ERLANG

Mnesia

Copyright © 1997-2020 Ericsson AB. All Rights Reserved.
Mnesia 4.18

September 22, 2020



Copyright © 1997-2020 Ericsson AB. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance
with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless
required by applicable law or agreed to in writing, software distributed under the License is distributed on an
"AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See

the License for the specific language governing permissions and limitations under the License. Ericsson AB. All
Rights Reserved..

September 22, 2020



1.1 Introduction

1 Mnesia User's Guide

The Mnesia application is a distributed Database Management System (DBMYS), appropriate for telecommunications
applications and other Erlang applications, which require continuous operation and exhibit soft real-time properties.

1.1 Introduction
The Mnesia application provides a heavy duty real-time distributed database.

1.1.1 Scope

This User's Guide describes how to build Mnesia database applications, and how to integrate and use the Mnesia
database management system with OTP. Programming constructs are described, and numerous programming examples
areincluded to illustrate the use of Mnesia

This User's Guide is organized as follows:

e Mnesiaprovides an introduction to Mnesia.

»  Getting Started introduces M nesia with an example database. Examples are included how to start an Erlang
session, specify a Mnesia database directory, initialize a database schema, start Mnesia, and create tables. Initial
prototyping of record definitionsis also discussed.

*  Build aMnesia Database more formally describes the steps introduced in the previous section, namely the
Mnesia functions that define a database schema, start Mnesia, and create the required tables.

e Transactions and Other Access Contexts describes the transactions properties that make Mnesiainto afault
tolerant, real-time distributed database management system. This section also describes the concept of locking
to ensure consistency in tables, and "dirty operations”, or short cuts, which bypass the transaction system to
improve speed and reduce overheads.

* Miscellaneous Mnesia Features describes features that enable the construction of more complex database
applications. These features include indexing, checkpoints, distribution and fault tolerance, disc-less nodes,
replication manipulation, local content tables, concurrency, and object-based programming in Mnesia.

*  Mnesia System Information describes the files contained in the Mnesia database directory, database
configuration data, core and table dumps, as well as the important subject of backup, fall-back, and disaster
recovery principles.

e Combine Mnesiawith SNMP is a short section that outlines Mnesiaintegrated with SNMP.

*  Appendix A: Backup Callback Interfaceis aprogram listing of the default implementation of this facility.

e Appendix B: Activity Access Callback Interface is a program outlining one possible implementation of this
facility.

e Appendix C: Fragmented Table Hashing Callback Interface is a program outlining one possible implementation
of thisfacility.

1.1.2 Prerequisites

It is assumed that the reader is familiar with the Erlang programming language, system development principles, and
database management systems.

Ericsson AB. All Rights Reserved.: Mnesia | 1



1.2 Mnesia

1.2 Mnesia

The management of data in telecommunications system has many aspects, thereof some, but not all, are addressed by
traditional commercial Database Management Systems (DBMSs). In particular the high level of fault tolerancethat is
required in many nonstop systems, combined with requirements on the DBM Sto run in the same address space asthe
application, have led us to implement anew DBMS, called Mnesia.

Mnesia is implemented in, and tightly connected to Erlang. It provides the functionality that is necessary for the
implementation of fault tolerant telecommunications systems.

Mnesia is a multiuser distributed DBMS specialy made for industrial telecommunications applications written in
Erlang, whichis also the intended target language. Mnesiatriesto address all the data management issues required for
typical telecommunications systems. It has a number of features that are not normally found in traditional databases.

In telecommunications applications, there are different needs from the features provided by traditional DBMSs. The
applications now implemented in Erlang need a mixture of a broad range of features, which generally are not satisfied
by traditional DBMSs. Mnesiais designed with regquirements like the following in mind:

*  Fast red-time key/value lookup

e Complicated non-real-time queries mainly for operation and maintenance

» Distributed data because of distributed applications

e High fault tolerance

e Dynamic reconfiguration

»  Complex objects

Mnesiais designed with the typical data management problems of telecommunications applicationsin mind. This sets
Mnesia apart from most other DBMS. Hence Mnesia combines many concepts found in traditional databases such
as transactions and queries with concepts found in data management systems for telecommunications applications,
for example:

»  Fast real-time operations

«  Configurable degree of fault tolerance (by replication)

»  Theahility to reconfigure the system without stopping or suspending it.

Mnesia is also interesting because of its tight coupling to Erlang, thus amost turning Erlang into a database
programming language. This has many benefits, the foremost is that the impedance mismatch between the data format

used by the DBMS and the data format used by the programming language, which is used to manipulate the data,
completely disappears.

1.2.1 Mnesia Database Management System (DBMS)

Features
Mnesia contains the following features that combine to produce a fault-tolerant, distributed DBM S written in Erlang:

»  Database schema can be dynamically reconfigured at runtime.
e Tables can be declared to have properties such as location, replication, and persistence.

» Tables can be moved or replicated to several nodes to improve fault tolerance. The rest of the system can still
access the tables to read, write, and delete records.

» Tablelocations are transparent to the programmer. Programs address table names and the system itself keeps
track of table locations.

»  Database transactions can be distributed, and many functions can be called within one transaction.

*  Several transactions can run concurrently, and their execution is fully synchronized by the DBMS. Mnesia
ensures that no two processes manipul ate data simultaneously.

2 | Ericsson AB. All Rights Reserved.: Mnesia



1.3 Getting Started

«  Transactions can be assigned the property of being executed on al nodesin the system, or on none.
Transactions can a so be bypassed in favor of running "dirty operations', which reduce overheads and run fast.

Details of these features are described in the following sections.

Add-On Application

Query List Comprehension (QLC) can be used with Mnesia to produce specialized functions that enhance the

operational ability of Mnesia. QL C hasits own documentation as part of the OTP documentation set. The main features

of QLC when used with Mnesia are as follows:

*  QLC can optimize the query compiler for the Mnesia DBMS, essentially making the DBM S more efficient.

e QLC can be used as a database programming language for Mnesia. It includes a notation called "list
comprehensions' and can be used to make complex database queries over a set of tables.

For information about QL C, see the glc manual pagein STDLIB.
When to Use Mnesia

Use Mnesiawith the following types of applications:

* Applicationsthat need to replicate data.

e Applications that perform complicated searches on data.

* Applications that need to use atomic transactions to update several records simultaneously.
* Applicationsthat use soft real-time characteristics.

Mnesiais not as appropriate with the following types of applications:

e Programsthat process plain text or binary datafiles.

« Applications that merely need alook-up dictionary that can be stored to disc. Those applications use the
standard library module det s, which is adisc-based version of the module et s. For information about det s,
see the dets manual pagein STDLIB.

» Applications that need disc logging facilities. Those applications can use the moduledi sk_| og by preference.
For information about di sk_| 0g, seethe disk_|og manual pagein Kernel.

e Hard real-time systems.

1.3 Getting Started

This section introduces Vnesi a with an example database. This example is referenced in the following sections,
wherethe exampleismodified toillustrate various program constructs. This sectionillustratesthe following mandatory
procedures through examples:

»  Starting the Erlang session.

*  Specifying the VMhesi a directory where the database is to be stored.

» Initializing a new database schemawith an attribute that specifies on which node, or nodes, that database is to
operate.

e Starting Mnesi a.
»  Creating and populating the database tables.

1.3.1 Starting Mnesia for the First Time

This section provides a simplified demonstration of a Vhesi a system startup. The dialogue from the Erlang shell
isasfollows:

Ericsson AB. All Rights Reserved.: Mnesia | 3



1.3 Getting Started

unix> erl -mnesia dir '"/tmp/funky"'
Erlang (BEAM) emulator version 4.9

Eshell V4.9 (abort with ~G)
1>
1> mnesia:create schema([node()]).
ok
2> mnesia:start().
ok
3> mnesia:create table(funky, []1).
{atomic, ok}
4> mnesia:info().
--> Processes holding locks <---
Processes waiting for locks <---
Pending (remote) transactions <---
Active (local) transactions <---
Uncertain transactions <---
-- Active tables <---
funky : with 0 records occupying 269 words of mem
schema : with 2 records occupying 353 words of mem
===> System info in version "1.0", debug level = none <===
opt disc. Directory "/tmp/funky" is used.
use fall-back at restart = false

VVVYV

\

running db nodes = [nonode@nohost]
stopped db nodes = []

remote =[]

ram_copies = [funky]
disc_copies = [schema]

disc_only copies []

[{nonode@nohost,disc copies}] = [schema]
[{nonode@nohost, ram copies}] = [funky]

1 transactions committed, O aborted, 0 restarted, 1 logged to disc
0 held locks, O in queue; 0 local transactions, 0 remote

0 transactions waits for other nodes: []

ok

In this example, the following actions are performed:

e Step 1: The Erlang system is started from the UNIX prompt with aflag - mesi a dir [trmp/ funky"",

which indicates in which directory to store the data.

e Step 2: A new empty schemaisinitialized on the local node by evaluating mnesia:create_schema([node()]).
The schema contains information about the database in general. Thisis explained in detail later.

e Step 3: The DBMSis started by evaluating mnesia:start().

e Step 4: Afirsttableis created, called f unky, by evauating the expression
mmesi a: create_tabl e(funky, []).Thetableisgiven default properties.

* Step 5: mnesiaiinfo() is evaluated to display information on the terminal about the status of the database.

1.3.2 Example

A Mnesi a database is organized as a set of tables. Each table is populated with instances (Erlang records). A table
has also a number of properties, such as location and persistence.

Database
This example shows how to create a database called Conpany and the relationships shown in the following diagram:

4 | Ericsson AB. All Rights Reserved.: Mnesia



1.3 Getting Started

RS (i

Tept Emplepee Froject

Figure 3.1: Company Entity-Relation Diagram

The database model is as follows:

* Therearethree entities: department, employee, and project.
e There are three relationships between these entities:

« A department is managed by an employee, hence the nanager relationship.
e Anemployee works at a department, hence the at _dep relationship.
»  Each employee works on a number of projects, hencethei n_pr oj relationship.

Defining Structure and Content

First the record definitions are entered into atext filenamed conpany. hr | . Thisfile definesthe following structure
for the exampl e database:

-record(employee, {emp no,
name,
salary,
sex,
phone,
room no}).

-record(dept, {id,
name}).

-record(project, {name,
number}).

-record(manager, {emp,
dept}).

-record(at_dep, {emp,
dept id})

-record(in_proj, {emp,
proj_name}).

The structure defines six tablesin the database. In Mhesi a, the function mnesia:create_table(Name, ArgList) creates
tables. Nane is the table name.

Ericsson AB. All Rights Reserved.: Mnesia | 5



1.3 Getting Started

The current version of Mhesi a does not require that the name of the table is the same as the record name, see
Record Names versus Table Names..

For example, the table for employees is created with the function mMmesi a: cr eat e_t abl e( enpl oyee,
[{attributes, record_info(fields, enployee)}]).Thetablenameenpl oyee matchesthe name
for records specified in Ar gLi st . Theexpressionr ecord_i nf o(fi el ds, Recor dNane) isprocessed by the
Erlang preprocessor and evaluatesto a list containing the names of the different fields for a record.

Program
The following shell interaction starts Vnesi a and initializes the schemafor the Conpany database:

% erl -mnesia dir '"/ldisc/scratch/Mnesia.Company
Erlang (BEAM) emulator version 4.9

Eshell V4.9 (abort with "G)

1> mnesia:create schema([node()]).
ok

2> mnesia:start().

ok

The following program modul e creates and popul ates previously defined tables:

-include lib("stdlib/include/qlc.hrl").
-include("company.hrl").

init() ->
mnesia:create table(employee,
[{attributes, record info(fields, employee)}]),
mnesia:create table(dept,
[{attributes, record info(fields, dept)}]),
mnesia:create table(project,
[{attributes, record info(fields, project)}]),
mnesia:create table(manager, [{type, bag},
{attributes, record info(fields, manager)}]),
mnesia:create table(at dep,
[{attributes, record info(fields, at dep)}l),
mnesia:create table(in proj, [{type, bag},
{attributes, record info(fields, in proj)}1).

Program Explained
The following commands and functions are used to initiate the Conpany database:

e %erl -mesia dir '""/ldisc/scratch/ Vesia. Conpany"' . ThisisaUNIX command-
line entry that starts the Erlang system. Theflag - mesi a dir Di r specifiesthe location of the database
directory. The system responds and waits for further input with the prompt 1>.

* mnesiacreate_schema([node()]). This function has the format
mesi a: cr eat e_schenma( Di scNodeli st) andinitiates anew schema. In this example, a non-
distributed system using only one node is created. Schemas are fully explained in Define a Schema.

* mnesiastart(). Thisfunction starts Mnesi a and isfully explained in Start Mnesia.
Continuing the dialogue with the Erlang shell produces the following:

6 | Ericsson AB. All Rights Reserved.: Mnesia



1.3 Getting Started

3> company:init().

{atomic, ok}

4> mnesia:info().

---> Processes holding locks <---

---> Processes waiting for locks <---

---> Pending (remote) transactions <---

---> Active (local) transactions <---

---> Uncertain transactions <---

---> Active tables <---

in _proj : with 0 records occuping 269 words of mem

at dep : with 0@ records occuping 269 words of mem
manager : with 0 records occuping 269 words of mem
project : with 0 records occuping 269 words of mem
dept : with 0 records occuping 269 words of mem
employee : with 0 records occuping 269 words of mem

schema : with 7 records occuping 571 words of mem

===> System info in version "1.0", debug level = none <===

opt disc. Directory "/ldisc/scratch/Mnesia.Company" is used.

use fall-back at restart = false

running db nodes [nonode@nohost]

stopped db nodes [1

remote [

ram_copies =
[at dep,dept,employee,in proj,manager,project]

disc_copies = [schema]

disc_only copies = []

[{nonode@nohost,disc copies}] = [schema]

[{nonode@nohost, ram copies}] =
[employee,dept,project,manager,at dep,in projl

6 transactions committed, 0 aborted, 0 restarted, 6 logged to disc

0 held locks, O in queue; 0 local transactions, 0 remote

0 transactions waits for other nodes: []

ok

A set of tablesis created. The function mnesia:create table(Name, ArgList) creates the required database tables. The
options available with Ar gLi st are explained in Create New Tables.

The function conpany: i ni t / O creates the tables. Two tables are of type bag. Thisisthe manager relation as
well thei n_proj relation. Thisis interpreted as. an employee can be manager over several departments, and an
employee can participate in several projects. However, theat _dep relationisset , asan employee can only work in
one department. In this data model, there are examples of relations that are 1-to-1 (set ) and 1-to-many (bag).

mnesiaiinfo() now indicates that a database has seven local tables, where six are the user-defined tables and oneisthe
schema. Six transactions have been committed, as six successful transactions were run when creating the tables.

To write a function that inserts an employee record into the database, there must be an at _dep record and a set of
i n_proj recordsinserted. Examine the following code used to compl ete this action:

Ericsson AB. All Rights Reserved.: Mnesia | 7



1.3 Getting Started

insert _emp(Emp, DeptId, ProjNames) ->

Ename = Emp#employee.name,

Fun = fun() ->
mnesia:write(Emp),
AtDep = #at dep{emp = Ename, dept id = DeptId},
mnesia:write(AtDep),
mk _projs(Ename, ProjNames)

end,
mnesia:transaction(Fun).

mk _projs(Ename, [ProjName|Tail]) ->
mnesia:write(#in proj{emp = Ename, proj name = ProjName}),
mk _projs(Ename, Tail);

mk_projs(_, []1) -> ok.

e Theinsert enp/ 3 argumentsare asfollows:

e Enp isan employee record.
e Dept | distheidentity of the department where the employee works.
* Proj Nanes isalist of the names of the projects where the employee works.

Thefunctioni nsert _enp/ 3 creates a Functional Object (Fun). Fun is passed as a single argument to the function
mnesiatransaction(Fun). This means that Fun is run as a transaction with the following properties:

* A Fun either succeeds or fails.

*  Code that manipulates the same data records can be run concurrently without the different processes interfering
with each other.

The function can be used as follows:

Emp = #employee{emp no= 104732,
name = klacke,
salary = 7,
sex = male,
phone = 98108,
room_no = {221, 015}},
insert emp(Emp, 'B/SFR', [Erlang, mnesia, otp]).

For information about Funs, see "Fun Expressions' in section Er| ang Ref erence Manual in System
Documentation..

Initial Database Content

After the insertion of the employee named k| acke, the database has the following records:

emp_no name saary Sex phone room_no

104732 klacke 7 male 98108 {221, 015}

Table 3.1: employee Database Record

Thisenpl oyee record hasthe Erlang record/tuplerepresentation { enpl oyee, 104732, kl acke, 7, mal e,
98108, {221, 015}}.

8 | Ericsson AB. All Rights Reserved.: Mnesia



1.3 Getting Started

emp dept_name

klacke B/SFR

Table 3.2: at_dep Database Record

Thisat _dep record hasthe Erlang tuple representation { at _dep, kl acke, ' B/ SFR }.

emp proj_name
klacke Erlang
klacke otp
klacke mnesia

Table 3.3: in_proj Database Record

This i n_proj record has the Erlang tuple representation {i n_proj, klacke, 'Erlang , klacke,
"otp', klacke, 'mmesia'}.

There is no difference between rows in a table and Vnhesi a records. Both concepts are the same and are used
interchangeably throughout this User's Guide.

A Mesi atableispopulated by Mhesi a records. For example, thetuple{ boss, kl acke, bj arne} isarecord.
The second element in thistupleisthe key. To identify atable uniquely, both the key and the table nameisneeded. The
term Object Identifier (OID) is sometimes used for the arity two tuple { Tab, Key}. The OID for the record { boss,
kl acke, bjarne} isthe arity two tuple { boss, Kkl acke}. The first element of the tuple is the type of the
record and the second element is the key. An OID can lead to zero, one, or more records depending on whether the
tabletypeisset or bag.

Therecord { boss, Kkl acke, bjarne} canalsobeinserted. Thisrecord containsanimplicit reference to another
employee that does not yet exist in the database. Mhesi a does not enforce this.

Adding Records and Relationships to Database
After adding more records to the Conpany database, the result can be the following records:

enpl oyees:

{employee, 104465, "Johnson Torbjorn", 1, male, 99184, {242,038}}.
{employee, 107912, "Carlsson Tuula", 2, female, 94556, {242,056}}.
{employee, 114872, "Dacker Bjarne", 3, male, 99415, {221,035}}.
{employee, 104531, "Nilsson Hans", 3, male, 99495, {222,026}}.
{employee, 104659, "Tornkvist Torbjorn", 2, male, 99514, {222,022}}.
{employee, 104732, "Wikstrom Claes", 2, male, 99586, {221,015}}.
{employee, 117716, "Fedoriw Anna", 1, female, 99143, {221,031}}.
3,

{employee, 115018, "Mattsson Hakan", male, 99251, {203,348}}.

dept:
{dept, 'B/SF', "Open Telecom Platform"}.
{dept, 'B/SFP', "OTP - Product Development"}.
{dept, 'B/SFR', "Computer Science Laboratory"}.
proj ects:

Ericsson AB. All Rights Reserved.: Mnesia | 9



1.3 Getting Started

%% projects

{project, erlang, 1}.
{project, otp, 2}.

{project, beam, 3}.
{project, mnesia, 5}.
{project, wolf, 6}.
{project, documentation, 7}.
{project, www, 8}.

Thesethreetables, enpl oyees, dept , and pr oj ect s, aremade up of real records. Thefollowing database content
isstored in the tables and is built on relationships. These tablesare manager , at _dep,andi n_proj .

manager :

{manager, 104465, 'B/SF'}.
{manager, 104465, 'B/SFP'}.
{manager, 114872, 'B/SFR'}.

at _dep:

{at_dep, 104465, 'B/SF'}.
{at_dep, 107912, 'B/SF'}.
{at dep, 114872, 'B/SFR'}.
{at dep, 104531, 'B/SFR'}.
{at dep, 104659, 'B/SFR'}.
{at dep, 104732, 'B/SFR'}.
{at dep, 117716, 'B/SFP'}.
{at dep, 115018, 'B/SFP'}.

in_proj:

{in_proj, 104465, otp}.
{in_proj, 107912, otp}.
{in_proj, 114872, otp}.
{in_proj, 104531, otp}.
{in_proj, 104531, mnesia}.
{in_proj, 104545, wolf}.
{in_proj, 104659, otp}.
{in_proj, 104659, wolf}.
{in_proj, 104732, otp}.
{in_proj, 104732, mnesia}.
{in _proj, 104732, erlang}.
{in_proj, 117716, otp}.
{in_proj, 117716, documentation}.
{in_proj, 115018, otp}.
{in_proj, 115018, mnesia}.

The room number is an attribute of the employee record. Thisisastructured attribute that consists of atuple. The first
element of the tuple identifies a corridor, and the second element identifies the room in that corridor. An aternativeis
to represent thisasarecord - r ecord(room {corr, no}). instead of an anonymous tuple representation.

The Conpany database is now initialized and contains data.
Writing Queries

Retrieving datafrom DBMS is usually to be done with the functions mnesia:read/3 or mnesia:read/1. The following
function raises the salary:

10 | Ericsson AB. All Rights Reserved.: Mnesia



1.3 Getting Started

raise(Eno, Raise) ->

F = fun() ->
[E] = mnesia:read(employee, Eno, write),
Salary = E#employee.salary + Raise,
New = E#employee{salary = Salary},
mnesia:write(New)

end,
mnesia:transaction(F).

Since it is desired to update the record using the function mnesiawrite/1 after the salary has been increased, a write
lock (third argument to r ead) is acquired when the record from the table is read.

To read the values from the table directly is not always possible. It can be needed to search one or more tables to
get the wanted data, and this is done by writing database queries. Queries are always more expensive operations than
direct lookups done with mesi a: r ead. Therefore, avoid queriesin performance-critical code.

Two methods are available for writing database queries:

e Mhesi a functions
« QLC
Using Mnesia Functions

The following function extracts the names of the female employees stored in the database:

mnesia:select(employee, [{#employee{sex = female, name = '$1', ="' '},[1, ['$1'1}]1).

sel ect must always run within an activity, such as a transaction. The following function can be constructed to call
from the shell:

all females() ->

F = fun() ->
Female = #employee{sex = female, name = '$1', ="' "},
mnesia:select(employee, [{Female, []1, ['$1'1}])
end,

mnesia:transaction(F).

Thesel ect expression matches al entriesin table employee with thefield sex setto f emal e.
This function can be called from the shell as follows:

(klacke@gin)1> company:all females().
{atomic, ["Carlsson Tuula", "Fedoriw Anna"]}

For adescription of sel ect and its syntax, see Pattern Matching.
Using QLC

This section contains simple introductory examples only. For a full description of the QLC query language, see the
glc manual pagein STDLI B.

Using QL C can be more expensive than using Mhesi a functions directly but offers a nice syntax.

The following function extracts alist of female employees from the database:

Q = qlc:q([E#employee.name || E <- mnesia:table(employee),
E#employee.sex == femalel),
qlc:e(Q),

Accessing Mhesi a tables from a QL C list comprehension must always be done within a transaction. Consider the
following function:

Ericsson AB. All Rights Reserved.: Mnesia | 11



1.4 Build a Mnesia Database

females() ->

F = fun() ->
Q = qlc:q([E#employee.name || E <- mnesia:table(employee),
E#employee.sex == female]),
qlc:e(Q)
end,

mnesia:transaction(F).

This function can be called from the shell as follows:

(klacke@gin)1> company:females().
{atomic, ["Carlsson Tuula", "Fedoriw Anna"]}

In traditional relational database terminology, this operation is called a selection, followed by a projection.
The previous list comprehension expression contains a number of syntactical elements:

e Thefirst[ bracketisread as"build thelist".
e The| | "suchthat" and the arrow <- isread as "taken from".

Hence, the previous list comprehension demonstrates the formation of the list E#enpl oyee. nane such that E is
taken from the table of employees, and attribute sex of each record is equal to theatom f emal e.

The whole list comprehension must be given to the functiongl c: g/ 1.

List comprehensions with low-level Mhesi a functions can be combined in the same transaction. To raise the salary
of al female employees, execute the following:

raise females(Amount) ->
F = fun() ->
Q = qlc:q([E || E <- mnesia:table(employee),
E#employee.sex == femalel),
Fs = gqlc:e(Q),
over write(Fs, Amount)
end,
mnesia:transaction(F).

over write([E|Tail], Amount) ->
Salary = E#employee.salary + Amount,
New = E#employee{salary = Salary},
mnesia:write(New),
1 + over write(Tail, Amount);

over write([], ) ->
0.

Thefunctionr ai se_f enmal es/ 1 returnsthetuple{ at om ¢, Nunber},whereNunber isthe number of femae
employees who received a salary increase. If an error occurs, the value { abort ed, Reason} is returned, and
Mhesi a guarantees that the salary is not raised for any employee.

Example:

33>company:raise females(33).
{atomic, 2}

1.4 Build a Mnesia Database

This section describes the basic steps when designing aMnhesi a database and the programming constructs that make
different solutions available to the programmer. The following topics are included:

* Define aschema

12 | Ericsson AB. All Rights Reserved.: Mnesia



1.4 Build a Mnesia Database

« Datamodel
« Start Mhesi a
¢ Createtables

1.4.1 Define a Schema

Theconfiguration of aMhesi a systemisdescribed in aschema. The schemaisaspecial tablethat includesinformation
such as the table names and the storage type of each table (that is, whether atable is to be stored in RAM, on disc,
or on both, aswell asitslocation).

Unlike data tables, information in schema tables can only be accessed and modified by using the schema-related
functions described in this section.

Mhesi a hasvariousfunctionsfor defining the database schema. Tables can be moved or deleted, and the table layout
can be reconfigured.

Animportant aspect of these functionsisthat the system can access atable whileit isbeing reconfigured. For example,
it is possible to move a table and simultaneously perform write operations to the same table. This feature is essential
for applications that require continuous service.

This section describes the functions available for schema management, all which return either of the following tuples:

« {atomc, ok} ifsuccessful
« {aborted, Reason} if unsuccessful

Schema Functions
The schema functions are as follows:

 mnesiacreate_schema(NodeList) initializes a new, empty schema. Thisisamandatory requirement before
Mhesi a can be started. Mhesi a isatruly distributed DBMS and the schemais a system table that is replicated
on al nodesinaMhesi a system. Thisfunction failsif aschemais already present on any of the nodesin
NodelLi st . The function requires Mhesi a to be stopped on the al db_nodes contained in parameter
NodelLi st . Applications call thisfunction only once, asit is usually aone-time activity to initialize a new
database.

 mnesiadelete schema(DiscNodelist) erases any old schemas on the nodesin Di scNodelLi st . It also
removes al old tables together with all data. This function requires Vhesi a to be stopped on al db_nodes.

 mnesiadelete table(Tab) permanently deletes all replicas of table Tab.

* mnesiaclear_table(Tab) permanently deletes all entriesin table Tab.

* mnesiamove_table copy(Tab, From, To) moves the copy of table Tab from node Fr omto node To. The table
storagetype{t ype} ispreserved, soif aRAM table is moved from one node to ancther, it remains a RAM
table on the new node. Other transactions can still perform read and write operation to the table while it is being
moved.

«  mnesiaadd_table copy(Tab, Node, Type) creates areplicaof table Tab at node Node. Argument Ty pe must
be either of the atomsr am copi es, di sc_copi es, ordi sc_onl y_copi es. If you add acopy of the
system table schemma to anode, you want the Mhesi a schemato reside there aswell. This action extends the
set of nodes that comprise this particular Mhesi a system.

mnesiade_table copy(Tab, Node) deletes the replica of table Tab at node Node. When the last replica of a
table isremoved, the tableis deleted.

* mnesiatransform_table(Tab, Fun, NewAttributeList, NewRecordName) changestheformat on all recordsintable
Tab. It applies argument Fun to al records in the table. Fun must be a function that takes a record of the old
type, and returns the record of the new type. The table key must not be changed.

Example:

Ericsson AB. All Rights Reserved.: Mnesia | 13



1.4 Build a Mnesia Database

-record(old, {key, val}).
-record(new, {key, val, extra}).

Transformer =
fun(X) when record(X, old) ->
#new{key = X#old.key,
val = X#old.val,
extra = 42}
end,
{atomic, ok} = mnesia:transform table(foo, Transformer,
record info(fields, new),
new),

Argument Fun can also betheatomi gnor e, which indicates that only the metadata about the table is updated.
Useof i gnor e isnot recommended (as it creates inconsistencies between the metadata and the actual data) but
itisincluded as a possibility for the user do to an own (offline) transform.

« change_t abl e_copy_type(Tab, Node, ToType) changesthe storage type of atable. For example,
aRAM tableischangedto adi sc_t abl e at the node specified as Node.

1.4.2 Data Model

The data model employed by Mnesi a is an extended relational data model. Datais organized as a set of tables and
relations between different datarecords can be model ed as more tabl es describing the rel ationshi ps. Each table contains
instances of Erlang records. The records are represented as Erlang tuples.

Each Object Identifier (OID) is made up of atable name and akey. For example, if an employee record is represented
by thetuple{ enpl oyee, 104732, klacke, 7, nmale, 98108, {221, 015}}, thisrecord hasan OID,
whichisthetuple{ enpl oyee, 104732}.

Thus, each table is made up of records, where the first element is a record name and the second element of the table
is akey, which identifies the particular record in that table. The combination of the table name and akey is an arity
two tuple { Tab, Key} caled the OID. For more information about the relationship beween the record name and
the table name, see Record Names versus Table Names.

What makesthe Mhesi a data model an extended relational model is the ability to store arbitrary Erlang termsin the
attribute fields. One attribute value can, for example, be a whole tree of OIDs leading to other terms in other tables.
This type of record is difficult to model in traditional relational DBMSs.

1.4.3 Start Mnesia

Before starting Vhesi a, the following must be done:

e Anempty schemamust beinitialized on all the participating nodes.

*  TheErlang system must be started.

*  Nodes with disc database schema must be defined and implemented with the function
mnesia.create_schema(NodeL ist).

When running adistributed system with two or more participating nodes, the function mnesia:start() must be executed
on each participating node. This would typically be part of the boot script in an embedded environment. In a test
environment or an interactive environment, rmesi a: st art () can aso be used either from the Erlang shell or
another program.

Initialize a Schema and Start Mnesia

Let us use the example database Conrpany, described in Getting Started to illustrate how to run a database on two
separate nodes, calleda@i n andb@keppet . Each of these nodes must haveavhesi a directory and aninitialized
schema before Mhesi a can be started. There are two ways to specify the Mhesi a directory to be used:

14 | Ericsson AB. All Rights Reserved.: Mnesia



1.4 Build a Mnesia Database

«  Specify thelvnesi a directory by providing an application parameter either when starting the Erlang shell or inthe
application script. Previously, the following example was used to create the directory for the Conpany database:

%serl -mnesia dir '"/ldisc/scratch/Mnesia.Company"'

* If no command-lineflag is entered, the Mnesi a directory becomes the current working directory on the node
where the Erlang shell is started.

