | {error, Reason}
Types:
Fil eNanme() = string()
ViewerPid = pid()
Reason = term()
Start a new event viewer and a corresponding collector and load them with trace events from atracefile.

start() -> ok
Simplified start of a sequence chart viewer with global tracing activated.
Convenient to be used from the command line (erl -s et_viewer).

start(Options) -> ok
Start of a sequence chart viewer without linking to the parent process.

start link(Options) -> {ok, ViewerPid} | {error, Reason}

Types:
Options = [option() | collector_option()]
option() = {parent_pid, extended_pid()} | {title, term()} | {detail _Ievel
detail _level ()} | {is_suspended, boolean()} | {scale, integer()}
| {width, integer()} | {height, integer()} | {collector_pid,
extended_pid()} | {event_order, event_order()} | {active_filter
aton()} | {max_actors, extended_integer()} | {trace_pattern
et _collector_trace_pattern()} | {trace_port, et_collector_trace_port()}
| {trace_global, et_collector_trace_global ()} | {trace_client,
et _collector_trace_client()} | {dict_insert, {filter, filter_name()},
event _filter_fun()} | {dict_insert, et_collector_dict_key(),
et_collector_dict_val ()} | {dict_delete, {filter, filter_nane()}}
| {dict_delete, et_collector_dict_key()} | {actors, actors()}
{first_event, first_key()} | {hide_unknown, boolean()} | {hide_actions,
bool ean()} | {display_node, display_node()}
extended_pid() = pid() | undefined
detail _level() = mn | max | integer(X) when X >=0, X =< 100
event _order() = trace_ts | event_ts
extended_integer() = integer() | infinity
di spl ay_node() = all | {search_actors, direction(), first_key(), actors()}
direction() = forward | reverse

first_key() = event_key()
actors() = [term()]

38 | Ericsson AB. All Rights Reserved.: Event Tracer (ET)

filter_name() = aton()
filter_fun() = fun(BEvent) -> false | true | {true, NewEvent}
Event = NewkEvent = record(event)
ViewerPid = pid()
Reason = term()
Start a sequence chart viewer for trace events (messages/actions)

A filter_fun() takes an event record as sole argument and returns false | true | { true, NewEvent} .

If the collector _pid is undefined a new et _collector will be started with the following
parameter settings: parent _pid, event _order, trace_global, trace_pattern, trace_port,
trace_nax_queue,trace_client,dict_insert anddi ct _del ete. Thenewet vi ewer will register

itself asanet _col | ect or subscriber.
Default values:

e parent_pid - self().

o title-"et_viewer".

e detail_level - max.

e is suspended - false.

« scde-2.
e width - 800.
* height - 600.

e collector_pid - undefined.
e event order - trace ts.

e active filter - collector.

e max_actors- 5.

e actors- ["UNKNOWN"].
o first_event - first.

* hide_unknown - false.

* hide actions- false.

o display_mode - al.

get collector pid(ViewerPid) -> CollectorPid
Types:

ViewerPid = pid()

CollectorPid = pid()
Returns the identifier of the collector process.

stop(ViewerPid) -> ok
Types:
ViewerPid = pid()

Stops a viewer process.

Ericsson AB. All Rights Reserved.: Event Tracer (ET) | 39

	Event Tracer (ET)
	Event Tracer (ET) Users Guide
	Introduction
	Scope and Purpose
	Prerequisites
	About This Manual
	Where to Find More Information

	Tutorial
	Visualizing Message Sequence Charts
	Four Modules
	The Event Tracer Interface
	The Collector and Viewer
	The Selector
	How To Put It Together

	Description
	Overview
	Filters and dictionary
	Trace clients
	Global tracing
	Viewer window
	Configuration
	Contents viewer window

	Advanced examples
	A simulated Mnesia transaction
	Some convenient functions used in the Mnesia transaction
 example
	Erlang trace of a real Mnesia transaction
	Erlang trace of Megaco startup

	Reference Manual
	et
	trace_me/5
	trace_me/4
	phone_home/4
	phone_home/5
	report_event/4
	report_event/5

	et_collector
	start_link/1
	stop/1
	save_event_file/3
	report/2
	report_event/5
	report_event/6
	make_key/2
	get_global_pid/0
	change_pattern/2
	dict_insert/3
	dict_insert/3
	dict_insert/3
	dict_lookup/2
	dict_delete/2
	dict_match/2
	multicast/2
	start_trace_client/3
	iterate/3
	iterate/5
	clear_table/1

	et_selector
	make_pattern/1
	change_pattern/1
	parse_event/2

	et_viewer
	file/1
	start/0
	start/1
	start_link/1
	get_collector_pid/1
	stop/1