To start the Conpany database and get it running on the two specified nodes, enter the following commands:
e Onthenodea@i n:

gin %erl -sname a -mnesia dir '"/ldisc/scratch/Mnesia.company

e Onthenodeb@keppet:

skeppet %erl -sname b -mnesia dir '"/ldisc/scratch/Mnesia.company

e Onone of the two nodes:

(a@gin)1l>mnesia:create schema([a@gin, b@skeppet]).

»  Thefunction mnesia:start() is called on both nodes.
e Toinitialize the database, execute the following code on one of the two nodes:

dist init() ->
mnesia:create table(employee,
[{ram copies, [a@gin, b@skeppetl},
{attributes, record info(fields,
employee)}]),
mnesia:create table(dept,
[{ram copies, [a@gin, b@skeppetl},
{attributes, record info(fields, dept)}]),
mnesia:create table(project,
[{ram copies, [a@gin, b@skeppetl},
{attributes, record info(fields, project)}]),
mnesia:create table(manager, [{type, bag},
{ram _copies, [a@gin, b@skeppet]},
{attributes, record info(fields,
manager)}1),
mnesia:create table(at dep,
[{ram copies, [a@gin, b@skeppetl},
{attributes, record info(fields, at dep)}]),
mnesia:create table(in proj,
[{type, bag},
{ram copies, [a@gin, b@skeppet]},
{attributes, record info(fields, in proj)}]).

Asillustrated, the two directories reside on different nodes, because/ | di sc/ scr at ch (the"local” disc) exists on
the two different nodes.

By executing these commands, two Erlang nodes are configured to run the Conrpany database, and therefore, initialize
the database. This is required only once when setting up. The next time the system is started, mnesiastart() is called
on both nodes, to initialize the system from disc.

Inasystem of Mnesi a nodes, every nodeisaware of the current location of al tables. Inthisexample, dataisreplicated
on both nodes and functions that manipulate the data in the tables can be executed on either of the two nodes. Code
that manipulate Mhesi a data behaves identically regardless of where the data resides.

Ericsson AB. All Rights Reserved.: Mnesia | 15



1.4 Build a Mnesia Database

The function mnesiastop() stops Mhesia on the node where the function is executed. The functions
mesi a: start/ 0 and mesi a: st op/ 0 work on the "local" Mnesi a system. No functions start or stop a set
of nodes.

Startup Procedure
Start Mhesi a by calling the following function:

mnesia:start().

This function initiates the DBM S locally.
The choice of configuration alters the location and load order of the tables. The alternatives are as follows:

e Tablesthat are only stored locally are initialized from the local vnesi a directory.

* Replicated tables that reside locally as well as somewhere else are either initiated from disc or by copying the
entire table from the other node, depending on which of the different replicas are the most recent. Mhesi a
determines which of the tables are the most recent.

e Tablesthat reside on remote nodes are available to other nodes as soon as they are loaded.

Table initiaization is asynchronous. The function call mnesia:start() returns the atom ok and then starts to initialize
the different tables. Depending on the size of the database, this can take some time, and the application programmer
must wait for the tables that the application needs before they can be used. This is achieved by using the function
mnesiawait_for_tables(TabList, Timeout), which suspends the caller until all tables specified in TabLi st are
properly initiated.

A problem can arise if areplicated table on one node isinitiated, but Mhesi a deduces that another (remote) replica
is more recent than the replica existing on the local node, and the initialization procedure does not proceed. In this
situation, acall to mnesiawait_for_tables/2, suspendsthe caller until the remote node hasinitialized the table from its
local disc and the node has copied the table over the network to the local node.

However, this procedure can be time-consuming, the shortcut function mnesia:force load table(Tab) loads all the
tables from disc at a faster rate. The function forces tables to be loaded from disc regardless of the network situation.

Thus, it can be assumed that if an application wants to use tables a and b, the application must perform some action
similar to following before it can use the tables:

case mnesia:wait for tables([a, b], 20000) of

{timeout, RemainingTabs} ->
panic(RemainingTabs);
ok ->
synced
end.

When tables are forcefully loaded from the local disc, all operations that were performed on the replicated table
while the local node was down, and the remote replicawas alive, are lost. This can cause the database to become
inconsi stent.

If the startup procedure fails, the function mnesiastart() returns the cryptic tuple {error, { shut down,
{mesi a_sup,start _link,[normal,[]]}}}. To get more information about the start failure, use
command-line arguments- boot start_sasl asargumenttotheer| script.

16 | Ericsson AB. All Rights Reserved.: Mnesia



1.4 Build a Mnesia Database

1.4.4 Create Tables

The function mnesia:create_table(Name, ArgList) creates tables. When executing this function, it returns one of the
following responses:

{atom c, ok} if thefunction executes successfully
{aborted, Reason} if thefunctionfails

The function arguments are as follows:

Nane isthe name of the table. It is usually the same name as the name of the records that constitute the table.
For details, seer ecor d_nane.

Ar gLi st isalist of { Key, Val ue} tuples. The following arguments are valid:

{type, Type},where Type must be either of the atomsset , or der ed_set, or bag. Defaultisset .
Noticethat currently or der ed_set isnot supported for di sc_onl y_copi es tables.

A tableof typeset oror der ed_set haseither zero or onerecord per key, whereas atable of typebag can
have an arbitrary number of records per key. The key for each record isawaysthefirst attribute of the record.

The following example illustrates the difference between type set and bag:

f() ->
F = fun() ->
mnesia:write({foo, 1, 2}),
mnesia:write({foo, 1, 3}),
mnesia:read({foo, 1})
end,
mnesia:transaction(F).

This transaction returns the list [{f 00, 1, 3}] if table foo is of type set. However, the list
[{foo, 1,2}, {foo, 1, 3}] isreturned if thetableis of type bag.

Mhesi a tables can never contain duplicates of the same record in the same table. Duplicate records have
attributes with the same contents and key.
{di sc_copi es, NodeLi st},whereNodelLi st isalist of thenodeswherethistableistoresideondisc.

Write operations to atable replica of typedi sc_copi es write datato the disc copy and to the RAM copy
of thetable.

It is possible to have a replicated table of type di sc_copi es on one node, and the same table stored as
a different type on another node. Default is[ ] . This arrangement is desirable if the following operational
characteristics are required:

*  Read operations must be fast and performed in RAM.

e All write operations must be written to persistent storage.

A write operation on adi sc_copi es tablereplicais performed in two steps. First the write operation is
appended to alog file, then the actual operation is performed in RAM.

{ram copi es, NodeLi st} ,whereNodeLi st isalist of the nodes where thistableis stored in RAM.
Default is[ node() ] . If the default value is used to create atable, it is located on the local node only.
Tablereplicasof typer am copi es can be dumped to disc with the function mnesia:dump_tables(TabList).

{di sc_only_copies, Nodeli st}. Thesetablereplicasare stored on disc only and are therefore
slower to access. However, a disc-only replica consumes less memory than atable replica of the other two
storage types.

Ericsson AB. All Rights Reserved.: Mnesia | 17



1.5 Transactions and Other Access Contexts

« {index, AttributeNaneList}, where AttributeNaneLi st isalist of aoms specifying the
names of the attributes Mhesi a isto build and maintain. An index table exists for every element in the list.
Thefirst field of alvhesi a record is the key and thus need no extraindex.

Thefirst field of arecord is the second element of the tuple, which is the representation of the record.

e {snnp, SnnpStruct}.SnnpStruct isdescribedinthe SNMP User's Guide. Basically, if thisattribute
ispresentin Ar gLi st of mnesia.create table/2, the table isimmediately accessible the SNMP.

It is easy to design applications that use SNMP to manipulate and control the system. Mhesi a provides a
direct mapping between the logical tables that make up an SNMP control application and the physical data
that makesup aMhesi a table. The default valueis[ ] .

e {local _content, true}.Whenan application needs atable whose contentsisto be locally unique
on eachnode, | ocal _cont ent tables can be used. The name of the table is known to all Mhesi a nodes,
but its contents is unique for each node. Access to this type of table must be done locally.

« {attributes, Atonlist} isalistof theattribute namesfor the records that are supposed to popul ate
thetable. Default isthelist [ key, val]. Thetable must at least have one extra attribute besides the key.
When accessing single attributesin arecord, it is not recommended to hard code the attribute names as atoms.
Usetheconstruct recor d_i nfo(fi el ds, record_nane) instead.

Theexpressionrecord_i nfo(fi el ds, record_nane) isprocessed by the Erlang preprocessor and
returns a list of the record field names. With the record definition - r ecor d(f oo, {x,vy, z})., the
expressionrecord_i nfo(fi el ds, foo) isexpanded to thelist [ x, y, z] . It is therefore possible for
you to provide the attribute names or to use ther ecor d_i nf o/ 2 notation.

It isrecommended to usether ecor d_i nf o/ 2 notation, as it becomes easier to maintain the program and
the program becomes more robust with regards to future record changes.

 {record_nane, Aton} specifiesthecommon name of all records stored in the table. All records stored
in the table must have this name astheir first element. r ecor d_nane defaults to the name of the table. For
more information, see Record Names versus Table Names.

As an example, consider the following record definition:

-record(funky, {x, y}).

The following call would create a table that is replicated on two nodes, has an extra index on attribute y, and is of
typebag.

mnesia:create table(funky, [{disc copies, [N1, N2]}, {index,
[yl}, {type, bag}, {attributes, record info(fields, funky)}]).

Whereas a call to the following default code values would return atable with aRAM copy on the local node, no extra
indexes, and the attributes defaulted to the list [ key, val ] .

mnesia:create table(stuff, [])

1.5 Transactions and Other Access Contexts

This section describes the Mhesi a transaction system and the transaction properties that make Mhesi a a fault-
tolerant, distributed Database Management System (DBMS).

This section also describes the locking functions, including table locks and sticky locks, aswell asalternative functions
that bypass the transaction system in favor of improved speed and reduced overhead. These functions are called "dirty
operations’. The use of nested transactions is also described. The following topics are included:

18 | Ericsson AB. All Rights Reserved.: Mnesia



1.5 Transactions and Other Access Contexts

«  Transaction properties, which include atomicity, consistency, isolation, and durability
e Locking

e Dirty operations

*  Record names versus table names

* Activity concept and various access contexts

*  Nested transactions

e Pattern matching

e |teration

1.5.1 Transaction Properties

Transactions are important when designing fault-tolerant, distributed systems. A Mhesi a transaction isamechanism
by which a series of database operations can be executed as one functional block. The functional block that isrunasa
transaction is called a Functional Object (Fun), and this code can read, write, and delete Mhesi a records. The Funis
evaluated as atransaction that either commits or terminates. If atransaction succeedsin executing the Fun, it replicates
the action on all nodes involved, or terminates if an error occurs.

The following example shows a transaction that raises the salary of certain employee numbers:

raise(Eno, Raise) ->

F = fun() ->
[E] = mnesia:read(employee, Eno, write),
Salary = E#employee.salary + Raise,
New = E#employee{salary = Salary},
mnesia:write(New)

end,
mnesia:transaction(F).

The function rai se/ 2 contains a Fun made up of four code lines. This Fun is caled by the statement
mesi a: transacti on(F) and returnsavalue.

TheMnesi a transaction system facilitates the construction of reliable, distributed systems by providing the following
important properties:

« Thetransaction handler ensures that a Fun, which is placed inside a transaction, does not interfere with
operations embedded in other transactions when it executes a series of operations on tables.

« Thetransaction handler ensures that either all operationsin the transaction are performed successfully on all
nodes atomically, or the transaction fails without permanent effect on any node.

e TheMesi a transactions have four important properties, called Atomicity, Consistency, | solation, and
Durability (ACID). These properties are described in the following sections.

Atomicity

Atomicity meansthat database changes that are executed by atransaction take effect on all nodesinvolved, or on none
of the nodes. That is, the transaction either succeeds entirely, or it fails entirely.

Atomicity isimportant when it is needed to write atomically more than one record in the same transaction. Thefunction
r ai se/ 2, shown in the previous example, writes one record only. The function i nsert _enp/ 3, shown in the
program listing in Getting Started, writes the record enpl oyee aswell as employeerelations, such asat _dep and
i n_proj, into the database. If this latter code is run inside a transaction, the transaction handler ensures that the
transaction either succeeds completely, or not at all.

Mhesi a isadistributed DBMS where data can be replicated on several nodes. In many applications, it isimportant
that a series of write operations are performed atomically inside a transaction. The atomicity property ensures that a
transaction takes effect on all nodes, or none.

Ericsson AB. All Rights Reserved.: Mnesia | 19



1.5 Transactions and Other Access Contexts

Consistency

The consistency property ensures that a transaction always leaves the DBMS in a consistent state. For example,
Vhesi a ensures that no inconsistencies occur if Erlang, Mhesi a, or the computer crashes while a write operation
isin progress.

Isolation

Theisolation property ensuresthat transactionsthat execute on different nodesin anetwork, and access and manipul ate
the same datarecords, do not interfere with each other. Theisolation property makesit possibleto execute the function
rai se/ 2 concurrently. A classical problem in concurrency control theory is the "lost update problem”.

Theisolation property isin particular useful if the following circumstances occur where an employee (with employee
number 123) and two processes (P1 and P2) are concurrently trying to raise the salary for the employee:

e Step 1: Theinitial value of the employees salary is, for example, 5. Process P1 starts to execute, reads the
employee record, and adds 2 to the salary.

e Step 2: Process Pl isfor some reason pre-empted and process P2 has the opportunity to run.

e Step 3: Process P2 reads the record, adds 3 to the salary, and finally writes a new employee record with the
salary set to 8.

e Step 4: Process P1 startsto run again and writes its employee record with salary set to 7, thus effectively
overwriting and undoing the work performed by process P2. The update performed by P2 islost.

A transaction system makesit possible to execute two or more processes concurrently that manipul ate the same record.
The programmer does not need to check that the updates are synchronous; thisis overseen by the transaction handler.
All programs accessing the database through the transaction system can be written asif they had sole accessto the data.

Durability

The durability property ensures that changes made to the DBMS by a transaction are permanent. Once a transaction
is committed, al changes made to the database are durable, that is, they are written safely to disc and do not become
corrupted and do not disappear.

The described durability feature does not entirely apply to situations where Vhesi a is configured as a "pure”
primary memory database.

1.5.2 Locking

Different transaction managers employ different strategiesto satisfy theisolation property. Mhesi a usesthe standard
technique of two phase locking. That is, locks are set on records before they are read or written. Mhesi a uses the
following lock types:

» Read locks. A read lock is set on onereplica of arecord before it can be read.

* Writelocks. Whenever atransaction writesto arecord, write locks are first set on all replicas of that particular
record.

» Read tablelocks. If atransaction traverses an entire table in search for arecord that satisfies some particular
property, it is most inefficient to set read locks on the records one by one. It is aso memory consuming, as the
read locks themselves can take up considerable space if the table islarge. Therefore, Mhesi a can set aread
lock on an entire table.

« Writetablelocks. If atransaction writes many records to one table, awrite lock can be set on the entire table.

»  Sticky locks. These are write locks that stay in place at a node after the transaction that initiated the lock has
terminated.

20 | Ericsson AB. All Rights Reserved.: Mnesia



1.5 Transactions and Other Access Contexts

Mhesi a employs astrategy whereby functions, such as mnesia:read/1 acquire the necessary locks dynamically asthe
transactions execute. Mhesi a automatically sets and releases the locks and the programmer does not need to code
these operations.

Deadlocks can occur when concurrent processes set and release locks on the same records. Mhesi a employsa“wait-
die" strategy to resolve these situations. If Mhesi a suspects that a deadlock can occur when a transaction triesto set
alock, the transaction is forced to release all its locks and sleep for a while. The Fun in the transaction is evaluated
once more.

It is therefore important that the code inside the Fun given to rmesi a: t ransacti on/ 1 is pure. Some strange
results can occur if, for example, messages are sent by the transaction Fun. The following example illustrates this
situation:

bad raise(Eno, Raise) ->

F = fun() ->
[E] = mnesia:read({employee, Eno}),
Salary = E#employee.salary + Raise,
New = E#employee{salary = Salary},
io:format("Trying to write ... ~n", [1),
mnesia:write(New)

end,
mnesia:transaction(F).

This transaction can writethetext " Trying to wite ... " 1000 timesto the termina. However, Mhesi a
guarantees that each transaction will eventually run. Asaresult, Mhesi a is not only deadlock free, but also livelock
free.

The Mhesi a programmer cannot prioritize one particular transaction to execute before other transactions that are
waiting to execute. As aresult, the Mhesi a DBMS transaction system is not suitable for hard real-time applications.
However, Mhesi a contains other features that have real-time properties.

Mhesi a dynamically sets and releases locks as transactions execute. It is therefore dangerous to execute code with
transaction side-effects. In particular, ar ecei ve statement inside a transaction can lead to a situation where the
transaction hangs and never returns, which in turn can cause locks not to release. This situation can bring the whole
system to a standstill, as other transactions that execute in other processes, or on other nodes, are forced to wait for
the defective transaction.

If atransaction terminates abnormally, Mhesi a automatically releases the locks held by the transaction.

Up to now, examples of a number of functions that can be used inside a transaction have been shown. The following
list showsthe simplest Mhesi a functions that work with transactions. Notice that these functions must be embedded
in atransaction. If no enclosing transaction (or other enclosing Mhesi a activity) exists, they al fail.

e mnesiatransaction(Fun) -> { aborted, Reason} [{ atomic, Value} executes one transaction with the functional
object Fun asthe single parameter.

 mnesiaread({ Tab, Key}) -> transaction abort | RecordList reads all records with Key as key from table
Tab. This function has the same semantics regardless of the location of Tabl e. If thetableis of type bag,
read({Tab, Key}) canreturnan arbitrarily long list. If the tableis of type set , thelist is either of length
oneor[].

* mnesiawread({ Tab, Key}) -> transaction abort | RecordList behaves the same way as the previoudly listed
functionr ead/ 1, except that it acquires awrite lock instead of aread lock. To execute atransaction that
reads arecord, modifies the record, and then writes the record, it is slightly more efficient to set the write lock
immediately. When amnesiarread/1 isissued, followed by a mnesiawrite/1 the first read lock must be upgraded
to awrite lock when the write operation is executed.

« mnesiawrite(Record) -> transaction abort | ok writes arecord into the database. Argument Recor d isan
instance of arecord. The function returns ok, or terminates the transaction if an error occurs.

* mnesiadelete({ Tab, Key}) -> transaction abort | ok deletes all records with the given key.

Ericsson AB. All Rights Reserved.: Mnesia | 21



1.5 Transactions and Other Access Contexts

* mnesiadelete object(Record) -> transaction abort | ok deletes records with the OID Recor d. Use this function
to delete only some recordsin atable of type bag.

Sticky Locks

As previously stated, the locking strategy used by Mhesi a is to lock one record when reading a record, and lock
all replicas of arecord when writing a record. However, some applications use Mhesi a mainly for its fault-tolerant
qualities. These applications can be configured with one node doing all the heavy work, and a standby node that is
ready to take over if the main node fails. Such applications can benefit from using sticky locks instead of the normal
locking scheme.

A sticky lock isalock that staysin place at a node, after the transaction that first acquired the lock has terminated. To
illustrate this, assume that the following transaction is executed:

F = fun() ->
mnesia:write(#foo{a = kalle})
end,

mnesia:transaction(F).

Thef oo tableisreplicated on the two nodes N1 and N2.
Normal locking requires the following:

e Onenetwork RPC (two messages) to acquire the write lock
*  Three network messages to execute the two-phase commit protocol

If sticky locks are used, the code must first be changed as follows:

F = fun() ->
mnesia:s write(#foo{a = kalle})
end,

mnesia:transaction(F).

This code uses the function s write/1 instead of the function write/1 The function s_wri t e/ 1 sets a sticky lock
instead of anormal lock. If the table is not replicated, sticky locks have no special effect. If thetableis replicated, and
asticky lock is set on node N1, thislock then sticks to node N1. The next timeyou try to set a sticky lock on the same
record at node N1, Mhesi a detects that the lock is aready set and do no network operation to acquire the lock.

Itismore efficient to set alocal lock than it isto set anetworked lock. Sticky locks can therefore benefit an application
that uses areplicated table and perform most of the work on only one of the nodes.

If arecord is stuck at node N1 and you try to set asticky lock for the record on node N2, the record must be unstuck.
This operation is expensive and reduces performance. The unsticking is done automatically if youissues wite/ 1
requests at N2.

Table Locks

Vhesi a supports read and write locks on whole tables as a complement to the normal locks on single records. As
previoudly stated, Mhesi a sets and releases locks automatically, and the programmer does not need to code these
operations. However, transactions that read and write many records in a specific table execute more efficiently if the
transaction is started by setting atable lock on thistable. Thisblocks other concurrent transactions from the table. The
following two functions are used to set explicit table locks for read and write operations:

* mnesiaread_lock_table(Tab) setsaread lock on table Tab.
 mnesiawrite lock_table(Tab) setsawrite lock on table Tab.

Alternative syntax for acquisition of tablelocksis asfollows:

mnesia:lock({table, Tab}, read)
mnesia:lock({table, Tab}, write)

22 | Ericsson AB. All Rights Reserved.: Mnesia



1.5 Transactions and Other Access Contexts

The matching operations in Mhesi a can either lock the entire table or only a single record (when the key is bound
in the pattern).

Global Locks

Write locks are normally acquired on all nodes where a replica of the table resides (and is active). Read locks are
acquired on one node (the local oneif alocal replicaexists).

The function mnesia:lock/2 is intended to support table locks (as mentioned previously) but also for situations when
locks need to be acquired regardless of how tables have been replicated:

mnesia:lock({global, GlobalKey, Nodes}, LockKind)
LockKind ::= read | write | ...

Thelock isacquired on Lockl t emon all nodesin the node list.

1.5.3 Dirty Operations

In many applications, the overhead of processing atransaction can result in aloss of performance. Dirty operation are
short cuts that bypass much of the processing and increase the speed of the transaction.

Dirty operation are often useful, for example, in a datagram routing application where Vhesi a stores the routing
table, and it is time consuming to start a whole transaction every time a packet is received. Mhesi a has therefore
functionsthat mani pulate tableswithout using transactions. Thisalternativeto processing isknown asadirty operation.
However, notice the trade-off in avoiding the overhead of transaction processing:

* Theatomicity and the isolation properties of Mhesi a arelost.

e Theisolation property is compromised, because other Erlang processes, which use transaction to manipulate
the data, do not get the benefit of isolation if dirty operations simultaneously are used to read and write records
from the same table.

The mgjor advantage of dirty operationsisthat they execute much faster than equivalent operations that are processed
as functional objects within atransaction.

Dirty operations are written to disc if they are performed on a table of type di sc_copi es or type
di sc_only_copi es. Mhesi a aso ensures that al replicas of a table are updated if a dirty write operation is
performed on atable.

A dirty operation ensures a certain level of consistency. For example, dirty operations cannot return garbled records.
Hence, each individual read or write operation is performed in an atomic manner.

All dirty functions execute acall toexi t ({ abort ed, Reason}) onfailure. Evenif the following functions are
executed inside a transaction no locks are acquired. The following functions are available:

mnesiadirty _read({Tab, Key}) reads one or more records from Mhesi a.

e mnesiadirty_write(Record) writes the record Recor d.

*  mnesiadirty_delete({ Tab, Key}) deletes one or more records with key Key.

 mnesiadirty_delete object(Record) isthe dirty operation alternative to the function delete_object/1.

o mnesiadirty_first(Tab) returnsthe "first" key in table Tab.

Recordsin set or bag tables are not sorted. However, there is arecord order that is unknown to the user. This
means that a table can be traversed by this function with the function mnesia:dirty_next/2.

If there are no records in the table, this function returns the atom ' $end_of t abl e' . It is not recommended
to use this atom as the key for any user records.

 mnesiadirty_next(Tab, Key) returns the "next" key in table Tab. This function makes it possible to traverse a
table and perform some operation on al recordsin the table. When the end of the tableis reached, the special key
" $end_of _t abl e' isreturned. Otherwise, the function returns akey that can be used to read the actual record.

Ericsson AB. All Rights Reserved.: Mnesia | 23



1.5 Transactions and Other Access Contexts

Thebehavior isundefined if any process performsawrite operation on the table while traversing the table with the
function dirty_next/2 Thisisbecausewr i t e operations on aMhesi a table can lead to internal reorganizations
of thetableitself. Thisisan implementation detail, but remember that the dirty functions are low-level functions.

*  mnesiadirty last(Tab) works exactly like mnesia:dirty_first/1 but returns the last object in Erlang term
order for the table type or der ed_set . For al other table types, mesi a: dirty first/1and
mesi a: dirty_| ast/ 1 aresynonyms.

* mnesiadirty_prev(Tab, Key) works exactly likemmesi a: di rty_next / 2 but returns the previous object in
Erlang term order for the table type or der ed_set . For all other table types, mesi a: di rty_next/ 2 and
mesi a: di rty_prev/ 2 are synonyms.

e The behavior of this function is undefined if the table is written on while being traversed. The function
mnesiairead |ock_table(Tab) can be used to ensure that no transaction-protected writes are performed during the
iteration.

* mnesiadirty_update counter({ Tab,Key}, Val). Counters are positive integers with a value greater than or equal
to zero. Updating a counter adds Val and the counter where Val isapositive or negative integer.

Mhesi a has no special counter records. However, records of the form { TabNane, Key, |nteger} can
be used as counters, and can be persistent.

Transaction-protected updates of counter records are not possible.

There are two significant differences when using this function instead of reading the record, performing the
arithmetic, and writing the record:
* Itismuch more efficient.

e Thefunciondirty_update counter/2 is performed as an atomic operation although it is not protected
by atransaction. Therfore no table update islost if two processes simultaneously execute the function
dirty update_counter/ 2.

* mnesiadirty_match_object(Pat) isthe dirty equivalent of mnesiazmatch_object/1.

o mnesiadirty_select(Tab, Pat) isthe dirty equivalent of mnesia:select/2.

* mnesiadirty_index_match_object(Pat, Pos) isthe dirty equivalent of mnesia:index_match_object/2.
* mnesiadirty_index_read(Tab, SecondaryKey, Pos) isthe dirty equivalent of mnesiaiindex_read/3.

e  mnesiadirty_all _keys(Tab) isthedirty equivalent of mnesia:all_keys/1.

1.5.4 Record Names versus Table Names

InMhesi a, all recordsin atable must have the same name. All the records must be instances of the same record type.
The record name, however, does not necessarily have to be the same as the table name, although thisis the case in
most of the examplesin this User's Guide. If atable is created without property r ecor d_nane, the following code
ensures that all records in the tables have the same name as the table:

mnesia:create table(subscriber, [])

However, if the table is created with an explicit record name as argument, as shown in the following example,
subscriber records can be stored in both of the tables regardless of the table names:

TabDef = [{record name, subscriber}],
mnesia:create table(my subscriber, TabDef),
mnesia:create table(your subscriber, TabDef).

To access such tables, simplified access functions (as described earlier) cannot be used. For example, writing a
subscriber record into a table requires the function mnesiawrite/3 instead of the simplified functions mnesia:write/1
and mnesia:s_write/1:

24 | Ericsson AB. All Rights Reserved.: Mnesia



1.5 Transactions and Other Access Contexts

mnesia:write(subscriber, #subscriber{}, write)
mnesia:write(my subscriber, #subscriber{}, sticky write)
mnesia:write(your subscriber, #subscriber{}, write)

The following simple code illustrates the relationship between the simplified access functions used in most of the
examples and their more flexible counterparts:

Ericsson AB. All Rights Reserved.: Mnesia | 25



1.5 Transactions and Other Access Contexts

mnesia:dirty write(Record) ->
Tab = element(1l, Record),
mnesia:dirty write(Tab, Record).

mnesia:dirty delete({Tab, Key}) ->
mnesia:dirty delete(Tab, Key).

mnesia:dirty delete object(Record) ->
Tab = element(1l, Record),
mnesia:dirty delete object(Tab, Record)

mnesia:dirty update counter({Tab, Key}, Incr) ->
mnesia:dirty update counter(Tab, Key, Incr).

mnesia:dirty read({Tab, Key}) ->
Tab = element(1l, Record),
mnesia:dirty read(Tab, Key).

mnesia:dirty match object(Pattern) ->
Tab = element(1l, Pattern),
mnesia:dirty match object(Tab, Pattern).

mnesia:dirty index match object(Pattern, Attr)
Tab = element (1, Pattern),
mnesia:dirty index match object(Tab, Pattern, Attr).

mnesia:write(Record) ->
Tab = element(1l, Record),
mnesia:write(Tab, Record, write).

mnesia:s write(Record) ->
Tab = element(1l, Record),
mnesia:write(Tab, Record, sticky write).

mnesia:delete({Tab, Key}) ->
mnesia:delete(Tab, Key, write).

mnesia:s delete({Tab, Key}) ->
mnesia:delete(Tab, Key, sticky write).

mnesia:delete object(Record) ->
Tab = element(1l, Record),
mnesia:delete object(Tab, Record, write).

mnesia:s delete object(Record) ->
Tab = element(1l, Record),
mnesia:delete object(Tab, Record, sticky write).

mnesia:read({Tab, Key}) ->
mnesia:read(Tab, Key, read).

mnesia:wread({Tab, Key}) ->
mnesia:read(Tab, Key, write).

mnesia:match object(Pattern) ->
Tab = element(1l, Pattern),
mnesia:match object(Tab, Pattern, read).

mnesia:index match object(Pattern, Attr) ->

Tab = element (1, Pattern),
mnesia:index_match object(Tab, Pattern, Attr, read).

26 | Ericsson AB. All Rights Reserved.: Mnesia



1.5 Transactions and Other Access Contexts

1.5.5 Activity Concept and Various Access Contexts

As previously described, a Functional Object (Fun) performing table access operations, as listed here, can be passed
on as arguments to the function mnesia:transaction/1,2,3:

*  mnesiawrite/3 (write/l, s write/1)

*  mnesiadelete/3 (mnesia.delete/l, mnesia:s delete/1)

* mnesiadelete object/3 (mnesia:delete object/1, mnesia:s delete object/1)

e mnesiaread/3 (mnesiaread/1, mnesiawread/1)

e mnesiamatch_object/2 (mnesiamatch_object/1)

*  mnesiaselect/3 (mnesia:select/2)

 mnesiafoldl/3 (mesi a: f ol dl / 4, mnesia:foldr/3, mesi a: f ol dr/ 4)

mnesiaal_keys1l

 mnesiaindex_match_object/4 (mnesiaindex_match_object/2)

e mnesiaindex_read/3

mnesialock/2 (mnesiaread lock table/1, mnesiawrite lock table/1)

« mnesiatable info/2

These functions are performed in a transaction context involving mechanisms, such as locking, logging, replication,

checkpoints, subscriptions, and commit protocols. However, the same function can also be evaluated in other activity
contexts.

The following activity access contexts are currently supported:

e transaction

e sync_transaction
e async_dirty

e sync dirty

e ets

By passing the same"fun" as argument to the function mnesia:sync_transaction(Fun[, Args]) itisperformed in synced
transaction context. Synced transactions wait until all active replicas has committed the transaction (to disc) before
returning from the mesi a: sync_transacti on cal. Using sync_t ransacti on is useful in the following
Cases.

e When an application executes on several nodes and wants to be sure that the update is performed on the remote
nodes before aremote process is spawned or amessage is sent to a remote process.

*  When acombining transaction writes with "dirty_reads", that is, the functionsdi rt y_nat ch_obj ect,
dirty read,dirty_index_read,dirty_sel ect,andsoon.

e When an application performs frequent or voluminous updates that can overload Mhesi a on other nodes.

By passing the same "fun" as argument to the function mnesia:async_dirty(Fun [, Args]), it is performed in dirty
context. The function calls are mapped to the corresponding dirty functions. This still involves logging, replication,
and subscriptions but no locking, local transaction storage, or commit protocols are involved. Checkpoint retainers
are updated but updated "dirty". Thus, they are updated asynchronously. The functions wait for the operation to be
performed on one node but not the others. If the table resides locally, no waiting occurs.

By passing the same "fun" as an argument to the function mnesia.sync dirty(Fun [, Args]), it is performed
in amost the same context as the function mnesiaasync dirty/1,2. The difference is that the operations are
performed synchronously. The caler waits for the updates to be performed on al active replicas. Using
mesi a: sync_di rty/ 1, 2 isuseful in the following cases:

*  When an application executes on several nodes and wants to be sure that the update is performed on the remote
nodes before a remote processis spawned or amessage is sent to aremote process.

Ericsson AB. All Rights Reserved.: Mnesia | 27



1.5 Transactions and Other Access Contexts

*  When an application performs frequent or voluminous updates that can overload Mhesi a on the nodes.

To check if your codeis executed within atransaction, use the function mnesiazis_transaction/0. It returnst r ue when
called inside a transaction context, otherwisef al se.

Mhesi a tables with storage type RAM copi es and di sc_copi es are implemented internally as et s tables.
Applications can access the these tables directly. Thisis only recommended if all options have been weighed and the
possible outcomes are understood. By passing the earlier mentioned "fun” to the function mnesiaets(Fun [, Args]), it
is performed but in araw context. The operations are performed directly on the local et s tables, assuming that the
local storagetypeis RAM copi es and that the tableis not replicated on other nodes.

Subscriptions are not triggered and no checkpoints are updated, but this operation is blindingly fast. Disc resident
tables are not to be updated with the et s function, asthe disc is not updated.

The Fun can aso be passed as an argument to the function mnesia:activity/2,3,4, which enables use of customized
activity access callback modules. It can either be obtained directly by stating the module name as argument, or
implicitly by use of configuration parameter access_nodul e. A customized callback modul e can beused for several
purposes, such as providing triggers, integrity constraints, runtime statistics, or virtual tables.

The callback module does not have to access real Mhesi a tables, it is free to do whatever it wants as long as the
callback interfaceisfulfilled.

Appendix B, Activity Access Callback Interface provides the source code, mnesi a_f r ag. er |, for one aternative
implementation. The context-sensitive function mnesia:table_info/2 can be used to provide virtual information about
atable. One use of thisis to perform QLC queries within an activity context with a customized callback module. By
providing table information about table indexes and other QLC requirements, Q_C can be used as a generic query
language to access virtua tables.

QLC queries can be performed in all these activity contexts (transaction, sync_transacti on,
async_dirty,sync_dirty,andets). Theet s activity only worksif the table has no indexes.

The function mesi a: di rty_* always executes with async_di rty semantics regardless of which activity
access contexts that are started. It can even start contexts without any enclosing activity access context.

1.5.6 Nested Transactions

Transactions can be nested in an arbitrary fashion. A child transaction must run in the same process as its parent.
When a child transaction terminates, the caller of the child transaction gets return value { abort ed, Reason}
and any work performed by the child is erased. If a child transaction commits, the records written by the child are
propagated to the parent.

No locks are released when child transactions terminate. L ocks created by a sequence of nested transactions are kept
until thetopmost transaction terminates. Furthermore, any update performed by anested transaction isonly propagated
in such a manner so that the parent of the nested transaction sees the updates. No final commitment is done until the
top-level transaction terminates. So, although a nested transaction returns{ at om ¢, Val }, if the enclosing parent
transaction terminates, the entire nested operation terminates.

The ability to have nested transaction with identical semantics astop-level transaction makes it easier to write library
functions that manipulate Mhesi a tables.

Consider a function that adds a subscriber to a telephony system:

add subscriber(S) ->
mnesia:transaction(fun() ->
case mnesia:read( ..........

28 | Ericsson AB. All Rights Reserved.: Mnesia



1.5 Transactions and Other Access Contexts

This function needsto be called as a transaction. Assume that you wish to write afunction that both calls the function
add_subscri ber/ 1 andisin itself protected by the context of atransaction. By calling add_subscri ber/ 1
from within another transaction, a nested transaction is created.

Also, different activity access contexts can be mixed while nesting. However, the dirty ones (async_dirty,
sync_dirty, and et s) inherit the transaction semantics if they are called inside a transaction and thus grab locks
and use two or three phase commit.

Example:

add_subscriber(S) ->
mnesia:transaction(fun() ->
%% Transaction context
mnesia:read({some tab, some data}),
mnesia:sync dirty(fun() ->
%% Still in a transaction context.
case mnesia:read( ..) ..end), end).
add_subscriber2(S) ->
mnesia:sync dirty(fun() ->
%% In dirty context
mnesia:read({some tab, some data}),
mnesia:transaction(fun() ->
%% In a transaction context.
case mnesia:read( ..) ..end), end).

1.5.7 Pattern Matching

When the function mnesiarread/3 cannot be used, Mhesi a provides the programmer with several functions for
matching records against a pattern. The most useful ones are the following:

mnesia:select(Tab, MatchSpecification, LockKind) ->
transaction abort | [ObjectList]
mnesia:select(Tab, MatchSpecification, NObjects, Lock) ->

transaction abort | {[Object],Continuation} | '$end of table'
mnesia:select(Cont) ->
transaction abort | {[Object],Continuation} | '$end of table'

mnesia:match object(Tab, Pattern, LockKind) ->
transaction abort | RecordList

These functions match a Pat t er n against all records in table Tab. In amnesia:select call, Pat t er n is a part of
Mat chSpeci fi cat i on described in the following. It is not necessarily performed as an exhaustive search of the
entire table. By using indexes and bound values in the key of the pattern, the actual work done by the function can be
condensed into afew hash lookups. Using or der ed_set tables can reduce the search space if the keys are partialy
bound.

The pattern provided to the functions must be a valid record, and the first element of the provided tuple must be the
r ecor d_narne of thetable. The special element’ ' matches any data structure in Erlang (also known as an Erlang
term). The specia elements' $<nunber >' behave as Erlang variables, that is, they match anything, bind the first
occurrence, and match the coming occurrences of that variable against the bound value.

Use function mnesiactable_info(Tab, wild_pattern) to obtain a basic pattern, which matches all records in a table, or
use the default value in record creation. Do not make the pattern hard-coded, as this makes the code more vulnerable
to future changes of the record definition.

Example:
Wildpattern = mnesia:table info(employee, wild pattern),
%% 0r use
Wildpattern = #employee{ = ' '},

Ericsson AB. All Rights Reserved.: Mnesia | 29



1.5 Transactions and Other Access Contexts

For the employee table, the wild pattern looks as follows:

{employee, |7|’ 1 |, ' |’ ] |’ 1 |,| |}-

To constrain the match, it is needed to replace some of the' ' elements. The code for matching out al femae
employees looks as follows:

Pat = #employee{sex = female, ="' '}

F = fun() -> mnesia:match object(Pat) end,
Females = mnesia:transaction(F).

The match function can also be used to check the equality of different attributes. For example, to find all employees
with an employee number equal to their room number:

Pat = #employee{emp no = '$1', room no = '$1', ="' "'},
F = fun() -> mnesia:match object(Pat) end,
0dd = mnesia:transaction(F).

The function mnesiamatch_object/3 lacks some important features that mnesiaselect/3 have. For example,
mesi a: mat ch_obj ect / 3 can only return the matching records, and it cannot express constraints other than
equality. To find the names of the male employees on the second floor:

MatchHead = #employee{name='$1l', sex=male, room no={'$2', ' '}, =' '},
Guard = [{'>="', '$2', 220},{'<', '$2', 230}1],
Result = '$1°',

mnesia:select(employee, [{MatchHead, Guard, [Result]}])

The function sel ect can be used to add more constraints and create output that cannot be done with
mesi a: mat ch_obj ect/ 3.

The second argument to sel ect is a MatchSpecification. A MatchSpecification is a list
of MatchFuncti ons, where each Mat chFunction consists of a tuple containing {MatchHead,
Mat chCondi ti on, MatchBody}:

* Mat chHead isthe same pattern asused in resi a: mat ch_obj ect / 3 described earlier.

* MatchCondi ti onisalist of extraconstraints applied to each record.

e Mat chBody constructs the return values.

For details about the match specifications, see "Match Specifications in Erlang" in ERTS User's Guide. For more
information, see the ets and dets manual pagesin STDLI B.

The functions select/4 and select/1 are used to get alimited number of results, where Cont i nuat i on gets the next
chunk of results. Mhesi a uses NObj ect s as arecommendation only. Thus, more or less results than specified with
NObj ect s canbereturnedintheresult list, even the empty list can bereturned evenif there are moreresultsto collect.

There is a severe performance penalty in using mesi a: sel ect /[ 1| 2| 3| 4] after any modifying operation
is done on that table in the same transaction. That is, avoid using mnesiawrite/l or mnesia:delete/1 before
mmesi a: sel ect inthe same transaction.

If the key attribute is bound in a pattern, the match operation is efficient. However, if the key attribute in a pattern
isgivenas' _' or' $1', thewhole enpl oyee table must be searched for records that match. Hence if the tableis
large, this can become a time-consuming operation, but it can be remedied with indexes (see Indexing) if the function
mnesiamatch_object is used.

30 | Ericsson AB. All Rights Reserved.: Mnesia



1.5 Transactions and Other Access Contexts

QLC queries can also be used to search Mhesi a tables. By using the function mnesia:table/[1|2] as the generator
inside a QL C query, you let the query operate on aVhesi a table. Mhesi a-specific optionsto rmesi a: t abl e/ 2
are{l ock, Lock},{n_objects,Integer},and{traverse, Sel Method}:

* | ock specifieswhether Mhesi a isto acquire aread or write lock on the table.

* n_obj ect s specifies how many results are to be returned in each chunk to QLC.

* traver se specifieswhich function Mhesi a isto useto traverse the table. Default sel ect isused, but by
using{traverse, {select, MatchSpecification}} asanoptiontomnesatable/2theuser can
specify its own view of thetable.

If no options are specified, aread lock is acquired, 100 results are returned in each chunk, and sel ect is used to
traverse thetable, that is:

mnesia:table(Tab) ->
mnesia:table(Tab, [{n objects,100},{lock, read}, {traverse, select}]).

The function mnesia:all_keys(Tab) returns al keysin atable.

1.5.8 lteration

Vhesi a provides the following functions that iterate over all the recordsin atable:

mnesia:foldl
mnesia:foldr
mnesia:foldl
mnesia:foldr

Fun, AccO®, Tab) -> NewAcc | transaction abort
Fun, Acc@®, Tab) -> NewAcc | transaction abort
Fun, Acc@®, Tab, LockType) -> NewAcc | transaction abort
Fun, AccO®, Tab, LockType) -> NewAcc | transaction abort

—_~ o~ —~ —~

These functions iterate over the Vhesi a table Tab and apply the function Fun to each record. Fun takes two
arguments, the first is arecord from the table, and the second is the accumulator. Fun returns a new accumulator.

The first time Fun is applied, AccO is the second argument. The next time Fun is called, the return value from the
previous call is used as the second argument. The term the last call to Fun returnsis the return value of the function
mnesia:foldl/3 or mnesia:foldr/3.

The difference between these functions is the order the table is accessed for or der ed_set tables. For other table
types the functions are equivalent.

LockType specifies what type of lock that is to be acquired for the iteration, default isr ead. If records are written
or deleted during the iteration, awrite lock isto be acquired.

These functions can be used to find records in a table when it is impossible to write constraints for the function
mnesiamatch_object/3, or when you want to perform some action on certain records.

For example, finding all the employees who have a salary less than 10 can look as follows:

find low salaries() ->
Constraint =
fun(Emp, Acc) when Emp#employee.salary < 10 ->
[Emp | Accl;
(_, Acc) ->
Acc
end,

Find = fun() -> mnesia:foldl(Constraint, [], employee) end,
mnesia:transaction(Find).

Toraise the salary to 10 for everyone with a salary less than 10 and return the sum of al raises:

Ericsson AB. All Rights Reserved.: Mnesia | 31



1.6 Miscellaneous Mnesia Features

increase low _salaries() ->
Increase =
fun(Emp, Acc) when Emp#employee.salary < 10 ->
01dS = Emp#employee.salary,
ok = mnesia:write(Emp#employee{salary = 10}),
Acc + 10 - 0ldS;
(_, Acc) ->
Acc
end,
IncLow = fun() -> mnesia:foldl(Increase, 0, employee, write) end,
mnesia:transaction(IncLow).

Many nice things can be done with the iterator functions but take some caution about performance and memory use
for large tables.

Call theseiteration functions on nodes that contain areplica of thetable. Each call to the function Fun accessthetable
and if the table resides on another node it generates much unnecessary network traffic.

Mhesi a also provides some functions that make it possible for the user to iterate over the table. The order of the
iteration is unspecified if the tableis not of typeor der ed_set :

mnesia:first(Tab) Key | transaction abort

mnesia:last(Tab) Key | transaction abort

mnesia:next(Tab,Key) -> Key | transaction abort
mnesia:prev(Tab,Key) -> Key | transaction abort
mnesia:snmp get next index(Tab,Index) -> {ok, NextIndex} | endOfTable

->
->

The order of fi rst/l ast and next /prev isonly valid for or der ed_set tables, they are synonyms for other
tables. When the end of the table is reached, the special key ' $end_of _t abl e' isreturned.

If records are written and deleted during the traversal, use the function mnesia:foldl/3 or mnesia:foldr/3withawr i t e
lock. Or the function mnesia:write lock table/1 whenusingfi r st and next .

Writing or deleting in transaction context creates alocal copy of each modified record. Thus, modifying each record
in alarge table uses much memory. Mhesi a compensates for every written or deleted record during the iteration in
a transaction context, which can reduce the performance. If possible, avoid writing or deleting records in the same
transaction before iterating over the table.

Indirty context, thatis,sync_di rty orasync_di rty,themodified recordsare not stored in alocal copy; instead,
each record is updated separately. This generates much network traffic if the table has a replica on another node and
has all the other drawbacks that dirty operations have. Especially for commands mnesia:first/1 and mnesia:next/2, the
same drawbacks as described previously for mnesia:dirty_first/1 and mnesia:dirty _next/2 applies, that is, no writing
to the table is to be done during iteration.

1.6 Miscellaneous Mnesia Features

The previous sections describe how to get started with Mhesi a and how to build a Mhesi a database. This section
describes the more advanced features available when building a distributed, fault-tolerant Mhesi a database. The
following topics are included:

* Indexing

o Distribution and fault tolerance

e Tablefragmentation

* Local content tables

* Disc-lessnodes

*  More about schema management

e Mhesi a event handling

32 | Ericsson AB. All Rights Reserved.: Mnesia



1.6 Miscellaneous Mnesia Features

» Debugging Mhesi a applications

e Concurrent processesin Mhesi a

e Prototyping

e Object-based programming with Mhesi a

1.6.1 Indexing

Data retrieval and matching can be performed efficiently if the key for the record is known. Conversely, if the key
is unknown, al records in a table must be searched. The larger the table, the more time consuming it becomes. To
remedy this problem, Mhesi a indexing capabilities are used to improve data retrieval and matching of records.

The following two functions manipulate indexes on existing tables:

 mnesiaadd _table index(Tab, AttributeName) -> {aborted, R} [{atomic, ok}
* mnesiade_table index(Tab, AttributeName) -> { aborted, R} [{ atomic, ok}
These functions create or delete atable index on afield defined by At t ri but eName. Toillustrate this, add an index
tothetable definition (enpl oyee, {enp_no, nane, sal ary, sex, phone, room no}),whichisthe

example table from the Conpany database. The function that adds an index on element sal ar y can be expressed
asmmesi a: add_t abl e_i ndex(enpl oyee, sal ary).

The indexing capabilities of Mhesi a are used with the following three functions, which retrieve and match records
based on index entries in the database:

« mnesiaindex_read(Tab, SecondaryKey, AttributeName) -> transaction abort | RecordList avoids an exhaustive
search of the entire table, by looking up Secondar yKey in the index to find the primary keys.

* mnesiaindex_match_object(Pattern, AttributeName) -> transaction abort | RecordList avoids an exhaustive
search of the entire table, by looking up the secondary key in the index to find the primary keys. The secondary
key isfoundinfield At t ri but eNane of Pat t er n. The secondary key must be bound.

* mnesiamatch_object(Pattern) -> transaction abort | RecordList uses indexes to avoid exhaustive search of
the entire table. Unlike the previous functions, this function can use any index as long as the secondary key is
bound.

These functions are further described and exemplified in Pattern Matching.

1.6.2 Distribution and Fault Tolerance

Mhesi a is adistributed, fault-tolerant DBMS. Tables can be replicated on different Erlang nodes in various ways.
The Mhesi a programmer does not need to state where the different tables reside, only the names of the different
tables need to be specified in the program code. Thisis known as "location transparency"” and is an important concept.
In particular:

* A program works regardless of the data location. It makes no difference whether the data resides on the local
node or on aremote node.

Notice that the program runs slower if the datais |ocated on aremote node.

*  Thedatabase can be reconfigured, and tables can be moved between nodes. These operations do not affect the
user programs.

It has previously been shown that each table has a number of system attributes, such asi ndex andt ype.

Table attributes are specified when the table is created. For example, the following function creates a table with two
RAM replicas:

mnesia:create table(foo,
[{ram copies, [N1, N2]},
{attributes, record info(fields, foo)}]).

Ericsson AB. All Rights Reserved.: Mnesia | 33



1.6 Miscellaneous Mnesia Features

Tables can a so have the following properties, where each attribute has alist of Erlang nodes asits value:

 ram copi es. The value of the node list is a list of Erlang nodes, and a RAM replica of the table resides on
each nodein thelist.

Noticethat no disc operations are performed when aprogram executes write operationsto these replicas. However,
if permanent RAM replicas are required, the following alternatives are available:

e Thefunction mnesia:dump_tables/1 can be used to dump RAM table replicas to disc.
* Thetablereplicas can be backed up, either from RAM, or from disc if dumped there with this function.

« disc_copi es. Thevaueof theattribute isalist of Erlang nodes, and areplica of the table resides both in
RAM and on disc on each node in the list. Write operations addressed to the table address both the RAM and
the disc copy of the table.

« disc_only_copies. Thevalue of the attribute isalist of Erlang nodes, and areplica of the table resides
only as adisc copy on each nodein the list. The major disadvantage of this type of table replicais the access
speed. The major advantage is that the table does not occupy space in memory.

In addition, table properties can be set and changed. For details, see Define a Schema.

There are basically two reasons for using more than one table replica: fault tolerance and speed. Notice that table
replication provides a solution to both of these system requirements.

If there are two active table replicas, all information is till available if one replica fails. This can be an important
property in many applications. Furthermore, if atable replicaexists at two specific nodes, applications that execute at
either of these nodes can read data from the table without accessing the network. Network operations are considerably
slower and consume more resources than local operations.

It can be advantageousto create table replicasfor adistributed application that reads data often, but writes data seldom,
to achieve fast read operations on the local node. The major disadvantage with replication is the increased time to
write data. If atable has two replicas, every write operation must access both table replicas. Since one of these write
operations must be a network operation, it is considerably more expensive to perform awrite operation to areplicated
table than to anon-replicated table.

1.6.3 Table Fragmentation

Concept

A concept of table fragmentation has been introduced to cope with large tables. Theideaisto split atable into several
manageable fragments. Each fragment is implemented as a first class Mhesi a table and can be replicated, have
indexes, and so on, as any other table. But the tables cannot have | ocal _cont ent or have the snnp connection
activated.

To be able to access arecord in a fragmented table, Mhesi a must determine to which fragment the actual record
belongs. Thisis done by module mesi a_f r ag, which implementsthe mesi a_access callback behavior. It is
recommended to read the documentation about the function mnesia:activity/4 to seehow rmesi a_f r ag can be used
asammesi a_access callback module.

At each record access, mesi a_f r ag first computes a hash value from the record key. Second, the name of the table
fragment is determined from the hash value. Finally the actua table access is performed by the same functions as for
non-fragmented tables. When the key is not known beforehand, all fragments are searched for matching records.

Notice that in or der ed_set tables, the records are ordered per fragment, and the order is undefined in results
returned by sel ect and mat ch_obj ect , aswell asfirst,next,prev andl ast .

The following code illustrates how a Vhesi a table is converted to be a fragmented table and how more fragments
are added later:

34 | Ericsson AB. All Rights Reserved.: Mnesia



1.6 Miscellaneous Mnesia Features

Eshell V4.7.3.3 (abort with ~G)
(a@sam)1> mnesia:start().
ok
(a@sam)2> mnesia:system info(running db nodes).
[b@sam, c@sam, a@sam]
(a@sam)3> Tab = dictionary.
dictionary
(a@sam)4> mnesia:create table(Tab, [{ram copies, [a@sam, b@sam]}]).
{atomic, ok}
(a@sam)5> Write = fun(Keys) -> [mnesia:write({Tab,K,-K}) || K <- Keys], ok end.
#Fun<erl eval>
(a@sam)6> mnesia:activity(sync dirty, Write, [lists:seq(l, 256)], mnesia frag).
ok
(a@sam)7> mnesia:change table frag(Tab, {activate, [1}).
{atomic, ok}
(a@sam)8> mnesia:table info(Tab, frag properties).
[{base table,dictionary},
{foreign key,undefined},
{n_doubles, 0},
{n_fragments,1},
{next n to split,1},
{node pool, [a@sam, b@sam,c@sam]}]
(a@sam)9> Info = fun(Item) -> mnesia:table info(Tab, Item) end.
#Fun<erl eval>
(a@sam)10> Dist = mnesia:activity(sync dirty, Info, [frag dist], mnesia frag).
[{c@sam, 0}, {a@sam, 1}, {b@sam, 1}]
(a@sam)11> mnesia:change table frag(Tab, {add frag, Dist}).
{atomic, ok}
(a@sam)12> Dist2 = mnesia:activity(sync dirty, Info, [frag dist], mnesia frag).
[{b@sam, 1}, {c@sam,1},{a@sam,2}]
(a@sam)13> mnesia:change table frag(Tab, {add frag, Dist2}).
{atomic, ok}
(a@sam)14> Dist3 = mnesia:activity(sync dirty, Info, [frag dist], mnesia frag).
[{a@sam, 2}, {b@sam, 2}, {c@sam,2}]
(a@sam)15> mnesia:change table frag(Tab, {add frag, Dist3}).
{atomic, ok}
(a@sam) 16> Read = fun(Key) -> mnesia:read({Tab, Key}) end.
#Fun<erl eval>
(a@sam)17> mnesia:activity(transaction, Read, [12], mnesia frag).
[{dictionary,12,-12}]
(a@sam)18> mnesia:activity(sync dirty, Info, [frag size], mnesia frag).
[{dictionary, 64},
{dictionary frag2,64},
{dictionary frag3,64},
{dictionary frag4,64}]
(a@sam) 19>

Fragmentation Properties

The table property f r ag_pr oper ti es can be read with the function mnesiatable_info(Tab, frag_properties). The
fragmentation properties are alist of tagged tuples with arity 2. By default the list is empty, but when it is non-empty
it triggers Mhesi a to regard the table as fragmented. The fragmentation properties are as follows:

{n_fragments, Int}

n_f ragment s regulates how many fragments that the table currently has. This property can explicitly be set
at table creation and later be changed with { add_frag, NodesOrDi st} ordel _frag.n_fragnents
defaultsto 1.

{node_pool, List}

The node pool contains a list of nodes and can explicitly be set at table creation and later be changed with
{add_node, Node} or{del node, Node}. At tablecreation VMhesi a triesto distribute the replicas of

Ericsson AB. All Rights Reserved.: Mnesia | 35



1.6 Miscellaneous Mnesia Features

each fragment evenly over all the nodes in the node pool. Hopefully all nodes end up with the same number of
replicas. node_pool defaultsto the return value from the function mnesia:system_info(db_nodes).

{n_ramcopies, Int}
Regulates how many r am copi es replicas that each fragment is to have. This property can explicitly
be set at table creation. Defaults is O, but if n_di sc_copi es and n_di sc_only_copi es aso are 0,
n_ram copi es defaultsto 1.

{n_disc_copies, Int}
Regulates how many di sc_copi es replicas that each fragment is to have. This property can explicitly be set
at table creation. Default isO.

{n_disc_only copies, Int}
Regulates how many di sc_onl y_copi es replicasthat each fragment isto have. This property can explicitly
be set at table creation. Defaultsis 0.

{foreign_key, ForeignKey}

For ei gnKey can either betheatomundef i ned or thetuple{ For ei gnTab, Attr},whereAttr denotes
an attribute that isto be interpreted as akey in another fragmented table named For ei gnTab. Mhesi a ensures
that the number of fragmentsin this table and in the foreign table are always the same.

When fragments are added or deleted, Mhesi a automatically propagates the operation to all fragmented tables
that have a foreign key referring to this table. Instead of using the record key to determine which fragment
to access, the value of field At t r is used. This feature makes it possible to colocate records automatically in
different tables to the same node. f or ei gn_key defaultsto undef i ned. However, if the foreign key is set
to something else, it causes the default values of the other fragmentation properties to be the same values as the
actual fragmentation properties of the foreign table.

{hash_nodul e, Atont

Enables definition of an aternative hashing scheme. The module must implement the mnesia_frag_hash callback
behavior. This property can explicitly be set at table creation. Default ismrmesi a_frag_hash.

{hash_state, Tern}

Enables a table-specific parameterization of a generic hash module. This property can explicitly be set at table
creation. Default isundef i ned.

36 | Ericsson AB. All Rights Reserved.: Mnesia



1.6 Miscellaneous Mnesia Features

Eshell V4.7.3.3 (abort with ~G)
(a@sam) 1> mnesia:start().
ok
(a@sam)2> PrimProps = [{n_fragments, 7}, {node pool, [node()]}].
[{n_fragments,7},{node pool, [a@sam]}]
(a@sam)3> mnesia:create table(prim dict,
[{frag properties, PrimProps},
{attributes, [prim _key,prim val]}]).
{atomic, ok}
(a@sam)4> SecProps = [{foreign key, {prim dict, sec val}}].
[{foreign key, {prim dict,sec val}}]
(a@sam)5> mnesia:create table(sec dict,
[{frag properties, SecProps},
(a@sam) 5> {attributes, [sec _key, sec vall}]).
{atomic, ok}
(a@sam)6> Write = fun(Rec) -> mnesia:write(Rec) end.
#Fun<erl eval>
(a@sam)7> PrimKey = 11.
11
(a@sam)8> SecKey = 42.
42
(a@sam)9> mnesia:activity(sync dirty, Write,
[{prim dict, PrimKey, -11}1, mnesia frag).
ok
(a@sam) 10> mnesia:activity(sync dirty, Write,
[{sec dict, SecKey, PrimKey}], mnesia frag).
ok
(a@sam) 11> mnesia:change table frag(prim dict, {add frag, [node()1}).
{atomic, ok}
(a@sam) 12> SecRead = fun(PrimKey, SecKey) ->
mnesia:read({sec dict, PrimKey}, SecKey, read) end.
#Fun<erl eval>
(a@sam) 13> mnesia:activity(transaction, SecRead,
[PrimKey, SecKeyl], mnesia frag).
[{sec dict,42,11}]
(a@sam)14> Info = fun(Tab, Item) -> mnesia:table info(Tab, Item) end.
#Fun<erl eval>
(a@sam) 15> mnesia:activity(sync dirty, Info,
[prim dict, frag size], mnesia frag).
[{prim dict,0},
{prim dict frag2,0},
{prim dict frag3,0},
{prim dict frag4,1},
{prim dict frag5,0},
{prim dict frag6,0},
{prim dict frag7,0},
{prim dict frag8,0}]
(a@sam) 16> mnesia:activity(sync dirty, Info,
[sec dict, frag size], mnesia frag).
[{sec dict,0},
{sec dict frag2,0},
{sec dict frag3,0},
{sec dict frag4,1},
{sec dict frag5,0},
{sec dict frag6,0},
{sec dict frag7,0},
{sec dict frag8,0}]
(a@sam) 17>

Management of Fragmented Tables

The function mesi a: change_t abl e_frag(Tab, Change) isintended to be used for reconfiguration of
fragmented tables. Argument Change isto have one of the following values:

Ericsson AB. All Rights Reserved.: Mnesia | 37



1.6 Miscellaneous Mnesia Features

{activate, FragProps}

Activates the fragmentation properties of an existing table. Fr agPr ops is either to contain { node_pool ,
Nodes} or be empty.

deactivate

Deactivates the fragmentation properties of atable. The number of fragments must be 1. No other table can refer
tothistableinitsforeign key.

{add_frag, NodesOrDi st}

Adds a fragment to a fragmented table. All records in one of the old fragments are rehashed and about half of
them are moved to the new (last) fragment. All other fragmented tables, which refer to thistable in their foreign
key, automatically get a new fragment. Also, their records are dynamically rehashed in the same manner as for
the main table.

Argument NodesOr Di st can either be alist of nodes or the result from the function mnesia:table_info(Tab,
frag_dist). Argument NodesOr Di st is assumed to be a sorted list with the best nodes to host new replicas
first in the list. The new fragment gets the same number of replicas asthe first fragment (seen_r am copi es,
n_di sc_copi es,andn_di sc_only_copi es). TheNodesO Di st list must at least contain one element
for each replicathat needs to be allocated.

del frag

Deletes a fragment from a fragmented table. All records in the last fragment are moved to one of the other
fragments. All other fragmented tables, which refer to thistable in their foreign key, automatically lose their last
fragment. Also, their records are dynamically rehashed in the same manner as for the main table.

{add_node, Node}

Adds a node to node_pool. The new node pool affects the list returned from the function
mnesiatable info(Tab, frag_dist).

{del _node, Node}

Deletes a node from node_pool . The new node pool affects the list returned from the function
mnesiattable info(Tab, frag_dist).

Extensions of Existing Functions

The function mnesiacreate table/2 creates a brand new fragmented table, by setting table property
frag_properti es tosome proper values.

The function mnesia.delete_table/1 deletes a fragmented table including all its fragments. There must however not
exist any other fragmented tables that refer to thistablein their foreign key.

The function mnesia:table_info/2 now understandsitem f r ag_pr operti es.

If the function mesi a: t abl e_i nf o/ 2 is started in the activity context of module mesi a_f r ag, information
of several new items can be obtained:

base table

The name of the fragmented table
n_fragnments

The actual number of fragments
node_pool

The pool of nodes
n_ram copi es
n_di sc_copi es

38 | Ericsson AB. All Rights Reserved.: Mnesia



1.6 Miscellaneous Mnesia Features

n_di sc_onl y_copi es
The number of replicas with storage type r am copi es, di sc_copi es, and di sc_onl y_copi es,
respectively. The actual values are dynamically derived from the first fragment. The first fragment serves as
a protype. When the actual values need to be computed (for example, when adding new fragments) they are
determined by counting the number of each replica for each storage type. This means that when the functions
mnesiaadd_table copy/3, mnesiadel_table copy/2, and mnesia:change_table copy_type/2 are applied on the
first fragment, it affects the settingsonn_r am copi es,n_di sc_copi es,andn_di sc_onl y_copi es.

forei gn_key
Theforeign key

foreigners
All other tablesthat refer to thistablein their foreign key

frag_namnes
The names of all fragments

frag_di st

A sorted list of { Node, Count } tuplesthat are sorted inincreasing Count order. Count isthetotal number of
replicasthat thisfragmented table hosts on each Node. Thelist always containsat least all nodesinnode_pool .
Nodes that do not belongto node_pool areput last in the list even if their Count islower.

frag_size
A listof { Name, Si ze} tuples, where Nane isafragment Name, and Si ze ishow many records it contains
frag_nenory
A list of { Nane, Menory} tuples, where Nane isafragment Name, and Menor y is how much memory it
occupies
si ze
Total size of all fragments
nmenory
Total memory of all fragments

Load Balancing

There are several algorithmsfor distributing records in afragmented table evenly over apool of nodes. No oneis best,
it depends on the application needs. The following examples of situations need some attention:

« permanent change of nodes.Whenanew permanent db_node isintroduced or dropped, it can be
time to change the pool of nodes and redistribute the replicas evenly over the new pool of nodes. It can also be
time to add or delete a fragment before the replicas are redistributed.

* size/menory threshol d. When the total size or total memory of afragmented table (or asingle
fragment) exceeds some application-specific threshold, it can be time to add a new fragment dynamically to
obtain a better distribution of records.

e tenporary node down.When anodetemporarily goesdown, it can be time to compensate some
fragments with new replicas to keep the desired level of redundancy. When the node comes up again, it can be
time to remove the superfluous replica.

« overload threshol d. When the load on some node exceeds some application-specific threshold, it can be
time to either add or move some fragment replicas to nodes with lower load. Take extra care if the table has a
foreign key relation to some other table. To avoid severe performance penalties, the same redistribution must be
performed for all the related tables.

Ericsson AB. All Rights Reserved.: Mnesia | 39



1.6 Miscellaneous Mnesia Features

Use the function mmesi a:change_table_frag/2 to add new fragments and apply the
usua schema manipulation functions (such as mnesiaadd table copy/3, mnesiadel_table copy/2, and
mnesia:change _table copy_type/2) on each fragment to perform the actual redistribution.

1.6.4 Local Content Tables

Replicated tables have the same content on all nodes wherethey are replicated. However, it is sometimes advantageous
to have tables, but different content on different nodes.

If attribute{ | ocal _content, true} isspecified whenyou create thetable, the table resides on the nodes where
you specify the table to exist, but the write operations on the table are only performed on the local copy.

Furthermore, when the table isinitialized at startup, the table is only initialized locally, and the table content is not
copied from another node.

1.6.5 Disc-Less Nodes

Mhesi a can be run on nodes that do not have a disc. Replicas of di sc_copi es or di sc_only_copi es are
not possible on such nodes. This is especialy troublesome for the schena table, as Mhesi a needs the schema to
initialize itself.

The schematable can, as other tables, reside on one or more nodes. The storage type of the schematable can either be
di sc_copi esorram copi es (butnotdi sc_onl y_copi es). Atstartup, Mhesi a usesitsschemato determine
with which nodesit isto try to establish contact. If any other node is started already, the starting node mergesitstable
definitions with the table definitions brought from the other nodes. This also applies to the definition of the schema
tableitself. Application parameter ext r a_db_nodes containsalist of nodesthat Mnesi a alsoisto establish contact
with besides those found in the schema. Default is[] (empty list).

Hence, when a disc-less node needs to find the schema definitions from a remote node on the network, this
information must be supplied through application parameter - mesi a extra_db_nodes NodeLi st . Without
this configuration parameter set, Mhesi a starts as a single node system. Also, the function mnesia:change_config/2
can be used to assign avalueto ext r a_db_nodes and force a connection after Mhesi a has been started, that is,
mmesi a: change_confi g(extra_db_nodes, NodelList).

Application parameter schema_| ocat i on controlswhere Mhesi a searchesfor its schema. The parameter can be
one of the following atoms:
di sc
Mandatory disc. The schemais assumed to be located in the Vnesi a directory. If the schema cannot be found,
Mhesi a refusesto start.
ram

Mandatory RAM. The schema resides in RAM only. At startup, atiny new schema is generated. This default
schema contains only the definition of the schema table and resides on the local node only. Since no other nodes
arefound in the default schema, configuration parameter ext r a_db_nodes must be used to let the node share
its table definitions with other nodes. (Parameter ext r a_db_nodes can also be used on disc-full nodes.)

opt _di sc

Optional disc. The schema can reside on either disc or RAM. If the schemais found on disc, Mhesi a starts as
a disc-full node (the storage type of the schematable is disc_copies). If no schemais found on disc, Mhesi a
starts as a disc-less node (the storage type of the schematableisr am copi es). The default for the application
parameter isopt _di sc.

When schema_| ocati on is set to opt _di sc, the function mnesia:change_table copy_type/3 can be used to
change the storage type of the schema. Thisisillustrated as follows:

40 | Ericsson AB. All Rights Reserved.: Mnesia



1.6 Miscellaneous Mnesia Features

1> mnesia:start().

ok

2> mnesia:change table copy type(schema, node(), disc copies).
{atomic, ok}

Assuming that the call to mnesia:start/O does not find any schema to read on the disc, Mhesi a starts as a disc-less
node, and then change it to a node that use the disc to store the schema locally.

1.6.6 More about Schema Management

Nodes can be added to and removed from a IVhesi a system. This can be done by adding a copy of the schema to
those nodes.

The functions mnesia:add_table copy/3 and mnesia:del_table copy/2 can be used to add and delete replicas of the
schematable. Adding a node to the list of nodes where the schema is replicated affects the following:

« It allowsother tablesto be replicated to this node.
* |t causes Mnesi a totry to contact the node at startup of disc-full nodes.

The function call mesi a: del _t abl e_copy(schema, nynode@ost) deletes node mynode@ost from
the Mhesi a system. The cal failsif Mhesi a isrunning on mynode@ost . The other Mhesi a nodes never try to
connect to that node again. Notice that if there is adisc resident schemaon node nynode@ost , theentire Mnesi a
directory isto be deleted. Thisis done with the function mnesia:delete_schema/1. If Mhesi a is started again on node
mynode@ost and the directory has not been cleared, the behavior of Mhesi a isundefined.

If the storage type of the schemaisram copi es, that is, a disc-less node, Mhesi a does not use the disc on that
particular node. The disc use is enabled by changing the storage type of tableschema todi sc_copi es.

New schemas are created explicitly with the function mnesia:create schema/l or implicitly by starting Mnesi a
without adisc resident schema. Whenever atable (including the schematable) is created, it is assigned its own unique
cookie. The schematableis not created with the function mnesia:.create table/2 as normal tables.

At startup, Mnesi a connects different nodes to each other, then they exchange table definitions with each other, and
the table definitions are merged. During the merge procedure, Mhesi a performs a sanity test to ensure that the table
definitions are compatible with each other. If atable exists on several nodes, the cookie must be the same, otherwise
Mhesi a shut down one of the nodes. This unfortunate situation occurs if a table has been created on two nodes
independently of each other while they were disconnected. To solve this, one of the tables must be deleted (as the
cookies differ, it isregarded to be two different tables even if they have the same name).

Merging different versions of the schema table does not always require the cookies to be the same. If the storage
type of the schematableisdi sc_copi es, the cookie isimmutable, and all other db_nodes must have the same
cookie. When the schema is stored as type r am _copi es, its cookie can be replaced with a cookie from another
node (r am_copi es or di sc_copi es). The cookie replacement (during merge of the schema table definition) is
performed each time a RAM node connects to another node.

Further, the following applies:

* mnesiasystem_info(schema location) and mnesia:system_info(extra_db_nodes) can be used to determine the
actual valuesof schema_I| ocat i on andextra_db_nodes, respectively.

 mnesiasystem info(use dir) can be used to determine whether Mhesi a isactually using the Mhesi a
directory.

e use_dir canbedetermined even before Mhesi a is started.

The function mnesia:info/0 can now be used to print some system information even before Mhesi a is started. When
Mhesi a is started, the function prints more information.

Ericsson AB. All Rights Reserved.: Mnesia | 41



1.6 Miscellaneous Mnesia Features

Transactionsthat update the definition of atablerequiresthat Mhesi a isstarted on all nodeswhere the storage type of
theschemaisdi sc_copi es. All replicas of the table on these nodes must a so beloaded. There are afew exceptions
to these availability rules:

» Tables can be created and new replicas can be added without starting all the disc-full nodes.

*  New replicas can be added before all other replicas of the table have been loaded, provided that at |east one
other replicais active.

1.6.7 Mnesia Event Handling
System events and table events are the two event categories that Mhesi a generatesin various situations.
A user process can subscribe on the events generated by Mnesi a. The following two functions are provided:

mnesi a:subscribe(Event-Category)

Ensures that a copy of all events of type Event - Cat egor y are sent to the calling process
mnesi a:unsubscribe(Event-Category)

Removes the subscription on events of type Event - Cat egory

Event - Cat egor y can be either of the following:

e Theatomsystem

e Theaomactivity

e« Thetuple{t abl e, Tab, sinple}

e Thetuple{t abl e, Tab, detail ed}

Theold event category { t abl e, Tab} isthe same event category as{t abl e, Tab, si nple}.

The subscribe functions activate a subscription of events. The events are delivered as messages to the process
evaluating the function mnesia:subscribe/1 The syntax is as follows:

« {mmesia_system event, Event} for system events
e {mmesia_activity event, Event} for activity events
« {mmesia_table_event, Event} fortableevents

The event types are described in the next sections.

All system events are subscribed by the Mnesi a gen_event handler. The default gen_event handler is
mmesi a_event , but it can be changed by using application parameter event _nodul e. Thevalueof thisparameter
must be the name of a module implementing a complete handler, as specified by the gen_event module in STDLI B.

mnesia:system_info(subscribers) and mnesiaitable info(Tab, subscribers) can be used to determine which processes
are subscribed to various events.

System Events
The system events are as follows:

{mesi a_up, Node}
Mnesiais started on anode. Node is the node name. By default this event is ignored.

{mesi a_down, Node}
Mnesiais stopped on anode. Node isthe node name. By default this event isignored.

{mesi a_checkpoi nt _activat ed, Checkpoi nt}
A checkpoint with the name Checkpoi nt isactivated and the current node is involved in the checkpoint.
Checkpoints can be activated explicitly with the function mnesia:activate checkpoint/1 or implicitly at backup,
when adding table replicas, at internal transfer of data between nodes, and so on. By default thisevent is
ignored.

42 | Ericsson AB. All Rights Reserved.: Mnesia



1.6 Miscellaneous Mnesia Features

{mesi a_checkpoi nt _deacti vat ed, Checkpoi nt}
A checkpoint with the name Checkpoi nt isdeactivated and the current node is involved in the checkpoint.
Checkpoints can be deactivated explicitly with the function mnesia:deactivate/1 or implicitly when the last
replica of atable (involved in the checkpoint) becomes unavailable, for example, at node-down. By default this
event isignored.

{mmesi a_overl oad, Detail s}

Mhesi a on the current node is overloaded and the subscriber is to take action.

A typical overload situation occurs when the applications perform more updates on disc resident tables than
Mhesi a can handle. Ignoring this kind of overload can lead to a situation where the disc space is exhausted
(regardless of the size of the tables stored on disc).

Each update is appended to the transaction log and occasionally (depending on how it is configured) dumped to
the tables files. The table file storage is more compact than the transaction log storage, especialy if the same
record is updated repeatedly. If the thresholds for dumping the transaction log are reached before the previous
dump isfinished, an overload event istriggered.

Another typical overload situation is when the transaction manager cannot commit transactions at the same pace
asthe applications perform updates of disc resident tables. When this occurs, the message queue of the transaction
manager continues to grow until the memory is exhausted or the load decreases.

The same problem can occur for dirty updates. The overload is detected locally on the current node, but its cause
can be on another node. A pplication processes can cause high load if any table resides on another node (replicated
or not). By default thisevent isreported to er r or _I ogger .

{inconsi stent _dat abase, Context, Node}
Vhesi a regards the database as potential inconsistent and gives its applications a chance to recover
from the inconsistency. For example, by installing a consistent backup as fallback and then restart the
system. An dternativeisto pick aMast er Node from mnesia:system_info(db_nodes) and invoke
mnesiaset_master_node([MasterNode]). By default an error isreported to er r or _| ogger .
{mesi a_fatal, Format, Args, BinaryCore}

Vhesi a detected afatal error and terminates soon. The fault reason is explained in For mat and Ar gs, which
canbegivenasinputtoi o: format/ 2 or senttoerror _| ogger . By defaultitissenttoerr or _| ogger.

Bi nar yCor e is abinary containing a summary of the Mhesi a internal state at the time when the fatal error
was detected. By default the binary is written to a unique filename on the current directory. On RAM nodes,
the core isignored.

{mesi a_info, Format, Args}
Vhesi a detected something that can be of interest when debugging the system. Thisis explained in For nat
and Ar gs, which can appear asinputtoi o: format/ 2 or senttoerror _| ogger . By default thisevent is
printed withi o: f or mat / 2.

{mmesi a_error, Format, Args}
Vhesi a has detected an error. The fault reason is explained in For mat and Ar gs, which can be given as
inputtoi o: fornmat/ 2 orsenttoerror _| ogger . By default thisevent isreportedtoer r or _| ogger .

{mmesi a_user, Event}
An application started the function mnesiarreport_event(Event). Event can be any Erlang data structure.
When tracing a system of Mhesi a applications, it is useful to be able to interleave own events of Mhesi a
with application-related events that give information about the application context. Whenever the application
starts with anew and demanding Wvhesi a activity, or enters a new and interesting phase in its execution, it can
beagood ideatouse mesi a: report _event/ 1.

Activity Events

Currently, there is only one type of activity event:

Ericsson AB. All Rights Reserved.: Mnesia | 43



1.6 Miscellaneous Mnesia Features

{compl ete, ActivitylD}

This event occurs when a transaction that caused a modification to the database is completed. It is useful for
determining when a set of table events (see the next section), caused by a given activity, have been sent. Once
this event isreceived, it is guaranteed that no further table events with the same Act i vi t yl Dwill be received.
Notice that this event can still be received even if no table events with a corresponding Act i vi t yl D were
received, depending on the tables to which the receiving process is subscribed.

Dirty operations always contain only one update and thus no activity event is sent.

Table Events
Table events are events related to table updates. There are two types of table events, simple and detailed.
Thesimpletable eventsaretupleslike{ Oper, Record, Activityld},where

e Oper istheoperation performed.
» Recor d istherecord involved in the operation.
e Activityl distheidentity of the transaction performing the operation.

Notice that the record name is the table name even whenr ecor d_nane has another setting.
The table-related events that can occur are as follows:

{write, NewRecord, Activityld}
A new record has been written. NewRecor d contains the new record value.

{del ete_object, A dRecord, Activityld}
A record has possibly been deleted with mnesia.delete_object/1. O dRecor d contains the value of the old
record, as stated as argument by the application. Notice that other records with the same key can remain in the
tableif itis of type bag.

{del ete, {Tab, Key}, Activityld}
One or more records have possibly been deleted. All records with the key Key in the table Tab have been
deleted.

The detailed table eventsaretupleslike{ Oper, Tabl e, Data, [Jd dRecs], Activityld},where

e (Oper istheoperation performed.

e Tabl e isthetableinvolved in the operation.

» Dat aistherecord/OID written/del eted.

* A dRecs isthe contents before the operation.

e Activityl distheidentity of the transaction performing the operation.

The table-related events that can occur are as follows:

{write, Table, NewRecord, [d dRecords], Activityld}
A new record has been written. NewRecor d contains the new record value and O dRecor ds containsthe
records before the operation is performed. Notice that the new content depends on the table type.
{del ete, Table, What, [OA dRecords], Activityld}
Records have possibly been deleted. What iseither { Tabl e, Key} or arecord { Recor dNane,
Key, ...} that wasdeleted. Notice that the new content depends on the table type.

1.6.8 Debugging Mnesia Applications

Debugging aivnesi a application can be difficult for various reasons, primarily related to difficultiesin understanding
how the transaction and table load mechanisms work. Another source of confusion can be the semantics of nested
transactions.

The debug level of Mhesi a isset by calling the function mnesia:set_debug_level(Level), where Level isone of the
following:

44 | Ericsson AB. All Rights Reserved.: Mnesia



1.6 Miscellaneous Mnesia Features

none
No trace outputs. Thisis the default.

ver bose
Activates tracing of important debug events. These events generate { mesi a_i nfo, Format, Args}
system events. Processes can subscribe to these events with the function mnesia:subscribe/1. The events are
aways sent to the Vhesi a event handler.

debug
Activates al events at the verbose level plus traces of all debug events. These debug events generate
{mesi a_info, Format, Args} system events. Processes can subscribe to these events with
mesi a: subscri be/ 1. The events are always sent to the Mhesi a event handler. On this debug level, the
Vhesi a event handler starts subscribing to updates in the schematable.

trace
Activates al events at the debug level. On thislevel, the Mhesi a event handler starts subscribing to updates
onall Mhesi a tables. Thislevel isintended only for debugging small toy systems, as many large events can be
generated.

fal se
An diasfor none.

true
An dlias for debug.

The debug level of Mnhesi a itself isalso an application parameter, making it possible to start an Erlang system to turn
on Mhesi a debug in theinitial startup phase by using the following code:

% erl -mnesia debug verbose

1.6.9 Concurrent Processes in Mnesia

Programming concurrent Erlang systemsis the subject of a separate book. However, it isworthwhile to draw attention
to the following features, which permit concurrent processes to exist in alvhesi a system:

e A group of functions or processes can be called within a transaction. A transaction can include statements that
read, write, or delete data from the DBMS. Many such transactions can run concurrently, and the programmer
does not need to explicitly synchronize the processes that manipulate the data.

All programs accessing the database through the transaction system can be written asif they had sole accessto the
data. Thisis adesirable property, as all synchronization istaken care of by the transaction handler. If a program
reads or writes data, the system ensures that no other program tries to manipul ate the same data at the same time.

« Tables can be moved or deleted, and the layout of atable can be reconfigured in various ways. An important
aspect of the implementation of these functionsis that user programs can continue to use atable whileit is
being reconfigured. For example, it is possible to move atable and perform write operations to the table at
the sametime. Thisisimportant for many applications that require continuously available services. For more
information, see Transactions and Other Access Contexts.

1.6.10 Prototyping

If and when you would like to start and manipulate Mhesi a, it isoften easier to write the definitions and data into an
ordinary text file. Initially, no tables and no data exist, or which tables are required. At theinitial stages of prototyping,
it is prudent to write all data into one file, process that file, and have the data in the file inserted into the database.
Mhesi a can be initialized with data read from a text file. The following two functions can be used to work with
text files.

 mnesiaload_textfile(Filename) loads a series of local table definitions and data found in the fileinto Vhesi a.
Thisfunction also starts Mhesi a and possibly creates a new schema. The function operates on the local node
only.

Ericsson AB. All Rights Reserved.: Mnesia | 45



1.6 Miscellaneous Mnesia Features

* mnesiadump_to_textfile(Filename) dumps all local tables of aMnhesi a system into atext file, which can be
edited (with anormal text editor) and later rel oaded.

These functions are much slower than the ordinary store and load functions of Mhesi a. However, this is mainly
intended for minor experiments and initial prototyping. The major advantage of these functionsis that they are easy
to use.

The format of the text fileis as follows:

{tables, [{Typename, [Options]},

{Typename2 ...... 1}
{Typename, Attributel, Attribute2 ....}.
{Typename, Attributel, Attribute2 ....}.

Opti ons isalist of { Key, Val ue} tuples conforming to the options that you can give to mnesia:create_table/2.
For example, to start playing with a small database for healthy foods, enter the following datainto file FRUI TS:

{tables,
[{fruit, [{attributes, [name, color, taste]}l},
{vegetable, [{attributes, [name, color, taste, pricel}]}1}.

{fruit, orange, orange, sweet}.

{fruit, apple, green, sweet}.

{vegetable, carrot, orange, carrotish, 2.55}.
{vegetable, potato, yellow, none, 0.45}.

The following session with the Erlang shell shows how to load the FRUI TS database:

46 | Ericsson AB. All Rights Reserved.: Mnesia



1.6 Miscellaneous Mnesia Features

% erl
Erlang (BEAM) emulator version 4.9

Eshell V4.9 (abort with ~G)

1> mnesia:load textfile("FRUITS").
New table fruit

New table vegetable

{atomic, ok}

2> mnesia:info().

---> Processes holding locks <---
---> Processes waiting for locks <---
---> Pending (remote) transactions <---
---> Active (local) transactions <---
---> Uncertain transactions <---

---> Active tables <---

vegetable : with 2 records occuping 299 words of mem
fruit : with 2 records occuping 291 words of mem
schema : with 3 records occuping 401 words of mem

===> System info in version "1.1", debug level = none <===
opt disc. Directory "/var/tmp/Mnesia.nonode@nohost" is used.
use fallback at restart = false

running db nodes [nonode@nohost]

stopped db nodes [1

remote [

ram_copies [fruit,vegetable]

disc_copies [schema]

disc_only copies []

[{nonode@nohost,disc copies}] = [schema]
[{nonode@nohost, ram copies}] = [fruit,vegetable]

3 transactions committed, 0 aborted, O restarted, 2 logged to disc
0 held locks, 0 in queue; 0 local transactions, 0 remote

0 transactions waits for other nodes: []

ok

3>

It can be seen that the DBM S was initiated from aregular text file.

1.6.11 Object-Based Programming with Mnesia

The Conpany database, introduced in Getting Started, has three tables that store records (enpl oyee, dept,
pr oj ect ), and three tables that store relationships (manager, at _dep, i n_proj ). Thisis a normalized data
model, which has some advantages over a non-normalized data model.

Itis more efficient to do ageneralized search in anormalized database. Some operations are also easier to perform on
anormalized data model. For example, one project can easily be removed, as the following example illustrates:

remove proj(ProjName) ->

F = fun() ->

Ip = gqlc:e(qlc:q([X || X <- mnesia:table(in _proj),
X#in proj.proj name == ProjName]

),
mnesia:delete({project, ProjName}),
del in projs(Ip)

end,
mnesia:transaction(F).

del in projs([Ip|Tail]) ->
mnesia:delete object(Ip),
del in projs(Tail);

del in projs([]) ->
done.

Ericsson AB. All Rights Reserved.: Mnesia | 47



1.6 Miscellaneous Mnesia Features

In reality, data models are seldom fully normalized. A realistic alternative to a normalized database model would be
adata model that is not even in first normal form. Mhesi a is suitable for applications such as telecommunications,
because it is easy to organize data in a flexible manner. A Mhesi a database is always organized as a set of tables.
Each table isfilled with rows, objects, and records. What sets Mhesi a apart is that individual fieldsin arecord can
contain any type of compound data structures. An individual field in arecord can contain lists, tuples, functions, and
even record code.

Many telecommunications applications have unique requirements on lookup times for certain types of records. If the
Conpany database had been a part of a telecommunications system, it could be to minimize the lookup time of an
employeetogether with alist of the projectsthe employeeisworking on. If thisisthe case, adrastically different data
model without direct relationships can be chosen. Y ou would then have only the records themselves, and different
records could contain either direct referencesto other records, or contain other recordsthat are not part of the Mhesi a
schema.

The following record definitions can be created:

-record(employee, {emp no,
name,
salary,
sex,
phone,
room _no,
dept,
projects,
manager}).

-record(dept, {id,
name}).

-record(project, {name,
number,
location}).

A record that describes an employee can look as follows:

Me = #employee{emp no= 104732,
name = klacke,

salary = 7,

sex = male,

phone = 99586,

room no = {221, 015},

dept = 'B/SFR',

projects = [erlang, mnesia, otpl],
manager = 114872},

This model has only three different tables, and the employee records contain references to other records. The record
has the following references:

e ' B/ SFR referstoadept record.

e J[erlang, mmesia, otp] isalistof threedirect referencesto three different pr oj ect s records.

e 114872 refersto another employee record.

The Mnhesi a record identifiers ({ Tab, Key}) can also be used as references. In this case, attribute dept would
besettovalue{dept, 'B/ SFR } instead of ' B/ SFR .

With this data model, some operations execute considerably faster than they do with the normalized data model in the
Conpany database. However, some other operati ons become much more complicated. In particular, it becomes more
difficult to ensure that records do not contain dangling pointers to other non-existent, or deleted, records.

48 | Ericsson AB. All Rights Reserved.: Mnesia



1.7 Mnesia System Information

Thefollowing code exemplifies a search with a non-normalized datamodel. To find al employees at department Dep
with asalary higher than Sal ar y, use the following code:

get emps(Salary, Dep) ->
Q = qlc:q(
[E || E <- mnesia:table(employee),
E#employee.salary > Salary,
E#employee.dept == Dep]
)I
F = fun() -> glc:e(Q) end,
transaction(F).

Thiscode is easier to write and to understand, and it also executes much faster.

It iseasy to show examples of code that executesfaster if anon-normalized datamodel isused, instead of anormalized
model. The main reason is that fewer tables are required. Therefore, data from different tables can more easily be
combined injoin operations. In the previous example, thefunctionget _enps/ 2 istransformed from ajoin operation
into asimple query, which consists of a selection and a projection on one single table.

1.7 Mnesia System Information

The following topics are included:

»  Database configuration data

e Coredumps

e Dumping tables

e Checkpoints

« Startupfiles, log file, and data files

e Loading tables at startup

*  Recovery from communication failure

*  Recovery of transactions

e Backup, restore, fallback, and disaster recovery

1.7.1 Database Configuration Data
The following two functions can be used to retrieve system information. For details, see the Reference Manual.

* mnesiatable info(Tab, Key) -> Info | exit({ aborted,Reason} ) returns information about one table, for example,
the current size of the table and on which nodes it resides.

« mnesiasystem_info(Key) -> Info | exit({ aborted, Reason} ) returns information about the Mhesi a system, for
example, transaction statistics, db_nodes, and configuration parameters.

1.7.2 Core Dumps

If Mhesi a mafunctions, system information is dumped to file Mhesi aCor e. Node. When. The type of system
information contained in thisfile can also be generated with thefunctionmmesi a_| i b: cor edunp() . If aMhesi a
system behaves strangely, it is recommended that a Mhesi a core dump fileisincluded in the bug report.

1.7.3 Dumping Tables

Tables of typer am _copi es are by definition stored in memory only. However, these tables can be dumped to disc,
either at regular intervals or before the system is shut down. The function mnesia:dump_tables(TabList) dumps all
replicas of a set of RAM tables to disc. The tables can be accessed while being dumped to disc. To dump the tables
to disc, all replicas must have the storage typer am_copi es.

Ericsson AB. All Rights Reserved.: Mnesia | 49



1.7 Mnesia System Information

The table content is placed in a. DCDfile on the disc. When the Mhesi a system is started, the RAM tableisinitially
loaded with datafrom its. DCDfile.

1.7.4 Checkpoints

A checkpoint is a transaction consistent state that spans over one or more tables. When a checkpoint is activated, the
system remembers the current content of the set of tables. The checkpoint retains a transaction consistent state of the
tables, allowing the tables to be read and updated while the checkpoint is active. A checkpoint is typically used to
back up tables to external media, but they are also used internally in Mhesi a for other purposes. Each checkpoint is
independent and a table can be involved in severa checkpoints simultaneously.

Each table retains its old contentsin a checkpoint retainer. For performance critical applications, it can beimportant to
realize the processing overhead associated with checkpoints. In aworst case scenario, the checkpoint retainer consumes
more memory than the table itself. Also, each update becomes dlightly slower on those nodes where checkpoint
retainers are attached to the tables.

For each table, it is possible to choose if there is to be one checkpoint retainer attached to all replicas of the table, or
if it is enough to have only one checkpoint retainer attached to a single replica. With a single checkpoint retainer per
table, the checkpoint consumes less memory, but it is vulnerable to node crashes. With several redundant checkpoint
retainers, the checkpoint survives aslong asthereis at |east one active checkpoint retainer attached to each table.

Checkpoints can be explicitly deactivated with the function mnesia:deactivate_checkpoint(Name), where Nane isthe
name of an active checkpoint. This function returns ok if successful or { error, Reason} if thereisan error. All
tablesin acheckpoint must be attached to at |east one checkpoint retainer. The checkpoint is automatically deactivated
by Mnhesi a, when any table lacks a checkpoint retainer. This can occur when a node goes down or when areplica
is deleted. Use arguments i n and max (described in the following list) to control the degree of checkpoint retainer
redundancy.

Checkpoints are activated with the function mnesia:activate_checkpoint(Args), where Ar gs isalist of the following
tuples:

 {nane, Nane}, where Nane specifies atemporary name of the checkpoint. The name can be reused when the
checkpoint has been deactivated. If no name is specified, aname is generated automatically.

 {max, MaxTabs}, where MaxTabs isalist of tablesthat are to be included in the checkpoint. Default
is[] (empty list). For these tables, the redundancy is maximized. The old content of the table is retained
in the checkpoint retainer when the main table is updated by the applications. The checkpoint is more fault
tolerant if the tables have several replicas. When new replicas are added by the schema manipulation function
mnesia.add table copy/3 it aso attaches alocal checkpaint retainer.

« {mn, M nTabs},whereM nTabs isalist of tablesthat are to be included in the checkpoint. Defaultis[ ] .
For these tables, the redundancy is minimized, and there isto be single checkpoint retainer per table, preferably
at the local node.

« {allow renote, Bool },wheref al se meansthat all checkpoint retainers must belocal. If atable does
not reside locally, the checkpoint cannot be activated. t r ue alows checkpoint retainers to be allocated on any
node. Default ist r ue.

e {ramoverrides_dunp, Bool }. Thisargument only appliesto tables of typer am copi es. Bool
specifiesif the table statein RAM isto override the table state on disc. t r ue means that the latest committed
recordsin RAM are included in the checkpoint retainer. These are the records that the application accesses.

f al se meansthat the records on the disc . DAT file areincluded in the checkpoint retainer. These records are
loaded on startup. Default isf al se.

The function mnesia:activate _checkpoint(Args) returns one of the following values:

« {ok, Name, Nodes}
e {error, Reason}

Nane isthe checkpoint name. Nodes are the nodes where the checkpoint is known.

50 | Ericsson AB. All Rights Reserved.: Mnesia



1.7 Mnesia System Information

A list of active checkpoints can be obtained with the following functions:

e mnesiasystem_info(checkpoints) returns all active checkpoints on the current node.
* mnesiatable_info(Tab, checkpoints) returns active checkpoints on a specific table.

1.7.5 Startup Files, Log File, and Data Files

This section describes the internal files that are created and maintained by the Mhesi a system. In particular, the
workings of the Mhesi a log are described.

Startup Files
Start Mnesia states the following prerequisites for starting Mhesi a:

e An Erlang session must be started and aVnesi a directory must be specified for the database.
e A database schema must beinitiated, using the function mnesia:create_schema/l.

The following example shows how these tasks are performed:
Step 1: Start an Erlang session and specify aMhesi a directory for the database:

% erl -sname klacke -mnesia dir '"/ldisc/scratch/klacke"'

Erlang (BEAM) emulator version 4.9

Eshell V4.9 (abort with "G)

(klacke@gin) 1> mnesia:create schema([node()]).
ok

(klacke@gin)?2>

~Z

Suspended

Step 2: You can inspect the Vhesi a directory to see what files have been created:

% ls -1 /ldisc/scratch/klacke
SrW-rw-r-- 1 klacke staff 247 Aug 12 15:06 FALLBACK.BUP

The response shows that the file FALLBACK. BUP has been created. This is called a backup file, and it contains an
initial schema. If more than one node in the function mnesia:create schema/l had been specified, identical backup
fileswould have been created on all nodes.

Step 3: Start Mhesi a:
(klacke@gin)3>mnesia:start( ).
ok

Step 4: You can see the following listing in the Mhesi a directory:
-rw-rw-r-- 1 klacke staff 86 May 26 19:03 LATEST.LOG
-rw-rw-r-- 1 klacke staff 34507 May 26 19:03 schema.DAT

The schemain the backup file FALLBACK. BUP has been used to generate the file scherma. DAT. Since there are no
other disc resident tables than the schema, no other data files were created. The file FALLBACK. BUP was removed
after the successful "restoration”. Y ou also see some files that are for internal use by Mhesi a.

Step 5: Create atable:

Ericsson AB. All Rights Reserved.: Mnesia | 51



1.7 Mnesia System Information

(klacke@gin)4> mnesia:create table(foo,[{disc copies, [node()]}]).
{atomic, ok}

Step 6: You can see the following listing in the Mhesi a directory:

% ls -1 /ldisc/scratch/klacke

-rw-rw-r-- 1 klacke staff 86 May 26 19:07 LATEST.LOG
-rw-rw-r-- 1 klacke staff 94 May 26 19:07 foo.DCD
-rw-rw-r-- 1 klacke staff 6679 May 26 19:07 schema.DAT

Thefilef 0o. DCD has been created. Thisfile will eventually store all data that is written into thef oo table.

Log File

When starting Vhesi a, a. LOGfile called LATEST. LOGis created and placed in the database directory. Thisfileis
used by Mhesi a to log disc-based transactions. Thisincludes all transactions that write at least one record in atable
that isof storagetypedi sc_copi esordi sc_only_copi es. Thefileasoincludesall operationsthat manipulate
the schemaitself, such as creating new tables. The log format can vary with different implementations of Mhesi a.
The Mhesi a logis currently implemented in the standard library module disk_log in Ker nel .

Thelog file grows continuously and must be dumped at regular intervals. "Dumping the log file" meansthat Mhesi a
performs all the operations listed in the log and place the records in the corresponding . DAT, . DCD, and . DCL data
files. For example, if the operation "write record { f oo, 4, elvis, 6}"islistedin thelog, Mhesi a inserts
the operation into the filef oo. DCL. Later, when Mhesi a thinks that the . DCL fileis too large, the data is moved
to the . DCD file. The dumping operation can be time consuming if the log is large. Notice that the Mhesi a system
continues to operate during log dumps.

By default Mhesi a either dumps the log whenever 1000 records have been written in the log or when three minutes
have passed. This is controlled by the two application parameters - mesi a dunp_l og_wite_threshol d
WiteQOperationsand-mesia dunp_log tinme_threshold MI1i Secs.

Before the log is dumped, the file LATEST. LOG s renamed to PREVI OQUS. LOG, and anew LATEST. LOGfileis
created. Once the log has been successfully dumped, the file PREVI QUS. LOGis deleted.

Thelog is aso dumped at startup and whenever a schema operation is performed.

Data Files

The directory listing also contains one . DAT file, which contains the schema itself, contained in the schena. DAT
file. The DAT filesare indexed files, and it is efficient to insert and search for records in these files with a specific key.
The . DAT files are used for the schemaand for di sc_onl y_copi es tables. The Mhesi a datafiles are currently
implemented in the standard library module detsin STDLI B.

All operations that can be performed on det s files can also be performed on the Mhesi a datafiles. For example,
det s contains the function det s: t r aver se/ 2, which can be used to view the contents of a Mhesi a DAT file.
However, this can only be done when Mhesi a isnot running. So, to view the schemafile, do asfollows;

{ok, N} = dets:open file(schema, [{file, "./schema.DAT"},{repair,false},
{keypos, 2}1),

F = fun(X) -> io:format("~p~n", [X]), continue end,

dets:traverse(N, F),

dets:close(N).

52 | Ericsson AB. All Rights Reserved.: Mnesia



1.7 Mnesia System Information

The DAT files must always be opened with option {repair, fal se}. This ensures that these files are
not automatically repaired. Without this option, the database can become inconsistent, because Mhesi a can
believe that the files were properly closed. For information about configuration parameter aut o_r epai r, see
the Reference Manual.

It is recommended that the data files are not tampered with while Mhesi a is running. While not prohibited, the
behavior of Mhesi a isunpredictable.

Thedi sc_copi es tables are stored on disk with . DCL and . DCD files, which are standard di sk_| og files.

1.7.6 Loading Tables at Startup

At startup, Mhesi a loads tables to make them accessible for its applications. Sometimes Mhesi a decidesto load all
tables that reside locally, and sometimes the tables are not accessible until Mhesi a brings a copy of the table from
another node.

To understand the behavior of Mhesi a at startup, it is essential to understand how Mhesi a reacts when it loses
contact with Mhesi a on another node. At this stage, Mhesi a cannot distinguish between a communication failure
and a "normal" node-down. When this occurs, Mhesi a assumes that the other node is no longer running, whereas,
in reality, the communication between the nodes has failed.

To overcome this situation, try to restart the ongoing transactions that are accessing tables on the failing node, and
writeammesi a_down entry to alog file.

At startup, notice that all tables residing on nodes without a mesi a_down entry can have fresher replicas. Their
replicas can have been updated after the termination of Mhesi a on the current node. To catch up with the latest
updates, transfer a copy of the table from one of these other "fresh" nodes. If you are unlucky, other nodes can be
down and you must wait for the table to be loaded on one of these nodes before receiving a fresh copy of the table.

Before an application makesiits first access to atable, mnesiawait_for_tables(TabList, Timeout) isto be executed to
ensure that the table is accessible from the local node. If the function times out, the application can choose to force
aload of the local replica with mnesia:force load table(Tab) and deliberately lose all updates that can have been
performed on the other nodes whilethelocal nodewasdown. If Mhesi a hasloaded the table on another node already,
or intends to do so, copy the table from that node to avoid unnecessary inconsistency.

Only onetableisloaded by mnesia:force load table(Tab). Since committed transactions can have caused updates
in severa tables, the tables can become inconsistent because of the forced load.

The allowed AccessMode of a table can be defined to be read_only or read_write. It can be toggled
with the function mnesiachange table access mode(Tab, AccessMode) in runtime. r ead_onl y tables and
| ocal _cont ent tablesare alwaysloaded locally, asthereisno need for copying the table from other nodes. Other
tables are primarily loaded remotely from active replicas on other nodes if the table has been loaded there already, or
if the running Mhesi a has decided to load the table there already.

At startup, Mhesi a assumes that its local replicais the most recent version and loads the table from disc if either of
the following situations is detected:

e« mesi a_down isreturned from all other nodes that hold a disc resident replica of the table.
* Allreplicasarer am copi es.

Ericsson AB. All Rights Reserved.: Mnesia | 53



1.7 Mnesia System Information

This is normally a wise decision, but it can be disastrous if the nodes have been disconnected because of a
communication failure, as the Mhesi a normal table load mechanism does not cope with communication failures.

When Mnesi a loads many tables, the default load order isused. However, theload order can be affected, by explicitly
changing property | oad_or der for thetables, with the function mnesia:change _table load order(Tab, LoadOrder).
LoadOr der isby default O for al tables, but it can be set to any integer. The table with the highest | oad_or der
is loaded first. Changing the load order is especially useful for applications that need to ensure early availability of
fundamental tables. Large peripheral tables are to have alow load order value, perhaps less than 0

1.7.7 Recovery from Communication Failure

There are several occasions when Mhesi a can detect that the network has been partitioned because of a
communication failure, for example:

« Mhesi a isoperational aready and the Erlang nodes gain contact again. Then Vhesi a triesto contact
Mhesi a on the other node to seeiif it aso thinks that the network has been partitioned for awhile. If Mhesi a
on both nodes has logged mesi a_down entries from each other, Mhesi a generates a system event, called
{i nconsi stent _database, running partitioned _network, Node},whichissenttothe
Mhesi a event handler and other possible subscribers. The default event handler reports an error to the error
logger.

* |If Mhesi a detects at startup that both the local node and another node received rmesi a_down from each
other, Mhesi a generatesan { i nconsi st ent _dat abase, starting_partitioned_network,
Node} system event and acts as described in the previous item.

If the application detects that there has been acommunication failure that can have caused an inconsistent database, it
can use the function mnesia:set_master_nodes(Tab, Nodes) to pinpoint from which nodes each table can be loaded.

At startup, the Mhesi a normal table load algorithm is bypassed and the table is loaded from one of the master nodes
defined for the table, regardless of potential mesi a_down entriesin thelog. Nodes can only contain nodes where
the table has areplica. If Nodes is empty, the master node recovery mechanism for the particular table is reset and
the normal load mechanism is used at the next restart.

The function mnesia:set_master_nodes(Nodes) sets master nodes for all tables. For each table it determinesitsreplica
nodes and starts mnesia:set_ master _nodes(Tab, TabNodes) with those replica nodes that are included in the Nodes
list (that is, TabNodes isthe intersection of Nodes and the replica nodes of the table). If the intersection is empty,
the master node recovery mechanism for the particular table is reset and the normal load mechanism is used at the
next restart.

The functions mnesia:system_info(master_node_tables) and mnesia:table info(Tab, master_nodes) can be used to
obtain information about the potential master nodes.

Determining what data to keep after a communication failure is outside the scope of Mhesi a. One approach is to
determine which "island" contains most of the nodes. Using option { maj ori ty, t r ue} for critical tables can be a
way to ensure that nodes that are not part of a"majority island" cannot update those tables. Notice that this constitutes
areduction in service on the minority nodes. This would be atradeoff in favor of higher consistency guarantees.

The function mnesiaforce |load table(Tab) can be used to force load the table regardiess of which table load
mechanism that is activated.

1.7.8 Recovery of Transactions

A Mhesi a table can reside on one or more nodes. When a table is updated, Mhesi a ensures that the updates are
replicated to all nodes where the table resides. If areplicaisinaccessible (for example, because of atemporary node-
down), Mhesi a performsthe replication later.

On the node where the application is started, there is atransaction coordinator process. If the transaction is distributed,
there is also atransaction participant process on al the other nodes where commit-work needs to be performed.

54 | Ericsson AB. All Rights Reserved.: Mnesia



1.7 Mnesia System Information

Internally Mhesi a usesseveral commit protocols. The selected protocol depends on which tablethat has been updated
in the transaction. If al the involved tables are symmetrically replicated (that is, they al have the samer am nodes,
di sc_nodes, anddi sc_onl y_nodes currently accessible from the coordinator node), alightweight transaction
commit protocol is used.

The number of messages that the transaction coordinator and its participants need to exchange isfew, asthe Vhesi a
table load mechanism takes care of the transaction recovery if the commit protocol getsinterrupted. Since al involved
tables are replicated symmetrically, the transaction is automatically recovered by loading the involved tables from the
same node at startup of afailing node. It does not matter if the transaction was committed or terminated as long asthe
ACID properties can be ensured. The lightweight commit protocol is non-blocking, that is, the surviving participants
and their coordinator finish the transaction, even if any node crashes in the middle of the commit protocol.

If anode goesdown inthe middle of adirty operation, the table load mechanism ensuresthat the updateis performed on
all replicas, or none. Both asynchronous dirty updates and synchronous dirty updates use the same recovery principle
as lightweight transactions.

If atransaction involves updates of asymmetrically replicated tables or updates of the schema table, a heavyweight
commit protocol isused. This protocol can finish thetransaction regardless of how thetablesarereplicated. Thetypical
use of aheavyweight transaction iswhen areplicaisto be moved from one node to another. Then ensurethat thereplica
either isentirely moved or left asit was. Do never end up in a situation with replicas on both nodes, or on no node at
al. Even if anode crashesin the middle of the commit protocol, the transaction must be guaranteed to be atomic. The
heavyweight commit protocol involves more messages between the transaction coordinator and its participants than a
lightweight protocol, and it performs recovery work at startup to finish the terminating or commit work.

The heavyweight commit protocol is aso non-blocking, which allows the surviving participants and their coordinator
to finish the transaction regardless (even if a node crashes in the middle of the commit protocol). When a node fails
at startup, Mhesi a determines the outcome of the transaction and recovers it. Lightweight protocols, heavyweight
protocols, and dirty updates, are dependent on other nodes to be operational to make the correct heavyweight
transaction recovery decision.

If Mhesi a has not started on some of the nodes that are involved in the transaction and neither the local node nor
any of the already running nodes know the outcome of the transaction, Mhesi a waitsfor one, by default. In the worst
case scenario, all other involved nodes must start before Mhesi a can make the correct decision about the transaction
and finish its startup.

Thus, Mhesi a (on one node) can hang if adouble fault occurs, that is, when two nodes crash simultaneously and one
attempts to start when the other refuses to start, for example, because of a hardware error.

Themaximumtimethat Mhesi a waitsfor other nodesto respond with atransaction recovery decision can be specified.
The configuration parameter max_wai t _f or _deci si on defaultsto i nfi ni ty, which can cause the indefinite
hanging as mentioned earlier. However, if the parameter is set to a definite time period (for example, three minutes),
Vhesi a then enforces a transaction recovery decision, if needed, to alow Mhesi a to continue with its startup
procedure.

The downside of an enforced transaction recovery decision isthat the decision can beincorrect, because of insufficient
information about the recovery decisions from the other nodes. This can result in an inconsistent database where
Mhesi a has committed the transaction on some nodes but terminated it on others.

In fortunate cases, the inconsistency is only visible in tables belonging to a specific application. However, if a
schematransaction isinconsistently recovered because of the enforced transaction recovery decision, the effects of the
inconsistency can befatal. However, if the higher priority isavailability rather than consistency, it can beworth therisk.

If Mhesi a detects an inconsistent transaction decision, an { i nconsi st ent _dat abase, bad_deci si on,
Node} system event is generated to give the application a chance to install a fallback or other appropriate measures
to resolve the inconsistency. The default behavior of the Mhesi a event handler isthe same asif the database became
inconsistent as aresult of partitioned network (as described earlier).

Ericsson AB. All Rights Reserved.: Mnesia | 55



1.7 Mnesia System Information

1.7.9 Backup, Restore, Fallback, and Disaster Recovery
The following functions are used to back up data, to install a backup as fallback, and for disaster recovery:

* mnesiabackup_checkpoint(Name, Opaque, [Mod]) performs a backup of the tables included in the checkpoint.

*  mnesiabackup(Opague, [Mod)]) activates a new checkpoint that coversall Mhesi a tablesand
performs a backup. It is performed with maximum degree of redundancy (see also the function
mnesiaactivate_checkpoint(Args), { max, MaxTabs} and {m n, M nTabs}).

* mnesiatraverse backup(Source, [SourceMod,] Target, [TargetMod,] Fun, Acc) can be used to read an existing
backup, create a backup from an existing one, or to copy a backup from one type media to another.

 mnesiauninstall_fallback() removes previously installed fallback files.

* mnesiarestore(Opaque, Args) restores a set of tables from a previous backup.

mnesiainstall_fallback(Opague, [Mod]) can be configured to restart Mhesi a and the reload datatables, and
possibly the schema tables, from an existing backup. Thisfunction istypically used for disaster recovery
purposes, when data or schema tables are corrupted.

These functions are explained in the following sections. See also Checkpoints, which describes the two functions used
to activate and deactivate checkpoints.

Backup
Backup operation are performed with the following functions:

e mnesiabackup_checkpoint(Name, Opague, [Mod])
*  mnesiabackup(Opaque, [Mod])
* mnesiatraverse backup(Source, [SourceMod,] Target, [TargetMod,] Fun, Acc)

By default, the actual access to the backup mediais performed through module mmesi a_backup for both read and
write. Currently mesi a_backup isimplemented with the standard library moduledi sc_| og. However, you can
write your own module with the same interface asrmesi a_backup and configure Mhesi a so that the aternative
module performs the actual accesses to the backup media. The user can therefore put the backup on a media that
Mhesi a doesnot know about, possibly on hosts where Erlang is not running. Use configuration parameter - nmesi a
backup_nodul e <nodul e> for this purpose.

The source for abackup is an activated checkpoint. The backup function mnesia:backup_checkpoint(Name, Opaque,
[Mod]) is most commonly used and returns ok or { er r or , Reason} . It hasthe following arguments:

* Nanme isthe name of an activated checkpoint. For details on how to include table names in checkpoints, see the
functionmmesi a: acti vat e_checkpoi nt ( ArgLi st) in Checkpoints.

e Opaque. Mnesi a does not interpret this argument, but it is forwarded to the backup module. The Mnesi a
default backup module mesi a_backup interprets this argument as alocal filename.

* Mbd isthe name of an alternative backup module.
Thefunction mnesia:backup(Opague[,Mod)]) activatesanew checkpoint that coversall Mhesi a tableswith maximum

degree of redundancy and performs a backup. Maximum redundancy means that each table replica has a checkpoint
retainer. Tables with property | ocal _cont ent s are backed up as they look on the current node.

You can iterate over a backup, either to transform it into a new backup, or only read it. The function
mnesiatraverse_backup(Source, [SourceMod,] Target, [TargetMod,] Fun, Acc), which normally returns { ok,
Last Acc}, isused for both of these purposes.

Before the traversal starts, the source backup mediais opened with Sour ceMbd: open_r ead( Sour ce) , and the
target backup mediais opened with Tar get Mod: open_wri t e( Tar get ) . The arguments are as follows:

e Sour ceMd and Tar get Mod are module names.

e Source and Tar get are opague data used exclusively by the modules Sour ceMod and Tar get Mod for
initializing the backup medias.

56 | Ericsson AB. All Rights Reserved.: Mnesia



1.7 Mnesia System Information

« Acc isaninitia accumulator value.

e« Fun(Backupltenms, Acc) isappliedto each item inthe backup. The Fun must return atuple
{Val GoodBackupltens, NewAcc},whereVal i dBackupltens isalist of valid backup items.
NewAcc isanew accumulator value. The Val i dBackupl t ens are written to the target backup with the
function Tar get Mod: wri te/ 2.

e Last Acc isthelast accumulator value, that is, the last NewAcc value that was returned by Fun.

Also, a read-only traversal of the source backup can be performed without updating a target backup. If
Tar get Mod==r ead_onl y, no target backup is accessed.

By setting Sour ceMod and Tar get Mod to different modules, a backup can be copied from one backup media to
another.

Valid Backupl t ens are the following tuples:

« {schenm, Tab} specifiesatableto be deleted.

e {schemm, Tab, Createlist} specifiesatableto be created. For more information about
Cr eat elLi st , see mnesia.create table/2.

« {Tab, Key} specifiesthefull identity of arecord to be deleted.
« {Record} specifiesarecord to be inserted. It can be atuple with Tab asfirst field. Notice that the record
name s set to the table name regardless of what r ecor d_nane is set to.

The backup datais divided into two sections. The first section containsinformation related to the schema. All schema
related items are tuples where the first field equal s the atom schema. The second section isthe record section. Schema
records cannot be mixed with other records and all schema records must be located first in the backup.

The schema itself is a table and is possibly included in the backup. Each node where the schema table resides is
regarded asadb_node.

The following example shows how mnesiatraverse_backup can be used to rename adb_node in abackup file:

Ericsson AB. All Rights Reserved.: Mnesia | 57



1.7 Mnesia System Information

change node name(Mod, From, To, Source, Target) ->

Switch =
fun(Node) when Node == From -> To;
(Node) when Node == To -> throw({error, already exists});
(Node) -> Node
end,
Convert =

fun({schema, db nodes, Nodes}, Acc) ->

{[{schema, db nodes, lists:map(Switch,Nodes)}], Acc};
({schema, version, Version}, Acc) ->

{[{schema, version, Version}], Acc};
({schema, cookie, Cookie}, Acc) ->

{[{schema, cookie, Cookie}], Acc};
({schema, Tab, CreatelList}, Acc) ->

Keys = [ram copies, disc copies, disc only copies],

OptSwitch =

fun({Key, Val}) ->
case lists:member(Key, Keys) of
true -> {Key, lists:map(Switch, Val)};
false-> {Key, Val}
end
end,

{[{schema, Tab, lists:map(OptSwitch, CreatelList)}], Acc};
(0Other, Acc) ->

{[Other], Acc}

end,
mnesia:traverse backup(Source, Mod, Target, Mod, Convert, switched).

view(Source, Mod) ->
View = fun(Item, Acc) ->
io:format("~p.~n",[Item]),
{[Item], Acc + 1}
end,
mnesia:traverse backup(Source, Mod, dummy, read only, View, 0).

Restore

Tables can be restored online from a backup without restarting Mhesi a. A restore is performed with the function
mnesiarrestore(Opague, Args), where Ar gs can contain the following tuples:

* {nodul e, Mod} . The backup module Mbd is used to access the backup media. If omitted, the default backup
moduleis used.

e {skip_tables, TableList},whereTabl eLi st isalist of tables, which is not to be read from the
backup.

e {clear_tables, Tablelist},whereTabl eLi st isalist of tables, which isto be cleared before the
records from the backup are inserted. That is, all recordsin the tables are del eted before the tables are restored.
Schema information about the tablesis not cleared or read from the backup.

« {keep_tables, TableList},whereTabl eLi st isalist of tables, which is not to be cleared before
the records from the backup are inserted. That is, the records in the backup are added to the recordsin the table.
Schema information about the tablesis not cleared or read from the backup.

« {recreate_tables, Tablelist},whereTabl eLi st isalistof tables, which isto be recreated
before the records from the backup are inserted. The tables are first deleted and then created with the schema
information from the backup. All the nodes in the backup need to be operational.

e {default_op, Operation},whereQperati on isoneof theoperationsski p_t abl es,
cl ear _tabl es,keep_t abl es,orrecreate_tabl es. The default operation specifies which operation
isto be used on tables from the backup that are not specified in any of the previous lists. If omitted, the
operation cl ear _t abl es isused.

58 | Ericsson AB. All Rights Reserved.: Mnesia



1.7 Mnesia System Information

The argument Opaque is forwarded to the backup module. It returns{ at om ¢, TabLi st} if successful, or the
tuple{ aborted, Reason} if thereisan eror. TabLi st isalist of the restored tables. Tables that are restored
are write-locked during the restore operation. However, regardless of any lock conflict caused by this, applications
can continue to do their work during the restore operation.

The restoration is performed as a single transaction. If the database is large, it cannot always be restored online. The
old database must then be restored by installing a fallback, followed by arestart.

Fallback

Thefunction mnesiaiinstall_fallback(Opaque, [Mod]) installs a backup as fallback. It uses the backup module Mod, or
the default backup module, to access the backup media. Thefunctionreturnsok if successful,or{ err or, Reason}
if thereisan error.

Installing afallback is a distributed operation, which is only performed on al db_nodes. The fallback restores the
database the next time the system is started. If a Mhesi a node with a fallback installed detects that Mhesi a on
another node has died, it unconditionally terminates itself.

A fallback is typically used when a system upgrade is performed. A system typically involves the installation of new
softwareversions, and Mhesi a tablesare often transformed into new layouts. If the system crashes during an upgrade,
itishighly probablethat reinstallation of the old applicationsisrequired, and restoration of the database to its previous
state. This can be done if a backup is performed and installed as a fallback before the system upgrade begins.

If the system upgrade fails, Mhesi a must be restarted on al db_nodes to restore the old database. The fallback
is automatically deinstalled after a successful startup. The function mnesia:uninstall_fallback() can also be used to
deinstall the fallback after a successful system upgrade. Again, thisis a distributed operation that is either performed
on all db_nodes or none. Both the installation and deinstallation of fallbacks require Erlang to be operational on all
db_nodes, but it does not matter if Mhesi a isrunning or not.

Disaster Recovery

The system can become inconsistent as a result of a power failure. The UNIX feature f sck can possibly repair the
file system, but there is no guarantee that the file content is consistent.

If Mhesi a detects that a file has not been properly closed, possibly as a result of a power failure, it tries to repair
the bad file in a similar manner. Data can be lost, but Mhesi a can be restarted even if the data is inconsistent.
Configuration parameter - mesi a aut o_repai r <bool > can be used to control the behavior of Mhesi a at
startup. If <bool > hasthevaluet r ue, Mhesi a triesto repair thefile. If <bool > hasthevaluef al se, Mhesi a
does not restart if it detects a suspect file. This configuration parameter affects the repair behavior of log files, DAT
files, and the default backup media.

Configuration parameter - mesi a dunp_| og_update_i n_pl ace <bool > controls the safety level of the
function mnesia.dump_log() By default, Mhesi a dumps the transaction log directly into the DAT files. If a power
failure occurs during the dump, this can cause the randomly accessed DAT filesto become corrupt. If the parameter is
settof al se, Vhesi a copiesthe DAT files and target the dump to the new temporary files. If the dump is successful,
the temporary files are renamed to their normal DAT suffixes. The possibility for unrecoverable inconsistencies in
the data files becomes much smaller with this strategy. However, the actual dumping of the transaction log becomes
considerably slower. The system designer must decide whether speed or safety isthe higher priority.

Replicas of type di sc_only_copi es are only affected by this parameter during the initiadl dump of the
log file at startup. When designing applications with very high requirements, it can be appropriate not to use
di sc_only_copi es tablesat all. Thereason for thisis the random access nature of nhormal operating system files.
If a node goes down for areason such as a power failure, these files can be corrupted because they are not properly
closed. The DAT filesfor di sc_onl y_copi es are updated on a per transaction basis.

If adisaster occurs and the Vhesi a database is corrupted, it can be reconstructed from a backup. Regard this as a
last resort, as the backup contains old data. The data is hopefully consistent, but data is definitely lost when an old
backup is used to restore the database.

Ericsson AB. All Rights Reserved.: Mnesia | 59



1.8 Combine Mnesia with SNMP

1.8 Combine Mnesia with SNMP
1.8.1 Combine Mnesia and SNMP

Many telecommunications applications must be controlled and reconfigured remotely. It is sometimes an advantage

to perform this remote control with an open protocol such as the Simple Network Management Protocol (SNMP). The

alternatives to this would be the following:

e Not being able to control the application remotely

» Using aproprietary control protocol

» Using abridge that maps control messagesin a proprietary protocol to a standardized management protocol and
conversely

All these approaches have different advantages and disadvantages. Mnesia applications can easily be opened to the
SNMP protocol. A direct 1-to-1 mapping can be established between Mnesia tables and SNMP tables. This means
that aMnesiatable can be configured to be both aMnesiatable and an SNMP table. A number of functions to control
this behavior are described in the Reference Manual.

1.9 Appendix A: Backup Callback Interface

1.9.1 mnesia_backup Callback Behavior

60 | Ericsson AB. All Rights Reserved.: Mnesia



1.9 Appendix A: Backup Callback Interface

This module contains one implementation of callback functions
used by Mnesia at backup and restore. The user may however
write an own module the same interface as mnesia backup and
configure Mnesia so the alternate module performs the actual
accesses to the backup media. This means that the user may put
the backup on medias that Mnesia does not know about, possibly
on hosts where Erlang is not running.

o9
070
o9
070
o9
070
o9
070
o9
070
o9
070
o9
070
o9
070
o9
070
o9
070
%% The OpaqueData argument is never interpreted by other parts of

%% Mnesia. It is the property of this module. Alternate implementations
%% of this module may have different interpretations of OpaqueData.

%% The OpaqueData argument given to open write/1l and open read/l

%% are forwarded directly from the user.

%%

%% All functions must return {ok, NewOpaqueData} or {error, Reason}.

%%
o9
00
o9
070
o9
070
o9
00
o9
00
o9
00
o9
070
o9
070
o9
070

The NewOpaqueData arguments returned by backup callback functions will
be given as input when the next backup callback function is invoked.
If any return value does not match {ok, } the backup will be aborted.

The NewOpaqueData arguments returned by restore callback functions will
be given as input when the next restore callback function is invoked
If any return value does not match {ok, } the restore will be aborted.

-module(mnesia_ backup).
-include lib("kernel/include/file.hrl").

-export([
%% Write access
open write/1,
write/2,
commit write/1,
abort write/1,

%% Read access
open_read/1,

read/1,
close read/1

e
e, file, file desc}).

Opens backup media for write

©

s Returns {ok, OpaqueData} or {error, Reason}
open_write(OpaqueData) ->
File = OpaqueData,
Tmp = lists:concat([File,".BUPTMP"]),
file:delete(Tmp),
file:delete(File),
case disk log:open([{name, make ref()},
{file, Tmp},
{repair, false},
{linkto, self()}]) of
{ok, Fd} ->
{ok, #backup{tmp file = Tmp, file = File, file desc = Fd}};
{error, Reason} ->
{error, Reason}

Ericsson AB. All Rights Reserved.: Mnesia | 61



1.9 Appendix A: Backup Callback Interface

end.

% Writes BackupItems to the backup media

o o of
N

% Returns {ok, OpaqueData} or {error, Reason}
write(OpaqueData, BackupItems) ->
B = OpaqueData,
case disk log:log terms(B#backup.file desc, BackupItems) of
ok ->
{ok, B};
{error, Reason} ->
abort_write(B),
{error, Reason}
end.

% Closes the backup media after a successful backup

o o of
o°

% Returns {ok, ReturnValueToUser} or {error, Reason}
commit write(OpaqueData) ->

B = OpaqueData,

case disk log:sync(B#backup.file desc) of

ok ->
case disk log:close(B#backup.file desc) of
ok ->
case file:rename(B#backup.tmp file, B#backup.file) of
ok ->

{ok, B#backup.file};
{error, Reason} ->
{error, Reason}
end;
{error, Reason} ->
{error, Reason}
end;
{error, Reason} ->
{error, Reason}
end.

Closes the backup media after an interrupted backup

o o of
o° o°

% Returns {ok, ReturnValueToUser} or {error, Reason}
abort write(BackupRef) ->
Res = disk log:close(BackupRef#backup.file desc),
file:delete(BackupRef#backup.tmp file),
case Res of
ok ->
{ok, BackupRef#backup.file};
{error, Reason} ->
{error, Reason}

-record(restore, {file, file desc, cont}).
Opens backup media for read

%% Returns {ok, OpaqueData} or {error, Reason}

open_read(OpaqueData) ->
File = OpaqueData,
case file:read file info(File) of

{error, Reason} ->

{error, Reason};

_FileInfo -> %% file exists
case disk log:open([{file, File},

62 | Ericsson AB. All Rights Reserved.: Mnesia



1.10 Appendix B: Activity Access Callback Interface

{name, make ref()},
{repair, false},
{mode, read only},
{linkto, self()}]) of

{ok, Fd} ->

{ok, #restore{file = File, file desc = Fd, cont = start}};
{repaired, Fd, , {badbytes, 0}} ->

{ok, #restore{file = File, file desc = Fd, cont = start}};
{repaired, Fd, , } ->

{ok, #restore{file = File, file desc = Fd, cont = start}};

{error, Reason} ->
{error, Reason}
end
end.

% Reads BackupItems from the backup media

Returns {ok, OpaqueData, BackupItems} or {error, Reason}

A ® o P
o® o° o° o°

BackupItems == [] is interpreted as eof
read(OpaqueData) ->
R = OpaqueData,
Fd = R#restore.file desc,
case disk log:chunk(Fd, R#restore.cont) of
{error, Reason} ->
{error, {"Possibly truncated", Reason}};
eof ->
{ok, R, [1};
{Cont, []} ->
read (R#restore{cont = Cont});
{Cont, BackupItems, BadBytes} ->
{ok, R#restore{cont = Cont}, BackupItems};
{Cont, BackupItems} ->
{ok, R#restore{cont = Cont}, BackupItems}
end.

% Closes the backup media after restore

® P
o°

%% Returns {ok, ReturnValueToUser} or {error, Reason}
close read(OpaqueData) ->
R = OpaqueData,
case disk log:close(R#restore.file desc) of
ok -> {ok, R#restore.file};
{error, Reason} -> {error, Reason}
end.

1.10 Appendix B: Activity Access Callback Interface

1.10.1 mnesia_access Callback Behavior

Ericsson AB. All Rights Reserved

.» Mnesia | 63



1.10 Appendix B: Activity Access Callback Interface

-module(mnesia frag).

%% Callback functions when accessed within an activity
-export ([
lock/4,
write/5, delete/5, delete object/5,
read/5, match object/5, all keys/4,
select/5,select/6,select cont/3,
index match object/6, index read/6,
foldl/6, foldr/6, table info/4,
first/3, next/4, prev/4, last/3,
clear table/4
.

64 | Ericsson AB. All Rights Reserved.: Mnesia



1.10 Appendix B: Activity Access Callback Interface

% Callback functions which provides transparent
% access of fragmented tables from any activity
% access context.

o o of

lock(ActivityId, Opaque, {table , Tab}, LockKind) ->
case frag names(Tab) of

[Tab] ->
mnesia:lock(ActivityId, Opaque, {table, Tab}, LockKind);
Frags ->
DeepNs = [mnesia:lock(ActivityId, Opaque, {table, F}, LockKind) ||
F <- Frags],
mnesia lib:uniq(lists:append(DeepNs))
end;

lock(ActivityId, Opaque, LockItem, LockKind) ->
mnesia:lock(ActivityId, Opaque, LockItem, LockKind).

write(ActivityId, Opaque, Tab, Rec, LockKind) ->
Frag = record to frag name(Tab, Rec),
mnesia:write(ActivityId, Opaque, Frag, Rec, LockKind).

delete(ActivityId, Opaque, Tab, Key, LockKind) ->
Frag = key to frag name(Tab, Key),
mnesia:delete(ActivityId, Opaque, Frag, Key, LockKind).

delete object(ActivityId, Opaque, Tab, Rec, LockKind) ->
Frag = record to frag name(Tab, Rec),
mnesia:delete object(ActivityId, Opaque, Frag, Rec, LockKind).

read(ActivityId, Opaque, Tab, Key, LockKind) ->
Frag = key to frag name(Tab, Key),
mnesia:read(ActivityId, Opaque, Frag, Key, LockKind).

match object(ActivityId, Opaque, Tab, HeadPat, LockKind) ->
MatchSpec = [{HeadPat, [], ['$ '1}1,
select(ActivityId, Opaque, Tab, MatchSpec, LockKind).

select(ActivityId, Opaque, Tab, MatchSpec, LockKind) ->
do _select(ActivityId, Opaque, Tab, MatchSpec, LockKind).

select(ActivityId, Opaque, Tab, MatchSpec, Limit, LockKind) ->
init select(ActivityId, Opaque, Tab, MatchSpec, Limit, LockKind).

all keys(ActivityId, Opaque, Tab, LockKind) ->
Match = [mnesia:all keys(ActivityId, Opaque, Frag, LockKind)
|| Frag <- frag _names(Tab)],
lists:append(Match).

clear table(ActivityId, Opaque, Tab, 0bj) ->
[mnesia:clear table(ActivityId, Opaque, Frag, Obj) || Frag <- frag names(Tab)],
ok.

index match object(ActivityId, Opaque, Tab, Pat, Attr, LockKind) ->
Match =
[mnesia:index match object(ActivityId, Opaque, Frag, Pat, Attr, LockKind)
|| Frag <- frag names(Tab)],
lists:append(Match).

index read(ActivityId, Opaque, Tab, Key, Attr, LockKind) ->
Match =
[mnesia:index read(ActivityId, Opaque, Frag, Key, Attr, LockKind)
|| Frag <- frag names(Tab)],
lists:append(Match).

Ericsson AB. All Rights Reserved.: Mnesia | 65



1.10 Appendix B: Activity Access Callback Interface

foldl(ActivityId, Opaque, Fun, Acc, Tab, LockKind) ->
Fun2 = fun(Frag, A) ->
mnesia:foldl(ActivityId, Opaque, Fun, A, Frag, LockKind)
end,
lists:foldl(Fun2, Acc, frag names(Tab)).

foldr(ActivityId, Opaque, Fun, Acc, Tab, LockKind) ->
Fun2 = fun(Frag, A) ->
mnesia:foldr(ActivityId, Opaque, Fun, A, Frag, LockKind)
end,
lists:foldr(Fun2, Acc, frag names(Tab)).

table_info(ActivityId, Opaque, {Tab, Key}, Item) ->
Frag = key to frag name(Tab, Key),
table info2(ActivityId, Opaque, Tab, Frag, Item);
table info(ActivityId, Opaque, Tab, Item) ->
table info2(ActivityId, Opaque, Tab, Tab, Item).

table info2(ActivityId, Opaque, Tab, Frag, Item) ->
case Item of
size ->
SumFun = fun({ , Size}, Acc) -> Acc + Size end,
lists:foldl(SumFun, 0, frag size(ActivityId, Opaque, Tab));
memory ->
SumFun = fun({ , Size}, Acc) -> Acc + Size end,
lists:foldl(SumFun, 0, frag memory(ActivityId, Opaque, Tab));
base table ->
lookup prop(Tab, base table);
node_pool ->
lookup prop(Tab, node pool);
n_fragments ->
FH = lookup frag hash(Tab),
FH#frag state.n fragments;
foreign key ->
FH = lookup frag hash(Tab),
FH#frag state.foreign key;
foreigners ->
lookup_foreigners(Tab);
n_ram_copies ->
length(val({Tab, ram copies}));
n_disc_copies ->
length(val({Tab, disc copies}));
n_disc only copies ->
length(val({Tab, disc only copies}));
n_external copies ->
length(val({Tab, external copies}));

frag _names ->
frag_names(Tab) ;
frag dist ->
frag dist(Tab);
frag size ->
frag size(ActivityId, Opaque, Tab);
frag_memory ->
frag _memory(ActivityId, Opaque, Tab);
=>
mnesia:table info(ActivityId, Opaque, Frag, Item)
end.

first(ActivityId, Opaque, Tab) ->
case ?catch val({Tab, frag hash}) of
{'EXIT', } ->
mnesia:first(ActivityId, Opaque, Tab);
FH ->

66 | Ericsson AB. All Rights Reserved.: Mnesia



1.10 Appendix B: Activity Access Callback Interface

FirstFrag = Tab,
case mnesia:first(ActivityId, Opaque, FirstFrag) of
'$end of table' ->
search first(ActivityId, Opaque, Tab, 1, FH);
Next ->
Next
end
end.

search first(ActivityId, Opaque, Tab, N, FH) when N < FH#frag state.n fragments ->
NextN = N + 1,
NextFrag = n_to frag name(Tab, NextN),
case mnesia:first(ActivityId, Opaque, NextFrag) of
'$end of table' ->
search first(ActivityId, Opaque, Tab, NextN, FH);
Next ->
Next
end;
search_first(_ ActivityId, Opaque, _Tab, N, FH) ->
'$end of table'.

last(ActivityId, Opaque, Tab) ->
case ?catch val({Tab, frag hash}) of
{'EXIT', } ->
mnesia:last(ActivityId, Opaque, Tab);
FH ->
LastN = FH#frag_state.n_fragments,
search last(ActivityId, Opaque, Tab, LastN, FH)
end.

search last(ActivityId, Opaque, Tab, N, FH) when N >= 1 ->
Frag = n_to frag name(Tab, N),
case mnesia:last(ActivityId, Opaque, Frag) of
'$end of table' ->
PrevN = N - 1,
search last(ActivityId, Opaque, Tab, PrevN, FH);
Prev ->
Prev
end;
search_last(_ActivityId, Opaque, _Tab, N, FH) ->
'$end of table'.

prev(ActivityId, Opaque, Tab, Key) ->
case ?catch val({Tab, frag hash}) of
{'EXIT', } ->
mnesia:prev(ActivityId, Opaque, Tab, Key);
FH ->
N = key to n(FH, Key),
Frag = n_to frag name(Tab, N),
case mnesia:prev(ActivityId, Opaque, Frag, Key) of
'$end of table' ->
search prev(ActivityId, Opaque, Tab, N);
Prev ->
Prev
end
end.

search prev(ActivityId, Opaque, Tab, N) when N > 1 ->
PrevN = N - 1,
PrevFrag = n_to frag name(Tab, PrevN),
case mnesia:last(ActivityId, Opaque, PrevFrag) of
'$end of table' ->
search prev(ActivityId, Opaque, Tab, PrevN);
Prev ->
Prev

Ericsson AB. All Rights Reserved

.» Mnesia | 67



1.11 Appendix C: Fragmented Table Hashing Callback Interface

end;
search prev( ActivityId, Opaque, Tab, N) ->
'$end of table'.

next(ActivityId, Opaque, Tab, Key) ->
case ?catch val({Tab, frag hash}) of
{'EXIT', } ->
mnesia:next(ActivityId, Opaque, Tab, Key);
FH ->
N = key to n(FH, Key),
Frag = n_to frag name(Tab, N),
case mnesia:next(ActivityId, Opaque, Frag, Key) of
'$end of table' ->
search next(ActivityId, Opaque, Tab, N, FH);
Prev ->
Prev
end
end.

search next(ActivityId, Opaque, Tab, N, FH) when N < FH#frag state.n fragments ->
NextN = N + 1,
NextFrag = n_to frag_name(Tab, NextN),
case mnesia:first(ActivityId, Opaque, NextFrag) of
‘$end_of_table' ->
search next(ActivityId, Opaque, Tab, NextN, FH);
Next ->
Next
end;
search_next(_ActivityId, Opaque, _Tab, N, FH) ->
'$end of table'.

1.11 Appendix C: Fragmented Table Hashing Callback
Interface

1.11.1 mnesia_frag_hash Callback Behavior

-module(mnesia frag hash).

%% Fragmented Table Hashing callback functions
-export ([

init state/2,

add frag/1,

del frag/1,

key to frag number/2,

match spec to frag numbers/2

1.

68 | Ericsson AB. All Rights Reserved.: Mnesia



1.11 Appendix C: Fragmented Table Hashing Callback Interface

-record(hash_state,
{n_fragments,
next n to split,
n_doubles,
function}).

0.0.0.0.000000000000000000000000000000000000000000000000000000000000000
“676"°676°0°06°0 600000000600 000600600060060600600600060060000060°06060000060060°0060060°06060°00°00

init state( Tab, State) when State == undefined ->
#hash state{n fragments =1,
next n to split = 1,
n_doubles =0,
function phash2}.

convert old state({hash state, N, P, L}) ->

#hash state{n fragments =N,
next n to split = P,
n_doubles =L,
function = phash}.

add frag(#hash state{next n to split = SplitN, n doubles = L, n fragments = N} = State) ->
P = SplitN + 1,

NewN = N + 1,
State2 = case power2(L) + 1 of
P2 when P2 == ->
State#hash state{n fragments = NewN,
n_doubles =L+ 1,
next n to split = 1};
->
State#hash state{n fragments = NewN,
next n to split = P}
end,

{State2, [SplitN], [NewN]};

add frag(OldState) ->
State = convert old state(OldState),
add frag(State).

0.0.0.0.000000000000000000000000000000000000000000000000000000000000000
“676"676°0°06°0 600000000600 0006006000600606006006000600600000606°060600000600600060060°06060°00°00

del frag(#hash state{next n to split = SplitN, n doubles = L, n fragments = N} = State) ->
P = SplitN - 1,

if
P<1->
L2 =1L -1,
MergeN = power2(L2),
State2 = State#hash state{n fragments =N -1,
next n to split = MergeN,
n_doubles = L2},
{State2, [N], [MergeNl};
true ->
MergeN = P,
State2 = State#hash state{n fragments =N -1,

next n to split = MergeN},
{State2, [N], [MergeN]}
end;
del frag(OldState) ->
State = convert old state(OldState),
del frag(State).

0.0.0.0.000000000000000000000000000000000000000000000000000000000000000
“676"°676°0°06°0 600000000600 0006006000600606°00600600060060000060°060600000600600060060°06060°00°006

key to frag number(#hash state{function = phash, n_fragments = N, n doubles = L}, Key) ->
A = erlang:phash(Key, power2(L + 1)),

Ericsson AB. All Rights Reserved.: Mnesia | 69



1.11 Appendix C: Fragmented Table Hashing Callback Interface

if
A>N ->
A - power2(L);
true ->
A
end;
key to frag number(#hash state{function = phash2, n fragments = N, n doubles = L}, Key)
A = erlang:phash2(Key, power2(L + 1)) + 1,
if
A>N ->
A - power2(L);
true ->
A
end;
key to frag number(OldState, Key) ->
State = convert old state(OldState),
key to frag number(State, Key).

match spec to frag numbers(#hash state{n fragments = N} = State, MatchSpec) ->
case MatchSpec of
[{HeadPat, , }] when is tuple(HeadPat), tuple size(HeadPat) > 2 ->
KeyPat = element(2, HeadPat),
case has var(KeyPat) of

false ->
[key to frag number(State, KeyPat)];
true ->
lists:seq(1l, N)
end;
7—>
lists:seq(1, N)
end;

match spec to frag numbers(0ldState, MatchSpec) ->
State = convert old state(OldState),
match spec to frag numbers(State, MatchSpec).

power2(Y) ->
1 bsl Y. % trunc(math:pow(2, Y)).

70 | Ericsson AB. All Rights Reserved.: Mnesia

->



1.11 Appendix C: Fragmented Table Hashing Callback Interface

2 Reference Manual

The Mnesia application is a distributed Database Management System (DBMYS), appropriate for telecommunications
applications and other Erlang applications, which require continuous operation and exhibit soft real-time properties.

Ericsson AB. All Rights Reserved.: Mnesia | 71



mnesia

mnesia

Erlang module

The following are some of the most important and attractive capabilities provided by Mnesia:

A relational/object hybrid data model that is suitable for telecommunications applications.

A DBMS query language, Query List Comprehension (QLC) as an add-on library.

Persistence. Tables can be coherently kept on disc and in the main memory.

Replication. Tables can be replicated at several nodes.

Atomic transactions. A series of table manipulation operations can be grouped into a single atomic transaction.
Location transparency. Programs can be written without knowledge of the actual data location.

Extremely fast real-time data searches.

Schema manipulation routines. The DBMS can be reconfigured at runtime without stopping the system.

This Reference Manual describes the Mnesia API. Thisincludes functions that define and manipulate Mnesia tables.

All functions in this Reference Manual can be used in any combination with queries using the list comprehension
notation. For information about the query notation, see the glc manual pagein STDLIB.

Datain Mnesiais organized as a set of tables. Each table has a name that must be an atom. Each table is made up of
Erlang records. The user isresponsiblefor the record definitions. Each table also has a set of properties. The following
are some of the properties that are associated with each table:

t ype. Each table can have set , or der ed_set , or bag semantics. Notice that currently or der ed_set is
not supported for di sc_onl y_copi es.

If atableisof typeset , each key leads to either one or zero records.

If anew item is inserted with the same key as an existing record, the old record is overwritten. However, if a
table is of type bag, each key can map to severa records. All records in type bag tables are unique, only the
keys can be duplicated.

recor d_nanme. All records stored in a table must have the same name. The records must be instances of the
same record type.

ram copi es. A table can be replicated on a number of Erlang nodes. Property r am copi es specifiesalist
of Erlang nodes where RAM copies are kept. These copies can be dumped to disc at regular intervals. However,
updates to these copies are not written to disc on atransaction basis.

di sc_copi es. This property specifies alist of Erlang nodes where the table is kept in RAM and on disc. All
updatesof thetable are performed inthe actual tableand arealsologged todisc. If atableisof typedi sc_copi es
at acertain node, the entire tableisresident in RAM memory and on disc. Each transaction performed on the table
is appended to a LOGfile and written into the RAM table.

di sc_only_copi es. Some, or al, table replicas can be kept on disc only. These replicas are considerably
slower than the RAM-based replicas.

i ndex. Thisisalist of attribute names, or integers, which specify the tuple positions on which Mnesiaisto build
and maintain an extraindex table.

| ocal _content. When an application requires tables whose contents are loca to each node,
| ocal _cont ent tablescan be used. The table name is known to all Mnesianodes, but its content is unique on
each node. This means that access to such atable must be done locally. Set field| ocal _cont ent totrue to
enablethel ocal _cont ent behavior. Defaultisf al se.

maj ority. Thisattributeistrue or f al se; default isf al se. Whent r ue, amajority of the table replicas
must be available for an update to succeed. Mgjority checking can be enabled on tables with mission-critical data,
whereit isvital to avoid inconsistencies because of network splits.

72 | Ericsson AB. All Rights Reserved.: Mnesia



mnesia

e snnp. Each (set-based) Mnesia table can be automatically turned into a Simple Network Management Protocol
(SNMP) ordered table aswell. This property specifies the types of the SNMP keys.

e attri butes. Thenames of the attributes for the records that are inserted in the table.
For information about the complete set of table properties and their details, seermesi a: creat e_t abl e/ 2.

This Reference Manual uses a table of persons to illustrate various examples. The following record definition is
assumed:

-record(person, {name,

age = 0,

address = unknown,
salary = 0,
children = []1}),

Thefirst record attribute is the primary key, or key for short.

The function descriptions are sorted in aphabetical order. It is recommended to start to read about
mesi a: create_t abl e/ 2, mesi a: | ock/ 2, and nmesi a: acti vi ty/ 4 before you continue and learn
about the rest.

Writing or deleting in transaction-context creates a local copy of each modified record during the
transaction. During iteration, that is, mmesi a: fol d[I1r]/4, mesi a: next/ 2, mesi a: prev/ 2, and
mmesi a: snnp_get _next _i ndex/ 2, Mnesiacompensatesfor every written or deleted record, which can reduce
the performance.

If possible, avoid writing or deleting records in the same transaction before iterating over the table.

Data Types

table() = atom()

activity() =
ets | async dirty | sync dirty | transaction |
sync_transaction |
{transaction, Retries :: integer() >= 0} |
{sync_transaction, Retries :: integer() >= 0}

create option() =
{access mode, read write | read only} |
{attributes, [atom()]} |
{disc copies, [node()]} |
{disc _only copies, [node]} |
{index, [index attr()]} |
{load order, integer() >= 0} |
{majority, boolean()} |
{ram copies, [node()]} |
{record name, atom()} |
{snmp, SnmpStruct :: term()} |
{storage properties,
[{Backend :: module(), [BackendProp :: term()1}1} |
{type, set | ordered set | bag} |
{local content, boolean()} |

Ericsson AB. All Rights Reserved.: Mnesia | 73



mnesia

{user properties, proplists:proplist()}
storage type() = ram copies | disc copies | disc only copies
t result(Res) = {atomic, Res} | {aborted, Reason :: term()}
result() = ok | {error, Reason :: term()}
index_attr() = atom() | integer() >= 0 | {atom()}
write locks() = write | sticky write
read locks() = read
lock kind() = write locks() | read locks()
select continuation() = term()
snmp_struct() = [{atom(), snmp _type() | tuple of(snmp type())}]
snmp_type() = fix string | string | integer
tuple of (_T) tuple()
config key() = extra db nodes | dc dump limit
config value() = [node()] | number()
config result() = {ok, config value()} | {error, term()}
debug level() = none | verbose | debug | trace

Exports

abort(Reason :: term()) -> no_return()

Makes the transaction silently return thetuple { abort ed, Reason}. Termination of a Mnesia transaction means
that an exception is thrown to an enclosing cat ch. Thus, the expression cat ch mmesi a: abort (x) does not
terminate the transaction.

activate checkpoint(Args :: [Arg]l) ->
{ok, Name, [node()]} |
{error, Reason :: term()}
Types.
Arg =
{name, Name} |
{max, [table()]} |
{min, [table()]} |
{allow _remote, boolean()} |
{ram _overrides dump, boolean()}

A checkpoint is aconsistent view of the system. A checkpoint can be activated on a set of tables. This checkpoint can
then be traversed and presents aview of the system asit existed at the time when the checkpoint was activated, even
if the tables are being or have been manipul ated.

Ar gs isalist of the following tuples:

* {nane, Nane} . Nane isthe checkpoint name. Each checkpoint must have anamethat is uniqueto the associated
nodes. The name can be reused only once the checkpoint has been deactivated. By default, anamethat is probably
unigue is generated.

« {max, MaxTabs}. MaxTabs isalist of tables that are to be included in the checkpoint. Default is[ ] . For
these tables, the redundancy is maximized and checkpoint information is retained together with all replicas. The
checkpoint becomes more fault tolerant if the tables have several replicas. When a new replicais added by the
schema manipulation function mesi a: add_t abl e_copy/ 3, aretainer is also attached automatically.

74 | Ericsson AB. All Rights Reserved.: Mnesia



mnesia

« {mn, MnTabs}.M nTabs isalist of tablesthat are to be included in the checkpoint. Default is[]. For these
tables, the redundancy is minimized and the checkpoint information is only retained with one replica, preferably
on the local node.

« {allow renote, Bool }.fal se meansthat all retainers must be local. The checkpoint cannot be activated
if atable does not reside locally. t r ue alows retainers to be allocated on any node. Default ist r ue.

e {ramoverrides_dunp, Bool }. Only applicable for r am _copi es. Bool allows you to choose to back
up thetable state asitisin RAM, or asitisondisc. t r ue meansthat the latest committed recordsin RAM are to
be included in the checkpoint. These are the records that the application accesses. f al se means that the records
dumped to DAT files are to be included in the checkpoint. These records are loaded at startup. Default isf al se.

Returns { ok, Nare, Nodes} or {error, Reason}. Nane isthe (possibly generated) checkpoint name. Nodes
arethe nodesthat areinvolved in the checkpoint. Only nodesthat keep acheckpoint retainer know about the checkpoint.

activity(Kind, Fun) -> t result(Res) | Res
Types.

Kind = activity()

Fun = fun(() -> Res)

Cdlsmmesi a: acti vity(AccessCont ext, Fun, Args, AccessMod),whereAccessMd isthedefault
access callback module obtained by mesi a: syst em i nf o(access_nodul e) . Ar gs defaultsto[] (empty
list).

activity(Kind, Fun, Args :: [Arg :: term()], Mod) ->
t result(Res) | Res
Types:
Kind = activity()
Fun = fun((...) -> Res)
Mod = atom()

Executes the functional object Fun with argument Ar gs.

The code that executesinside the activity can consist of a series of table manipulation functions, which are performed
inan AccessCont ext . Currently, the following access contexts are supported:

transacti on
Short for {t ransaction, infinity}
{transaction, Retries}

Calsmesi a: transacti on(Fun, Args, Retri es).Noticethat theresult from Fun isreturned if the
transaction is successful (atomic), otherwise the function exits with an abort reason.

sync_transaction
Short for { sync_transaction, infinity}
{sync_transaction, Retries}

Callsmmesi a: sync_transacti on( Fun, Args, Retri es).NoticethattheresultfromFun isreturned
if the transaction is successful (atomic), otherwise the function exits with an abort reason.

async_dirty

Calsmesi a: async_dirty(Fun, Args).
sync_dirty

Cdlsmesi a: sync_dirty(Fun, Args).

Ericsson AB. All Rights Reserved.: Mnesia | 75



mnesia

ets

Callsmesi a: et s(Fun, Args).

Thisfunction (mesi a: acti vi t y/ 4) differsin an important way from the functions rmesi a: t r ansact i on,
mesi a: sync_transacti on, mmesi a: async_dirty, mmesia:sync_dirty, and mmesi a: ets.
Argument AccessMd isthe name of a callback module, which implementsthe mesi a_access behavior.

Mnesia forwards calls to the following functions:

mnesia:lock/2 (read lock_table/l, write lock_table/1)
mnesiawrite/3 (write/1, s write/1)

mnesia:delete/3 (delete/1, s delete/1)

mnesiadelete object/3 (delete_object/1, s delete object/1)
mnesiarread/3 (read/1, wread/1)
mnesiamatch_object/3 (match_object/1)
mnesiaall_keys/1

mnesiafirst/1

mnesialast/1

mnesia:prev/2

mnesia:next/2

mnesiaiindex_match_object/4 (index_match_object/2)
mnesiaiindex_read/3

mnesiaitable info/2

to the corresponding;:

Act

AccessMod:lock(Activityld, Opague, L ockltem, LockKind)
AccessMod:write(Activityld, Opague, Tab, Rec, LockKind)
AccessMod:delete(Activityld, Opague, Tab, Key, LockKind)
AccessMod:delete_object(Activityld, Opaque, Tab, RecX S, LockKind)
AccessMod:read(Activityld, Opague, Tab, Key, LockKind)
AccessMod:match_object(Activityld, Opague, Tab, Pattern, LockKind)
AccessMod:all_keys(Activityld, Opaque, Tab, LockKind)
AccessMod:first(Activityld, Opague, Tab)

AccessMod:last(Activityld, Opaque, Tab)

AccessMod:prev(Activityld, Opaque, Tab, Key)

AccessMod:next(Activityld, Opague, Tab, Key)
AccessMod:index_match_object(Activityld, Opague, Tab, Pattern, Attr, LockKind)
AccessMod:index_read(Activityld, Opague, Tab, SecondaryK ey, Attr, LockKind)
AccessMod:table_info(Activityld, Opague, Tab, Infoltem)

i vityld is arecord that represents the identity of the enclosing Mnesia activity. The first field (obtained

with el enent (1, Activityld)) contains an atom, which can be interpreted as the activity type: et s,

asy

nc_dirty,sync_dirty,ortid.tid meansthat theactivity isatransaction. The structure of the rest of the

identity record isinternal to Mnesia.

Opaque isan opaque data structure that isinternal to Mnesia.

add table copy(Tab, N, ST) -> t result(ok)
Types:
76 | Ericsson AB. All Rights Reserved.: Mnesia



mnesia

Tab = table()
N = node()
ST = storage type()
Makes another copy of a table at the node Node. Argument Type must be either of the atoms r am copi es,

di sc_copi es,ordi sc_onl y_copi es. Forexample, thefollowing call ensuresthat adiscreplicaof theper son
table also exists at node Node:

mnesia:add table copy(person, Node, disc copies)

This function can also be used to add areplica of the table named schemna.

add table index(Tab, I) -> t result(ok)
Types:
Tab = table()
I = index_attr()
Table indexes can be used whenever the user wants to use frequently some other field than the key field to look up
records. If this other field has an associated index, these lookups can occur in constant time and space. For example,

if your application wishes to use field age to find efficiently all persons with a specific age, it can be a good idea to
have an index on field age. This can be done with the following call:

mnesia:add table index(person, age)

Indexes do not come for free. They occupy space that is proportional to the table size, and they cause insertions into
the table to execute slightly slower.

all keys(Tab :: table()) -> [Key :: term()]

Returns a list of al keys in the table named Tab. The semantics of this function is context-sensitive. For more
information, see rmesi a: acti vi t y/ 4. In transaction-context, it acquires aread lock on the entire table.

async _dirty(Fun) -> Res | no_return()
async dirty(Fun, Args :: [Arg :: term()]) -> Res | no_return()
Types.

Fun = fun((...) -> Res)

Callsthe Fun in acontext that is not protected by atransaction. The Mnesia function calls performed in the Fun are
mapped to the corresponding dirty functions. This still involveslogging, replication, and subscriptions, but thereisno
locking, local transaction storage, or commit protocolsinvolved. Checkpoint retainersand indexes are updated, but they
are updated dirty. Asfor normal mesi a: di rty_* operations, the operations are performed semi-asynchronously.
For details, seermesi a: acti vi t y/ 4 and the User's Guide.

The Mnesia tables can be manipulated without using transactions. This has some serious disadvantages, but is
considerably faster, as the transaction manager is not involved and no locks are set. A dirty operation does, however,
guarantee a certain level of consistency, and the dirty operations cannot return garbled records. All dirty operations
provide location transparency to the programmer, and a program does not have to be aware of the whereabouts of a
certain table to function.

Noticethat it is more than ten times more efficient to read records dirty than within atransaction.

Depending on the application, it can be agood ideato use the dirty functionsfor certain operations. Almost all Mnesia
functions that can be called within transactions have a dirty equivalent, which is much more efficient.

Ericsson AB. All Rights Reserved.: Mnesia | 77



mnesia

However, notice that thereis arisk that the database can be left in an inconsistent state if dirty operations are used to
update it. Dirty operations are only to be used for performance reasons when it is absolutely necessary.

Notice that calling (nesting) mesi a: [ a] sync_dirty inside a transaction-context inherits the transaction
semantics.

backup(Dest :: term()) -> result()
backup(Dest :: term(), Mod :: module()) -> result()
Activates a new checkpoint covering all Mnesia tables, including the schema, with maximum degree of redundancy,

and performs a backup using backup_checkpoi nt/ 2/ 3. The default value of the backup callback module
BackupMod isobtained by mesi a: syst em i nf o( backup_nodul e) .

backup checkpoint(Name, Dest) -> result()
backup checkpoint(Name, Dest, Mod) -> result()
Types:

Name = Dest = term()

Mod = module()

The tables are backed up to external media using backup module BackupMbd. Tables with the local contents
property are backed up as they exist on the current node. BackupMod is the default backup callback module
obtained by mesi a: syst em i nf o( backup_nodul e) . For information about the exact callback interface (the
mmesi a_backup behavi or), see the User's Guide.

change config(Config, Value) -> config result()
Types:

Config = config key()

Value = config value()
Conf i g isto be an atom of the following configuration parameters:
extra_db_nodes

Val ue isalist of nodesthat Mnesiaisto try to connect to. Ret ur nVal ue isthose nodesin Val ue that Mnesia
is connected to.

Notice that this function must only be used to connect to newly started RAM nodes (N.D.R.S.N.) with an empty
schema. If, for example, this function is used after the network has been partitioned, it can lead to inconsistent
tables.

Notice that Mnesia can be connected to other nodes than those returned in Ret ur nVal ue.
dc_dunp_limt

Val ue isanumber. See the description in Section Configuration Parameters. Ret ur nVal ue isthe new value.
Notice that this configuration parameter is not persistent. It islost when Mnesia has stopped.

change table access mode(Tab :: table(), Mode) -> t result(ok)
Types:
Mode = read only | read write
AcccessMbde isby default theatomr ead_wri t e butit canalsobesettotheatomr ead_onl y. If AccessMbde

issettor ead_onl y, updates to the table cannot be performed. At startup, Mnesiaawaysloadsr ead_onl y tables
locally regardless of when and if Mnesiais terminated on other nodes.

78 | Ericsson AB. All Rights Reserved.: Mnesia



mnesia

change table copy type(Tab :: table(),
Node :: node(),

To :: storage type()) ->
t result(ok)

For example:

mnesia:change table copy type(person, node(), disc copies)

Transforms the per son table from a RAM table into a disc-based table at Node.

This function can also be used to change the storage type of the table named schema. The schema table can only
have r am copi es or di sc_copi es asthe storage type. If the storage type of the schemaisr am copi es, no
other table can be disc-resident on that node.

change table load order(Tab :: table(), Order) -> t result(ok)
Types:
Order = integer() >= 0

TheLoadOr der priority isby default O (zero) but can be set to any integer. The tableswith the highest LoadOr der
priority are loaded first at startup.

change table majority(Tab :: table(), M :: boolean()) ->
t result(ok)

Maj ori ty must be aboolean. Default is f al se. When t r ue, a magjority of the table replicas must be available
for an update to succeed. When used on fragmented tables, Tab must be the base table name. Directly changing the
majority setting on individual fragmentsis not allowed.

clear _table(Tab :: table()) -> t_result(ok)
Deletes all entriesin thetable Tab.

create schema(Ns :: [node()]) -> result()

Creates a new database on disc. Various files are created in the local Mnesia directory of each node. Notice that the
directory must be unique for each node. Two nodes must never share the same directory. If possible, use alocal disc
device to improve performance.

mesi a: cr eat e_schena/ 1 failsif any of the Erlang nodes given as Di scNodes are not dive, if Mnesiais
running on any of the nodes, or if any of the nodes already have a schema. Use mesi a: del et e_schema/ 1 to
get rid of old faulty schemas.

Notice that only nodes with disc are to be included in Di scNodes. Disc-less nodes, that is, nodes where all tables
including the schema only residesin RAM, must not be included.

create table(Name :: table(), Arg :: [create option()]) ->
t result(ok)

Creates a Mnesia table called Nane according to argument TabDef . Thislist must be alist of {1t em Val ue}
tuples, where the following values are allowed:

« {access_node, Aton}.Theaccessmodeis by defaulttheatomread_wri t e but it can aso be set to the
atomr ead_onl y. If AccessMode issettor ead_onl y, updates to the table cannot be performed.

Ericsson AB. All Rights Reserved.: Mnesia | 79



mnesia

At startup, Mnesia always loads r ead_onl y table locally regardless of when and if Mnesia is terminated on
other nodes. This argument returns the access mode of the table. The access mode can be r ead_onl y or
read write.

« {attributes, Atonlist} isalistof the attribute names for the records that are supposed to populate the
table. Defaultis[ key, val ] . Thetable must at least have one extra attribute in addition to the key.

When accessing single attributesin arecord, it is not necessary, or even recommended, to hard code any attribute
names as atoms. Use construct r ecor d_i nf o(fi el ds, Recor dNane) instead. It can be used for records
of type Recor dNane.

e {disc_copies, Nodelist},whereNodeli st isalist of the nodeswhere this table is supposed to have
disc copies. If atablereplicaisof typedi sc_copi es, all write operations on this particular replicaof thetable
are written to disc and to the RAM copy of the table.

It is possible to have a replicated table of type di sc_copi es on one node and another type on another node.
Defaultis[] .

e {disc_only_copies, Nodelist},whereNodel i st isalistof thenodeswherethistableissupposed to
havedi sc_onl y_copi es. A disc only tablereplicais kept on disc only and unlike the other replicatypes, the
contents of the replicado not reside in RAM. These replicas are considerably slower than replicas held in RAM.

« {index, Intlist},wherelntlist isalistof attribute names (atoms) or record fields for which Mnesia
isto build and maintain an extraindex table. The gl ¢ query compiler may be able to optimize queries if there
areindexes available.

e {load_order, Integer}.Theload order priority is by default O (zero) but can be set to any integer. The
tables with the highest load order priority are loaded first at startup.

« {mgjority, Flag},whereFl ag must beaboolean. Ift rue, any (non-dirty) update to the tableis aborted,
unlessamajority of thetablereplicasare availablefor the commit. When used on afragmented table, al fragments
are given the same the same majority setting.

e {ramcopies, Nodelist}, whereNodeli st isalist of the nodes where this table is supposed to have
RAM copies. A tablereplicaof typer am copi es isnot written to disc on aper transaction basis.r am _copi es
replicas can be dumped to disc with the function mesi a: dunp_t abl es( Tabs) . Default value for this
attributeis[ node() ] .

 {record_nanme, Nane},whereName must be an atom. All records stored in the table must have this name
asthefirst element. It defaults to the same name as the table name.

e {snnp, SnnpStruct}.Foradescriptionof SnnpStruct, seemmesi a: snnp_open_t abl e/ 2. If this
attributeispresentin Ar gLi st tormesi a: cr eat e_t abl e/ 2, thetableisimmediately accessible by SNMP.
Therefore applications that use SNM P to manipulate and control the system can be designed easily, since Mnesia
provides a direct mapping between the logical tables that make up an SNMP control application and the physical
data that makes up a Mnesiatable.

e {storage_properties, [{Backend, Properties}] forwards more properties to the back end
storage. Backend can currently be et s or dets. Properti es is alist of options sent to the back end
storage during table creation. Pr operti es cannot contain properties already used by Mnesia, such ast ype
ornaned_t abl e.

For example:

mnesia:create table(table, [{ram copies, [node()]}, {disc only copies, nodes()},
{storage properties,
[{ets, [compressed]}, {dets, [{auto save, 5000}1} 1}1)

« {type, Type}, where Type must be either of the atomsset , or der ed_set, or bag. Default isset . In
aset, al records have unique keys. In abag, several records can have the same key, but the record content is
unique. If anon-unique record is stored, the old conflicting records are overwritten.

Noticethat currently or der ed_set isnot supported for di sc_onl y_copi es.

80 | Ericsson AB. All Rights Reserved.: Mnesia



mnesia

« {local _content, Bool},whereBool istrueorfal se.Defaultisf al se.

For example, the following call creates the per son table (defined earlier) and replicates it on two nodes:

mnesia:create table(person,
[{ram copies, [N1, N2]},
{attributes, record info(fields, person)}]).

If it isrequired that Mnesia must build and maintain an extra index table on attribute addr ess of all the per son
records that are inserted in the table, the following code would be issued:

mnesia:create table(person,
[{ram copies, [N1, N2]},
{index, [address]},
{attributes, record info(fields, person)}]).

The specification of i ndex and attri but es can be hard-coded as {i ndex, [2]} and{attributes,
[ name, age, address, salary, children]}, respectively.

mesi a: creat e_t abl e/ 2 writes records into the table schema. This function, and all other schema
manipulation functions, are implemented with the normal transaction management system. This guarantees that
schema updates are performed on all nodesin an atomic manner.

deactivate checkpoint(Name :: term()) -> result()

The checkpoint is automatically deactivated when some of the tables involved have no retainer attached to them. This
can occur when nodes go down or when areplicais deleted. Checkpoints are al so deactivated with this function. Nanme
is the name of an active checkpoint.

del table copy(Tab :: table(), N :: node()) -> t result(ok)

Deletesthe replicaof table Tab at node Node. When the last replicais deleted with this function, the table disappears
entirely.

This function can also be used to delete a replica of the table named schema. The Mnesia node is then removed.
Notice that Mnesia must be stopped on the nodefirst.

del table index(Tab, I) -> t result(ok)
Types.

Tab = table()

I = index_attr()
Deletes the index on attribute with name At t r Nane in atable.

delete(0id :: {Tab :: table(), Key :: term()}) -> ok
Cdlsmesi a: del et e(Tab, Key, write).

delete(Tab :: table(), Key :: term(), LockKind :: write locks()) ->
ok

Deletes al recordsin table Tab with the key Key.

The semantics of thisfunction is context-sensitive. For details, seermesi a: act i vi t y/ 4. Intransaction-context, it
acquiresalock of typeLockKi nd intherecord. Currently, thelock typeswr i t e andst i cky_wr i t e aresupported.

Ericsson AB. All Rights Reserved.: Mnesia | 81



mnesia

delete object(Rec :: tuple()) -> ok

Cdlsmmesi a: del et e_obj ect (Tab, Record, write),whereTabisel enent (1, Record).

delete object(Tab :: table(),
Rec :: tuple(),
LockKind :: write locks()) ->
ok

If atableis of type bag, it can sometimes be needed to delete only some of the records with a certain key. This can
be done with the function del et e_obj ect / 3. A complete record must be supplied to this function.

The semantics of this function is context-sensitive. For details, see mesi a: acti vi t y/ 4. In transaction-context,
it acquires a lock of type LockKi nd on the record. Currently, the lock typeswrite and sticky wite are
supported.

delete schema(Ns :: [node()]) -> result()

Deletes a database created with nmesi a: cr eat e_schena/ 1. mesi a: del et e_schena/ 1 failsif any of the
Erlang nodes given as Di scNodes are not alive, or if Mnesiais running on any of the nodes.

After the database is deleted, it can till be possible to start Mnesia as a disc-less node. This depends on how
configuration parameter schena_| ocat i on isset.

‘ Use this function with extreme caution, as it makes existing persistent data obsolete. Think twice before using it. ‘

delete table(Tab :: table()) -> t result(ok)
Permanently deletes all replicas of table Tab.

dirty all keys(Tab :: table()) -> [Key :: term()]
Dirty equivalent of the function mesi a: al | _keys/ 1.

dirty delete(0id :: {Tab :: table(), Key :: term()}) -> ok
Cdlsmmesi a: dirty_del ete(Tab, Key).

dirty delete(Tab :: table(), Key :: term()) -> ok
Dirty equivalent of the function mesi a: del et e/ 3.

dirty delete object(Record :: tuple()) -> ok
Cdlsmmesi a: dirty_del ete_obj ect (Tab, Record),whereTabisel ement (1, Record).

dirty delete object(Tab :: table(), Record :: tuple()) -> ok
Dirty equivalent of the function mesi a: del et e_obj ect/ 3.

dirty first(Tab :: table()) -> Key :: term()

Recordsin set or bag tables are not ordered. However, there is an ordering of the records that is unknown to the
user. Therefore, atable can be traversed by this function with the function mesi a: di rty_next/ 2.

82 | Ericsson AB. All Rights Reserved.: Mnesia



mnesia

If there are no records in the table, this function returns the atom ' $end_of _t abl e' . It is therefore highly
undesirable, but not disallowed, to use this atom as the key for any user records.

dirty index match object(Pattern, Attr) -> [Record]
Types:

Pattern = tuple()

Attr = index_attr()

Record = tuple()

Starts mesi a: dirty_i ndex_mat ch_obj ect (Tab, Pattern, Pos), where Tab is el enment (1
Pattern).

dirty index match object(Tab, Pattern, Attr) -> [Record]
Types:

Tab = table()

Pattern = tuple()

Attr = index attr()

Record = tuple()

Dirty equivalent of the function mesi a: i ndex_mat ch_obj ect/ 4.

dirty index read(Tab, Key, Attr) -> [Record]

Types.
Tab = table()
Key = term()

Attr = index_attr()
Record = tuple()

Dirty equivalent of the function mesi a: i ndex_r ead/ 3.

dirty last(Tab :: table()) -> Key :: term()

Works exactly like mesia:dirty_first/1 but returns the last object in Erlang term order for the
order ed_set tabletype. For all other tabletypes, mesi a: dirty first/landmesia:dirty last/1
are synonyms.

dirty match object(Pattern :: tuple()) -> [Record :: tuple()]
Cdlsmmesi a: dirty_natch_obj ect (Tab, Pattern),whereTabisel ement (1, Pattern).

dirty match object(Tab, Pattern) -> [Record]
Types.

Tab = table()

Pattern = Record = tuple()

Dirty equivalent of the function mesi a: mat ch_obj ect/ 3.

dirty next(Tab :: table(), Key :: term()) -> NextKey :: term()

Traverses atable and performs operations on all records in the table. When the end of the table is reached, the special
key' $end_of _t abl e' isreturned. Otherwise, the function returns akey that can be used to read the actual record.

Ericsson AB. All Rights Reserved.: Mnesia | 83



mnesia

The behavior is undefined if another Erlang process performs write operations on the table while it is being traversed
with thefunctionmesi a: di rty_next/ 2.

dirty prev(Tab :: table(), Key :: term()) -> PrevKey :: term()

Works exactly like mesi a: dirty _next/2 but returns the previous object in Erlang term order for the
order ed_set table type. For al other table types, mesi a: dirty_next/2 andmesi a:dirty_prev/2
are synonyms.

dirty read(0id :: {Tab :: table(), Key :: term()}) -> [tuple()]
Cadlsmmesi a: dirty_read(Tab, Key).

dirty read(Tab :: table(), Key :: term()) -> [tuple()]
Dirty equivalent of the function mesi a: r ead/ 3.

dirty select(Tab, Spec) -> [Match]
Types:

Tab = table()

Spec = ets:match spec()

Match = term()
Dirty equivalent of the function mesi a: sel ect/ 2.

dirty update counter(Counter :: {Tab :: table(), Key :: term()},
Incr :: integer()) ->
NewVal :: integer()

Cdlsmmesi a: di rty_update_count er (Tab, Key, Incr).

dirty update counter(Tab :: table(),
Key :: term(),
Incr :: integer()) ->
NewVal :: integer()

Mnesia has no special counter records. However, records of the form { Tab, Key, | nteger} can be used as
(possibly disc-resident) counters when Tab is a set . This function updates a counter with a positive or negative
number. However, counters can never become less than zero. There are two significant differences between this
function and the action of first reading the record, performing the arithmetics, and then writing the record:

e [tismuch more efficient.

e mesia:dirty_update_counter/ 3 isperformed asan atomic operation although it is not protected by a
transaction.

If two processesperformmesi a: di rty_updat e_count er / 3 simultaneously, both updates take effect without
therisk of losing one of the updates. The new value NewVal of the counter is returned.

If Key does not exist, anew record is created with value | ncr if itislarger than O, otherwiseitisset to 0.

dirty write(Record :: tuple()) -> ok
Cdlsmmesia:dirty_wite(Tab, Record),whereTabisel ement (1, Record).

84 | Ericsson AB. All Rights Reserved.: Mnesia



mnesia

dirty write(Tab :: table(), Record :: tuple()) -> ok

Dirty equivalent of the function mesi a: wri t e/ 3.

dump_log() -> dumped

Performs a user-initiated dump of the local log file. Thisis usually not necessary, as Mnesia by default manages this
automatically. See configuration parameters dump_log_time_threshold and dump_log_write threshold.

dump tables(Tabs :: [Tab :: table()]) -> t result(ok)

Dumps a set of r am copi es tables to disc. The next time the system is started, these tables are initiated with the
datafound in the files that are the result of this dump. None of the tables can have disc-resident replicas.

dump_to textfile(File :: file:filename()) -> result() | error

Dumps all local tables of a Mnesia system into atext file, which can be edited (by a normal text editor) and then be
reloaded with mesi a: | oad_t ext fil e/ 1. Only usethisfunction for educational purposes. Use other functions
to deal with real backups.

error _description(Error :: term()) -> string()

All Mnesia transactions, including al the schema update functions, either return value {atomi ¢, Val} or
the tuple {aborted, Reason}. Reason can be either of the atoms in the following list. The function
error _descri ption/ 1 returnsadescriptive string that describes the error.

e nested_transacti on. Nested transactions are not allowed in this context.

e badar g. Bad or invalid argument, possibly bad type.

* no_transacti on. Operation not allowed outside transactions.

e conbi ne_error. Tableoptionsillegally combined.

e bad_i ndex. Index aready exists, or was out of bounds.

 al ready_exi st s. Schemaoption to be activated is already on.

e index_exi sts.Some operations cannot be performed on tables with an index.

* no_exi sts. Tried to perform operation on non-existing (not-alive) item.

e systemlinit.A systemlimit was exhausted.

* mnesi a_down. A transaction involves records on a remote node, which became unavailable before the
transaction was completed. Records are no longer available elsewhere in the network.

« not_a_db_node. A node was mentioned that does not exist in the schema.
e bad_t ype. Bad type specified in argument.

* node_not _runni ng. Nodeis not running.

e truncated_binary_ fil e. Truncated binary infile.

e acti ve. Some delete operations require that all active records are removed.
* illegal.Operation not supported on this record.

Error canbeReason,{error, Reason},or{aborted, Reason}.Reason canbeanatom oratuplewith
Reason asan atominthefirst field.

The following examples illustrate a function that returns an error, and the method to retrieve more detailed error
information:

» Thefunction mnesia:create _table(bar, [{ attributes, 3.14}]) returnsthe tuple{ abor t ed, Reason}, where
Reason isthetuple{ bad_t ype, bar, 3. 14000} .

Ericsson AB. All Rights Reserved.: Mnesia | 85



mnesia

»  Thefunction mnesia:error_description(Reason) returnstheterm { " Bad t ype on sone provi ded
argument s", bar, 3. 14000}, which isan error description suitable for display.

ets(Fun) -> Res | no_return()
ets(Fun, Args :: [Arg :: term()]) -> Res | no_return()
Types:

Fun = fun((...) -> Res)
Callsthe Fun in araw context that is not protected by atransaction. The Mnesiafunction call is performed in the Fun
and performed directly on the local ETS tables on the assumption that the local storage typeisr am copi es and
the tables are not replicated to other nodes. Subscriptions are not triggered and checkpoints are not updated, but it is

extremely fast. Thisfunction can also be appliedtodi sc_copi es tablesif all operations are read only. For details,
seemesi a: acti vi t y/ 4 and the User's Guide.

Noticethat calling (nesting) anmesi a: et s inside a transaction-context inherits the transaction semantics.

first(Tab :: table()) -> Key :: term()

Recordsin set or bag tables are not ordered. However, there is an ordering of the records that is unknown to the
user. A table can therefore be traversed by this function with the function rmesi a: next / 2.

If there are no records in the table, this function returns the atom ' $end_of t abl e' . It is therefore highly
undesirable, but not disallowed, to use this atom as the key for any user records.

foldl(Fun, AccO, Tab :: table()) -> Acc
Types.
Fun = fun((Record :: tuple(), AccO) -> Acc)

Iterates over the table Tabl e and callsFunct i on( Record, NewAcc) for each Recor d in thetable. The term
returned from Funct i on isused as the second argument in the next call to Funct i on.

f ol dl returnsthe sameterm asthelast call to Funct i on returned.

foldr(Fun, AccO, Tab :: table()) -> Acc
Types.
Fun = fun((Record :: tuple(), AccO) -> Acc)

Works exactly like f ol dl / 3 but iterates the table in the opposite order for the or der ed_set table type. For all
other table types, f ol dr/ 3 andf ol dl / 3 are synonyms.

force load table(Tab :: table()) ->
yes | {error, Reason :: term()}

The Mnesiaalgorithm for table oad can lead to a situation where atable cannot be loaded. This situation occurs when
anode is started and Mnesia concludes, or suspects, that another copy of the table was active after this local copy
became inactive because of a system crash.

If this situation is not acceptable, this function can be used to override the strategy of the Mnesiatableload agorithm.
This can lead to a situation where some transaction effects are lost with an inconsistent database as result, but for some
applications high availability is more important than consistent data.

index _match object(Pattern, Attr) -> [Record]
Types:

86 | Ericsson AB. All Rights Reserved.: Mnesia



mnesia

Pattern = tuple()
Attr = index_attr()
Record = tuple()

Starts mesi a: i ndex_mat ch_obj ect (Tab, Pattern, Pos, read), where Tab isel ement (1,
Pattern).

index match object(Tab, Pattern, Attr, LockKind) -> [Record]
Types.
Tab = table()
Pattern = tuple()
Attr = index_attr()
LockKind = lock kind()
Record = tuple()
In amanner similar to the function mesi a: i ndex_r ead/ 3, any index information can be used when trying to
match records. This function takes a pattern that obeys the same rules asthe function nmesi a: mat ch_obj ect/ 3,
except that this function requires the following conditions:
e Thetable Tab must have an index on position Pos.
e Theelement in position Pos in Pat t er n must be bound. Pos isaninteger (#r ecor d. Fi el d) or an attribute
name.

The two index search functions described here are automatically started when searching tables with gl ¢ list
comprehensions and also when using the low-level mmesi a: [dirty_] mat ch_obj ect functions.

The semantics of thisfunction is context-sensitive. For details, seemrmesi a: act i vi t y/ 4. Intransaction-context, it
acquiresalock of typeLockKi nd ontheentiretable or on asinglerecord. Currently, thelock typer ead issupported.

index read(Tab, Key, Attr) -> [Record]

Types.
Tab = table()
Key = term()

Attr = index_attr()
Record = tuple()

Assume that there is an index on position Pos for acertain record type. This function can be used to read the records
without knowing the actual key for the record. For example, with an index in position 1 of table per son, the call
mesi a: i ndex_r ead( person, 36, #person. age) returnsalist of all personswith age 36. Pos can also
be an attribute name (atom), but if the notation mesi a: i ndex_r ead( per son, 36, age) isused, thefield
position is searched for in runtime, for each call.

The semantics of this function is context-sensitive. For details, see mesi a: acti vi t y/ 4. In transaction-context,
it acquires aread lock on the entire table.

info() -> ok

Prints system information on the terminal. This function can be used even if Mnesia is not started. However, more
information is displayed if Mnesiais started.

install fallback(Src :: term()) -> result()
Cdlsmmesi a:install _fall back(Opaque, Args),whereArgsis[{scope, global}].

Ericsson AB. All Rights Reserved.: Mnesia | 87



mnesia

install fallback(Src :: term()) -> result()

Cadlsmesi a: i nstal |l _fall back(Opaque, Args),whereArgsis[{scope, global}, {nodule,
BackupMod}] .

install fallback(Src :: term(), Mod :: module() | [Opt]) ->
result()

Types:
Opt = Module | Scope | Dir
Module = {module, Mod :: module()}
Scope = {scope, global | local}
Dir = {mnesia dir, Dir :: string()}
Installs a backup as fallback. The fallback is used to restore the database at the next startup. Installation of fallbacks

requires Erlang to be operational on all the involved nodes, but it does not matter if Mnesia is running or not. The
installation of the fallback failsif the local node is not one of the disc-resident nodes in the backup.

Ar gs isalist of the following tuples:

« {nodul e, BackupMod}. All accesses of the backup media are performed through a callback module named
BackupMod. Argument Qpaque is forwarded to the callback module, which can interpret it as it wishes. The
default callback moduleiscaled rmesi a_backup and it interprets argument Opaque asalocal filename. The
default for this module is also configurable through configuration parameter - mesi a mmesi a_backup.

« {scope, Scope}.TheScope of afallback iseither gl obal forthe entire databaseor | ocal for one node.
By default, the installation of afallback isagloba operation, which either is performed on all nodes with a disc-
resident schema or none. Which nodes that are disc-resident is determined from the schema information in the
backup.

If Scope of the operationis| ocal , the fallback is only installed on the local node.

e {mmesia_dir, AlternateDi r}. Thisargument isonly valid if the scope of the installation is | ocal .
Normally the installation of a fallback is targeted to the Mnesia directory, as configured with configuration
parameter - mesi a di r. But by explicitly supplying an Al t er nat eDi r, the falback is installed there
regardless of the Mnesiadirectory configuration parameter setting. After installation of afallback on an alternative
Mnesia directory, that directory isfully prepared for use as an active Mnesia directory.

This is a dangerous feature that must be used with care. By unintentional mixing of directories, you can easily
end up with an inconsistent database, if the same backup isinstalled on more than one directory.

is transaction() -> boolean()
When this function is executed inside a transaction-context, it returnst r ue, otherwisef al se.

last(Tab :: table()) -> Key :: term()

Worksexactly likenmesi a: fi rst/ 1, but returnsthe last object in Erlang term order for theor der ed_set table
type. For all other table types, esi a: first/ 1 and mesi a: | ast/ 1 are synonyms.

load textfile(File :: file:filename()) ->
t result(ok) | {error, term()}

Loads a series of definitions and datafound in thetext file (generated withrmesi a: dunp_to_textfil e/ 1)into
Mnesia. Thisfunction also starts Mnesiaand possibly creates anew schema. This function isintended for educational
purposes only. It is recommended to use other functions to deal with real backups.

88 | Ericsson AB. All Rights Reserved.: Mnesia



mnesia

lock(LockItem, LockKind) -> 1list() | tuple() | no _return()
Types.
LockItem =
{record, table(), Key :: term()} |
{table, table()} |
{global, Key :: term(), MnesiaNodes :: [node()]}

LockKind = lock kind() | load

Write locks are normally acquired on all nodes where a replica of the table resides (and is active). Read locks are
acquired on one node (the local node if alocal replica exists). Most of the context-sensitive access functions acquire
an implicit lock if they are started in a transaction-context. The granularity of alock can either be a single record or
an entire table.

The normal use is to call the function without checking the return value, as it exits if it fails and the transaction is
restarted by the transaction manager. It returns all the locked nodes if awrite lock is acquired and ok if it was aread
lock.

The function mesi a: | ock/ 2 isintended to support explicit locking on tables, but is also intended for situations
when locks need to be acquired regardless of how tables are replicated. Currently, two kinds of LockKi nd are
supported:

wite
Writelocks are exclusive. Thismeansthat if one transaction managesto acquire awritelock on an item, no other
transaction can acquire any kind of lock on the same item.

read

Read locks can be shared. This means that if one transaction manages to acquire a read lock on an item, other
transactions can also acquire a read lock on the same item. However, if someone has a read lock, no one can
acquire a write lock at the same item. If someone has a write lock, no one can acquire either a read lock or a
write lock at the sameitem.

Conflicting lock requests are automatically queued if thereisno risk of adeadlock. Otherwise the transaction must be
terminated and executed again. Mnesia does this automatically as long as the upper limit of the maximumretri es
is not reached. For details, seermesi a: t ransacti on/ 3.

For the sake of completeness, sticky write locks are also described here even if a sticky write lock is not supported
by this function:

sticky write

Sticky write locks are a mechanism that can be used to optimize write lock acquisition. If your application uses
replicated tables mainly for fault tolerance (as opposed to read access optimization purpose), sticky locks can
be the best option available.

When a sticky write lock is acquired, all nodes are informed which node is locked. Then, sticky lock requests
from the same node are performed as alocal operation without any communication with other nodes. The sticky
lock lingers on the node even after the transaction ends. For details, see the User's Guide.

Currently, this function supports two kinds of Lockl t em
{tabl e, Tab}

Thisacquiresalock of type LockKi nd on the entire table Tab.
{gl obal, d obal Key, Nodes}

Thisacquires alock of type LockKi nd on the global resource @ obal Key. Thelock isacquired on al active
nodesin the Nodes list.

L ocks are released when the outermost transaction ends.

Ericsson AB. All Rights Reserved.: Mnesia | 89



mnesia

The semantics of this function is context-sensitive. For details, seermesi a: act i vi t y/ 4. In transaction-context,
it acquires locks, otherwise it ignores the request.

match object(Pattern :: tuple()) -> [Record :: tuple()]
Cdlsmmesi a: mat ch_obj ect (Tab, Pattern, read),whereTabisel ement (1, Pattern).

match object(Tab, Pattern, LockKind) -> [Record]
Types:

Tab = table()

Pattern = tuple()

LockKind = lock kind()

Record = tuple()

Takes a pattern with "don't care” variables denoted asa' _' parameter. This function returns a list of records that
matched the pattern. Since the second element of a record in a table is considered to be the key for the record, the
performance of this function depends on whether this key is bound or not.

For example, the call mesi a: mat ch_obj ect (person, {person, ' ', 36, ' ', ' '}, read)
returns alist of al person records with an age field of 36.

The function mesi a: nat ch_obj ect / 3 automatically uses indexes if these exist. However, no heuristics are
performed to select the best index.

The semantics of this function is context-sensitive. For details, seermesi a: acti vi t y/ 4. In transaction-context,
it acquiresalock of type LockKi nd ontheentiretable or asinglerecord. Currently, thelock typer ead is supported.

move table copy(Tab :: table(), From :: node(), To :: node()) ->
t result(ok)

Moves the copy of table Tab from node Fr omto node To.

The storage type is preserved. For example, a RAM table moved from one node remains a RAM on the new node.
Other transactions can still read and write in the table while it is being moved.

This function cannot beused on| ocal _cont ent tables.

next(Tab :: table(), Key :: term()) -> NextKey :: term()

Traverses atable and performs operations on all records in the table. When the end of the table is reached, the special
key' $end_of _t abl e' isreturned. Otherwise the function returns akey that can be used to read the actual record.

prev(Tab :: table(), Key :: term()) -> PrevKey :: term()

Works exactly like rmesi a: next / 2, but returns the previous object in Erlang term order for the or der ed_set
table type. For all other table types, rmesi a: next/ 2 and mesi a: pr ev/ 2 are synonyms.

read(0id :: {Tab :: table(), Key :: term()}) -> [tuple()]
read(Tab :: table(), Key :: term()) -> [tuple()]
Callsfunctionmmesi a: read( Tab, Key, read).

read(Tab :: table(), Key :: term(), LockKind :: lock kind()) ->

90 | Ericsson AB. All Rights Reserved.: Mnesia



mnesia

[tuple()]

Reads all records from table Tab with key Key. This function has the same semantics regardless of the location of
Tab. If thetableis of type bag, the function mesi a: r ead( Tab, Key) can return an arbitrarily long list. If the
tableis of typeset , thelistiseither of length 1, or [ ] .

The semantics of this function is context-sensitive. For details, see mesi a: acti vi t y/ 4. In transaction-context,
it acquires alock of type LockKi nd. Currently, thelock typesr ead, wite,andsti cky_w it e are supported.

If the user wants to update the record, it is more efficient tousewri te/ sti cky _write asthe LockKi nd. If
majority checking is active on the table, it is checked as soon as a write lock is attempted. This can be used to end
quickly if the majority condition is not met.

read lock table(Tab :: table()) -> ok

Cadllsthefunctionmesi a: | ock({tabl e, Tab}, read).

report event(Event :: term()) -> ok

When tracing a system of Mnesiaapplicationsit is useful to be able to interleave Mnesia own events with application-
related events that give information about the application context.

Whenever the application begins a new and demanding Mnesia task, or if it enters a new interesting phase in its
execution, it can be a good idea to use rmesi a: report _event/ 1. Event can be any term and generates a
{mesi a_user, Event} eventfor any processesthat subscribe to Mnesia system events.

restore(Src :: term(), Args :: [Arg]) -> t result([table()])
Types:
Op = skip tables | clear tables | keep tables | restore tables
Arg = {module, module()} | {Op, [table()]1} | {default op, Op}

With this function, tables can be restored online from a backup without restarting Mnesia. Opaque is forwarded to
the backup module. Ar gs isalist of the following tuples:

e {nodul e, BackupMbd} . The backup module BackupMod is used to access the backup media. If omitted,
the default backup module is used.

e {skip_tables, TabList},whereTabLi st isalistof tablesthat is not to be read from the backup.

« {clear_tables, TabList},whereTabLi st isalist of tablesthat isto be cleared before the records
from the backup areinserted. That is, all records in the tables are deleted before the tables are restored. Schema
information about the tablesis not cleared or read from the backup.

e {keep_tables, TablList},whereTablLi st isalist of tablesthat is not to be cleared before the records
from the backup are inserted. That is, the records in the backup are added to the records in the table. Schema
information about the tables is not cleared or read from the backup.

* {recreate_tables, TabList},whereTabLi st isalist of tablesthat isto be recreated before the
records from the backup are inserted. The tables are first deleted and then created with the schemainformation
from the backup. All the nodes in the backup need to be operational.

e {default_op, Operation},whereQperati on iseither of theoperationsski p_t abl es,
cl ear tabl es,keep_tabl es,orrecreate_tabl es. The default operation specifies which operation
that isto be used on tables from the backup that is not specified in any of the mentioned lists. If omitted,
operationcl ear _t abl es isused.

The affected tables are write-locked during the restoration. However, regardless of the lock conflicts caused by this,
the applications can continue to do their work while the restoration is being performed. The restoration is performed
as one single transaction.

Ericsson AB. All Rights Reserved.: Mnesia | 91



mnesia

If the databaseis huge, it it not always possibleto restoreit online. In such cases, restore the old database by installing
afallback and then restart.

s delete(0id :: {Tab :: table(), Key :: term()}) -> ok
Cdllsthefunctionmesi a: del et e( Tab, Key, sticky wite)

s _delete object(Rec :: tuple()) -> ok

Callsthefunctionmmesi a: del et e_obj ect (Tab, Record, sticky wite),whereTabisel ement (1,
Record).

s write(Record :: tuple()) -> ok

Cdlls the function mesi a:wite(Tab, Record, sticky wite), where Tab is el enent (1,
Record).

schema() -> ok
Prints information about all table definitions on the terminal.

schema(Tab :: table()) -> ok
Prints information about one table definition on the terminal.

select(Tab, Spec) -> [Match]
select(Tab, Spec, LockKind) -> [Match]
Types:

Tab = table()

Spec = ets:match spec()

Match = term()

LockKind = lock kind()

Matches the objects in table Tab using anmat ch_spec as described in the ets:select/3. Optionally alock r ead or
wr i t e can be given asthethird argument. Default isr ead. The return value depends on Mat chSpec.

Noticethat for best performance, sel ect isto be used before any modifying operations are done on that table in the
same transaction. That is, donot usewr i t e or del et e beforeasel ect .

Initssimplest forms, the mat ch_spec look asfollows:

e MatchSpec = [ Mat chFuncti on]

e MatchFunction = {MatchHead, [Quard], [Result]}

e MatchHead = tuple() | record()

e Quard = {"G@uardtest nane", ...}

e Result = "Termconstruct”

For a complete description of sel ect , seethe ERTS User's Guide and the ets manual pagein STDLIB.

For example, to find the names of all male persons older than 30 in table Tab:

MatchHead = #person{name='$1l', sex=male, age='$2', =' '},
Guard = {'>', '$2', 30},
Result = '$1°',

mnesia:select(Tab, [{MatchHead, [Guard], [Result]}]),

92 | Ericsson AB. All Rights Reserved.: Mnesia



mnesia

select(Tab, Spec, N, LockKind) ->
{[Match], Cont} | '$end of table'

Types.

Tab = table()

Spec = ets:match spec()

Match = term()

N = integer() >= 0

LockKind = lock kind()

Cont = select continuation()
Matches the objectsin table Tab using amat ch_spec as described in the ERTS User's Guide, and returns a chunk
of terms and a continuation. The wanted number of returned terms is specified by argument NObj ect s. The lock

argument can ber ead or wr i t e. The continuation is to be used as argument to mesi a: sel ect/ 1, if more or
all answers are needed.

Notice that for best performance, sel ect isto be used before any modifying operations are done on that table in
the same transaction. That is, do not use mesi a: wri t e or mesi a: del et e beforeammesi a: sel ect . For
efficiency, NObj ect s isarecommendation only and the result can contain anything from an empty listto al available
results.

select(Cont) -> {[Match], Cont} | '$end of table'
Types:
Match = term()
Cont = select continuation()
Selects more objects with the match specification initiated by rmesi a: sel ect/ 4.

Notice that any modifying operations, that is, mesi a: wri t e or mesi a: del et e, that are done between the
mmesi a: sel ect/ 4 and mesi a: sel ect/ 1 callsarenot visiblein the result.

set debug level(Level :: debug level()) ->
OldLevel :: debug level()

Changesthe internal debug level of Mnesia. For details, see Section Configuration Parameters.

set master nodes(Ns :: [node()]) -> result()

For each table Mnesia determinesitsreplicanodes (TabNodes) and startsrmesi a: set _nast er _nodes( Tab,
TabMast er Nodes) . where TabMast er Nodes is the intersection of Mast er Nodes and TabNodes. For
semantics, see mesi a: set _nast er _nodes/ 2.

set master nodes(Tab :: table(), Ns :: [node()]) -> result()

If the application detects a communication failure (in a potentially partitioned network) that can have caused an
inconsistent database, it can use the function rmesi a: set _mast er _nodes( Tab, Mast er Nodes) to define
from which nodes each table is to be loaded. At startup, the Mnesia normal table load agorithm is bypassed and the
table is loaded from one of the master nodes defined for the table, regardless of when and if Mnesia terminated on
other nodes. Mast er Nodes can only contain nodeswherethetable hasareplica. If the Mast er Nodes listisempty,
the master node recovery mechanism for the particular table is reset, and the normal load mechanism is used at the
next restart.

The master node setting is alwayslocal. It can be changed regardless if Mnesiais started or not.

Ericsson AB. All Rights Reserved.: Mnesia | 93



mnesia

The database can also become inconsistent if configuration parameter nax_wai t _f or _deci si on is used or if
mesi a: force_| oad_t abl e/ 1 isused.

snmp_close table(Tab :: table()) -> ok
Removes the possibility for SNM P to manipulate the table.

snmp_get mnesia key(Tab :: table(), RowIndex :: [integer()]) ->
{ok, Key :: term()} | undefined

Types:
Tab ::= atom)
Row ndex ::= [integer()]
Key ::= key() | {key(), key(), ...}
key() ::=integer() | string() | [integer()]

Transforms an SNMP index to the corresponding Mnesia key. If the SNMP table has multiple keys, the key isatuple
of the key columns.

snmp get next index(Tab :: table(), RowIndex :: [integer()]) ->
{ok, [integer()1} | endOfTable

Types:
Tab ::= atom)
Row ndex ::= [integer()]
Next I ndex ::= [integer()]

Rowl ndex can specify a non-existing row. Specifically, it can be the empty list. Returns the index of the next
lexicographical row. If Rowl ndex isthe empty list, this function returns the index of the first row in the table.

snmp get row(Tab :: table(), RowIndex :: [integer()]) ->
{ok, Row :: tuple()} | undefined

Types:
Tab ::= atom)
Row ndex ::= [integer()]
Row ::= record(Tab)

Reads arow by its SNMP index. Thisindex is specified asan SNMP Object Identifier, alist of integers.

snmp open_table(Tab :: table(), Snmp :: snmp struct()) -> ok

Types:
Tab ::= atom)
SnmpStruct ::= [{key, type()}]
type() ::= type_spec() | {type_spec(), type_spec(), ...}
type_spec() ::= fix_string | string | integer

A direct one-to-one mapping can be established between Mnesia tables and SNMP tables. Many telecommunication
applications are controlled and monitored by the SNM P protocol. This connection between Mnesiaand SNM P makes
it simple and convenient to achieve this mapping.

Argument SnnpSt r uct isalist of SNMP information. Currently, the only information needed is information about
the key types in the table. Multiple keys cannot be handled in Mnesia, but many SNMP tables have multiple keys.

94 | Ericsson AB. All Rights Reserved.: Mnesia



mnesia

Therefore, the following convention is used: if atable has multiple keys, these must always be stored as atuple of the
keys. Information about the key typesis specified as a tuple of atoms describing the types. The only significant type
isfi x_string. Thismeansthat astring has afixed size.

For example, the following causes table per son to be ordered as an SNMP table:
mnesia:snmp open table(person, [{key, string}])

Consider the following schemafor atable of company employees. Each employeeisidentified by department number
and name. The other table column stores the telephone number:

mnesia:create table(employee,

[{snmp, [{key, {integer, string}}1},
{attributes, record info(fields, employees)}]),

The corresponding SNMP table would have three columns: depar t ment , nane, andt el no.

An option is to have table columns that are not visible through the SNMP protocol. These columns must be the last
columns of the table. In the previous example, the SNMP table could have columns depar t ment and nane only.
The application could then use column t el no internally, but it would not be visible to the SNM P managers.

In atable monitored by SNMP, all elements must be integers, strings, or lists of integers.
When atable is SNMP ordered, modifications are more expensive than usual, O(logN). Also, more memory is used.

Notice that only the lexicographical SNMP ordering isimplemented in Mnesia, not the actual SNM P monitoring.

start() -> result()

Mnesiastartup isasynchronous. Thefunctioncall mesi a: st art () returnsthe atom ok and then startstoinitialize
the different tables. Depending on the size of the database, this can take some time, and the application programmer
must wait for the tables that the application needs before they can be used. This is achieved by using the function
mesi a: wai t _for_tabl es/ 2.

The startup procedure for a set of Mnesia nodes is afairly complicated operation. A Mnesia system consists of a set
of nodes, with Mnesia started locally on all participating nodes. Normally, each node has a directory where al the
Mnesia files are written. This directory isreferred to as the Mnesia directory. Mnesia can aso be started on disc-less
nodes. For more information about disc-less hodes, sce mesi a: cr eat e_schenma/ 1 and the User's Guide.

The set of nodes that makes up a Mnesia system is kept in a schema. Mnesia nodes can be added to or removed from
the schema. The initial schema is normally created on disc with the function mesi a: cr eat e_schena/ 1. On
disc-less nodes, atiny default schemais generated each time Mnesiais started. During the startup procedure, Mnesia
exchanges schema information between the nodes to verify that the table definitions are compatible.

Each schema has a unique cookie, which can be regarded as a unique schemaidentifier. The cookie must be the same
on al nodes where Mnesiais supposed to run. For details, see the User's Guide.

The schema file and all other files that Mnesia needs are kept in the Mnesia directory. The command-line option -
mmesi a dir Dir canbeused to specify the location of this directory to the Mnesia system. If no such command-
line option is found, the name of the directory defaultsto Mhesi a. Node.

application:start(mmesia) canasobe used.

stop() -> stopped | {error, term()}
Stops Mnesialocally on the current node.
appl i cation: st op(mmesi a) can aso be used.

Ericsson AB. All Rights Reserved.: Mnesia | 95



mnesia

subscribe(What) -> {ok, node()} | {error, Reason :: term()}
Types.
What = system | activity | {table, table(), simple | detailed}

Ensuresthat acopy of all eventsof typeEvent Cat egor y issent tothecaller. The available event types are described
in the User's Guide.

sync_dirty(Fun) -> Res | no _return()
sync_dirty(Fun, Args :: [Arg :: term()]) -> Res | no_return()
Types:

Fun = fun((...) -> Res)
Cdlls the Fun in a context that is not protected by a transaction. The Mnesia function cals performed in
the Fun are mapped to the corresponding dirty functions. It is performed in amost the same context as
mesi a: async_di rty/ 1, 2. Thedifference isthat the operations are performed synchronously. The caller waits
for the updates to be performed on all active replicas before the Fun returns. For details, seermesi a: activity/ 4
and the User's Guide.

sync_log() -> result()

Ensures that the local transaction log file is synced to disk. On a single node system, data written to disk tables since
the last dump can belost if there is a power outage. See dump_log/0.

sync_transaction(Fun) -> t result(Res)

sync_transaction(Fun, Retries) -> t result(Res)

sync_transaction(Fun, Args :: [Arg :: term()]) -> t result(Res)
(

sync_transaction(Fun, Args :: [Arg :: term()], Retries) ->
t result(Res)

Types:

Fun = fun((...) -> Res)

Retries = integer() >= 0 | infinity
Waits until data have been committed and logged to disk (if disk is used) on every involved node before it returns,
otherwise it behavesasmesi a: t ransaction/[ 1, 2, 3].

This functionality can be used to avoid that one process overloads a database on another node.

system info(Iterm :: term()) -> Info :: term()

Returnsinformation about the Mnesiasystem, such astransaction statistics, db__nodes, and configuration parameters.
Thevalid keys are asfollows:

e all.Returnsalist of al local system information. Each elementisa{ | nf oKey, | nfoVal} tuple.

New | nf oKey's can be added and old undocumented | nf oKey's can be removed without notice.
e access_nodul e. Returnsthe name of module that is configured to be the activity access callback module.

e auto_repair.Returnstrue orfal se toindicateif Mnesiais configured to start the auto-repair facility on
corrupted disc files.

e backup_nodul e. Returnsthe name of the module that is configured to be the backup callback module.
* checkpoi nt s. Returnsalist of the names of the checkpoints currently active on this node.
e event _nodul e. Returns the name of the module that is the event handler callback module.

96 | Ericsson AB. All Rights Reserved.: Mnesia



mnesia

db_nodes. Returns the nodes that make up the persistent database. Disc-less nodes are only included in the list
of nodesiif they explicitly have been added to the schema, for example, with rmesi a: add_t abl e_copy/ 3.
The function can be started even if Mnesiais not yet running.

debug. Returns the current debug level of Mnesia.

di r ect or y. Returns the name of the Mnesia directory. It can be called even if Mnesiais not yet running.
dunp_| og_| oad_regul at i on. Returns a boolean that tells if Mnesiais configured to regulate the dumper
process load.

Thisfeature is temporary and will be removed in future releases.

dunp_l og_ti me_t hreshol d. Returns the time threshold for transaction log dumps in milliseconds.

dunp_| og_updat e_i n_pl ace. Returns a boolean that tells if Mnesiais configured to perform the updates
in the Detsfiles directly, or if the updates are to be performed in a copy of the Detsfiles.

dunp_l og_write_threshol d.Returnsthewritethreshold for transaction log dumpsasthe number of writes
to the transaction log.

extra_db_nodes. Returnsalist of extradb_nodes to be contacted at startup.
fall back_acti vat ed. Returnst r ue if afalback isactivated, otherwisef al se.
hel d_I ocks. Returnsalist of al locks held by the local Mnesialock manager.

i S_runni ng.Returnsyes or no toindicateif Mnesiaisrunning. It canasoreturnst arti ng or st oppi ng.
Can be called even if Mnesiais not yet running.

| ocal _tabl es. Returnsalist of al tables that are configured to reside locally.

| ock_queue. Returnsalist of all transactions that are queued for execution by the local lock manager.

| og_ver si on. Returns the version number of the Mnesia transaction log format.

mast er _node_t abl es. Returnsalist of al tables with at least one master node.

pr ot ocol _ver si on. Returns the version number of the Mnesiainter-process communication protocol.
runni ng_db_nodes. Returns alist of nodes where Mnesia currently is running. This function can be called
even if Mnesiais not yet running, but it then has slightly different semantics.

If Mnesiais down on the local node, the function returns those other db_nodes and ext ra_db_nodes that
for the moment are operational.

If Mnesiais started, the function returns those nodes that Mnesia on the local node is fully connected to. Only
those nodes that Mnesia has exchanged schema information with are included asr unni ng_db_nodes. After
the merge of schemas, the local Mnesia system is fully operable and applications can perform access of remote
replicas. Before the schemamerge, Mnesiaonly operates|ocally. Sometimes there are more nodesincluded in the
runni ng_db_nodes listthanal db_nodes andextra_db_nodes together.

schena_| ocat i on. Returnstheinitial schemalocation.

subscri ber s. Returnsalist of local processes currently subscribing to system events.
t abl es. Returnsalist of al locally known tables.

transacti ons. Returnsalist of al currently active local transactions.

transacti on_f ai | ur es. Returns a number that indicates how many transactions have failed since Mnesia
was started.

transacti on_conm t s. Returnsanumber that i ndi cates how many transactions haveterminated successfully
since Mnesiawas started.

transacti on_restarts. Returnsanumber that indicates how many transactions have been restarted since
Mnesia was started.

transaction_|l og wites. Returns a number that indicates how many write operations that have been
performed to the transaction log since startup.

Ericsson AB. All Rights Reserved.: Mnesia | 97



mnesia

e use_di r. Returns aboolean that indicates if the Mnesia directory is used or not. Can be started even if Mnesia
is not yet running.
» ver si on. Returnsthe current version number of Mnesia.

table(Tab :: table()) -> qlc:query handle()
table(Tab :: table(), Options) -> glc:query handle()
Types:
Options = Option | [Option]
Option = MnesiaOpt | QlcOption
MnesiaOpt =
{traverse, SelectOp} |
{lock, lock kind()} |
{n_objects, integer() >= 0}
SelectOp = select | {select, ets:match spec()}
QlcOption = {key equality, '==' | '=:='}
Returns a Query List Comprehension (QLC) query handle, see the glc(3) manual pagein STDLIB. The module gl ¢

implements a query language that can use Mnesia tables as sources of data. Calling rmesi a: t abl e/ 1, 2 isthe
means to make the mesi a table Tab usable to QLC.

Opt i on can contain Mnesia options or QL C options. Mnesia recognizes the following options (any other option is
forwarded to QLC).
« {lock, Lock},wherel ock canberead orwrite.Defaultisread.

« {n_objects, Nunber},wheren_obj ect s specifies (roughly) the number of objects returned from
Mnesiato QLC. Queriesto remote tables can need alarger chunk to reduce network overhead. By default, 100
objects at atime are returned.

« {traverse, Sel ectMethod},wheretraver se determinesthe method to traverse the whole table (if
needed). The default method issel ect .
There are two alternativesfor sel ect :

 select. The table is traversed by calling mesi a: sel ect/4 and mesi a: sel ect/ 1. The match
specification (the second argument of sel ect/ 3) is assembled by QLC: simple filters are trandated into
equivalent match specifications. More complicated filters need to be applied to all objectsreturnedby sel ect/ 3
given amatch specification that matches all objects.

- {select, MatchSpec}. As for sel ect, the table is traversed by calling mesi a: sel ect/ 3 and
mmesi a: sel ect/ 1. Thedifferenceisthat the match specificationisexplicitly given. Thisishow to state match
specifications that cannot easily be expressed within the syntax provided by QLC.

table info(Tab :: table(), Item :: term()) -> Info :: term()

Thet abl e_i nf o/ 2 function takes two arguments. The first is the name of a Mnesia table. The second is one of
the following keys:

 all.Returnsalist of al loca tableinformation. Each elementisa{ | nf oKey, |tenVal} tuple.
New | nf ol t ens can be added and old undocumented | nf ol t ens can be removed without notice.
* access_node. Returnsthe access mode of thetable. The accessmodecanberead_onl y orread_write.
e arity.Returnsthearity of recordsin the table as specified in the schema.
e attri but es. Returnsthetable attribute names that are specified in the schema.
* checkpoi nt s. Returns the names of the currently active checkpoints, which involve this table on this node.

98 | Ericsson AB. All Rights Reserved.: Mnesia



mnesia

cooki e. Returns a table cookie, which is a unique system-generated identifier for the table. The cookie is
used internally to ensure that two different table definitions using the same table name cannot accidentally be
intermixed. The cookie is generated when the table is created initially.

di sc_copi es. Returnsthe nodeswhereadi sc_copy of the table resides according to the schema.

di sc_onl y_copi es. Returns the nodes where adi sc_onl y_copy of the table resides according to the
schema.

i ndex. Returnsthe list of index position integers for the table.

| oad_node. Returnsthe name of the node that Mnesialoaded the table from. The structure of the returned value
is unspecified, but can be useful for debugging purposes.

| oad_or der . Returnsthe load order priority of the table. It is an integer and defaultsto O (zero).

| oad_r eason. Returns the reason of why Mnesiadecided to load the table. The structure of the returned value
is unspecified, but can be useful for debugging purposes.

| ocal _cont ent.Returnst r ue or f al se toindicateif thetableis configured to have locally unique content
on each node.

mast er _nodes. Returns the master nodes of atable.

menor y. Returnsfor r am _copi es anddi sc_copi es tablesthe number of words allocated in memory to the
table on thisnode. For di sc_onl y_copi es tablesthe number of bytes stored on disc is returned.

ram copi es. Returnsthe nodeswherear am copy of the table resides according to the schema.

r ecor d_nane. Returns the record name, common for all records in the table.

si ze. Returns the number of records inserted in the table.

snnp. Returnsthe SNMP struct. [ ] means that the table currently has no SNM P properties.

st orage_t ype. Returns the local storage type of the table. It can be di sc_copi es, ram copi es,
di sc_onl y_copi es, or theatom unknown. unknown isreturned for all tablesthat only reside remotely.
subscri ber s. Returnsalist of local processes currently subscribing to local table eventsthat involve thistable
on this node.

t ype. Returns the table type, which isbag, set , or or der ed_set .

user _properti es. Returns the user-associated table properties of the table. It isalist of the stored property
records.

ver si on. Returns the current version of the table definition. The table version is incremented when the table
definition is changed. The table definition can be incremented directly when it has been changed in a schema
transaction, or when acommitted table definition is merged with table definitions from other nodes during startup.
wher e_t o_r ead. Returns the node where the table can be read. If value nowher e isreturned, either the table
isnot loaded or it resides at a remote node that is not running.

where_to_wite.Returnsalist of the nodesthat currently hold an active replica of the table.

wi | d_pat t er n. Returnsastructure that can be given to the various match functionsfor acertain table. A record

tupleiswhere al record fields have value' ' .

transaction(Fun) -> t result(Res)

transaction
transaction

Fun, Retries) -> t result(Res)

(
(
(Fun, Args :: [Arg :: term()]) -> t result(Res)
(

transaction(Fun, Args :: [Arg :: term()], Retries) ->

t result(Res)

Types:

Fun = fun((...) -> Res)
Retries = integer() >= 0 | infinity

Executes the functional object Fun with arguments Ar gs as atransaction.

Ericsson AB. All Rights Reserved.: Mnesia | 99



mnesia

The code that executes inside the transaction can consist of a series of table manipulation functions. If something goes
wrong inside the transaction as a result of a user error or a certain table not being available, the entire transaction is
terminated and the functiont r ansact i on/ 1 returnsthetuple{ abor t ed, Reason}.

If allisgoingwell,{ at omi ¢, Resul t Of Fun} isreturned, whereResul t OfF Fun isthevalueof thelast expression
in Fun.

A function that adds a family to the database can be written asfollows if thereisastructure { f ami | y, Fat her,
Mot her, ChildrenList}:

add family({family, F, M, Children}) ->
ChildOids = lists:map(fun oid/1, Children),
Trans = fun() ->
mnesia:write(F#person{children Child0Oids},
mnesia:write(M#person{children ChildOids},
Write = fun(Child) -> mnesia:write(Child) end,
lists:foreach(Write, Children)

end,
mnesia:transaction(Trans).

oid(Rec) -> {element(1l, Rec), element(2, Rec)}.

This code adds a set of people to the database. Running this code within one transaction ensures that either the whole
family is added to the database, or the whole transaction terminates. For example, if the last child is badly formatted,
or the executing process terminates because of an' EXI T' signal while executing the family code, the transaction
terminates. Thus, the situation where half afamily is added can never occur.

It is also useful to update the database within a transaction if several processes concurrently update the same records.
For example, the function r ai se( Nane, Anount ), which adds Anmount to the salary field of a person, isto be
implemented as follows:

raise(Name, Amount) ->
mnesia:transaction(fun() ->
case mnesia:wread({person, Name}) of
[P] ->
Salary = Amount + P#person.salary,
P2 = P#person{salary = Salary},
mnesia:write(P2);
->
mnesia:abort("No such person")
end
end).

When this function executes within a transaction, several processes running on different nodes can concurrently
execute the function r ai se/ 2 without interfering with each other.

Since Mnesia detects deadlocks, atransaction can be restarted any number of times. This function attempts arestart as
specifiedinRet ri es. Ret ri es must be an integer greater than 0 or theatomi nf i ni ty. Defaultisi nfinity.
transform _table(Tab :: table(), Fun, NewA :: [Attr], RecName) ->
t result(ok)
Types:
RecName = Attr = atom()
Fun =
fun((Record :: tuple()) -> Transformed :: tuple()) | ignore

Applies argument Fun to al records in the table. Fun is a function that takes a record of the old type and returns
a transformed record of the new type. Argument Fun can also be the atom i gnor e, which indicates that only the

100 | Ericsson AB. All Rights Reserved.: Mnesia



mnesia

metadata about the table is updated. Use of i gnor e is not recommended, but included as a possibility for the user
do to an own transformation.

NewAt t ri but eLi st and NewRecor dNare specify the attributes and the new record type of the converted table.
Table name always remains unchanged. If r ecor d_nanme is changed, only the Mnesia functions that use table
identifierswork, for example, mesi a: wri t e/ 3 works, but not mesi a: write/ 1.

transform table(Tab :: table(), Fun, NewA :: [Attr]) ->
t result(ok)

Types:
Attr = atom()
Fun =
fun((Record :: tuple()) -> Transformed :: tuple()) | ignore

Cdlsmesi a: transformtabl e(Tab, Fun, NewAttributelList, RecNane),where RecNane is
mmesi a: tabl e_i nfo(Tab, record_nane).

traverse backup(Src :: term(), Dest :: term(), Fun, Acc) ->
{ok, Acc} | {error, Reason :: term()}
traverse backup(Src :: term(),

SrcMod :: module(),
Dest :: term(),
DestMod :: module(),
Fun, Acc) ->
{ok, Acc} | {error, Reason :: term()}
Types:
Fun = fun((Items, Acc) -> {Items, Acc})
Iterates over a backup, either to transform it into a new backup, or read it. The arguments are explained briefly here.
For details, see the User's Guide.
e Sour ceMd and Tar get Mod are the names of the modules that actually access the backup media.

e Source and Tar get are opague data used exclusively by modules Sour ceMod and Tar get Mod to
initialize the backup media.

* Acc isaninitia accumulator value.

 Fun(Backupltens, Acc) isappliedto eachitem inthe backup. The Fun must return atuple
{Backupl t ens, NewAcc}, where Backupl t ens isalist of valid backup items, and NewAcc isanew
accumulator value. The returned backup items are written in the target backup.

e Last Acc isthelast accumulator value. Thisisthe last NewAc ¢ value that was returned by Fun.

uninstall fallback() -> result()

Callsthefunctionmesi a: uni nstal | _fal | back([{scope, global}]).

uninstall fallback(Args) -> result()
Types:
Args = [{mnesia dir, Dir :: string()}]
Deingtalls a fallback before it has been used to restore the database. This is normally a distributed operation that is
either performed on all nodes with disc resident schema, or none. Uninstallation of fallbacks requires Erlang to be

operational on all involved nodes, but it does not matter if Mnesiais running or not. Which nodes that are considered
as disc-resident nodes is determined from the schema information in the local fallback.

Ericsson AB. All Rights Reserved.: Mnesia | 101



mnesia

Ar gs isalist of the following tuples:

 {nodul e, BackupMod}. For semantics, seemmesi a: i nstal | _fal | back/ 2.
« {scope, Scope}.Forsemantics, seemmesi a:install _fall back/?2.
« {mmesia_dir, AlternateDir}.Forsemantics, seemmesi a:install _fall back/ 2.

unsubscribe(What) -> {ok, node()} | {error, Reason :: term()}
Types:

What = system | activity | {table, table(), simple | detailed}
Stops sending events of type Event Cat egor y to the caller.

Node isthelocal node.

wait for tables(Tabs :: [Tab :: table()], TMO :: timeout()) ->
result() | {timeout, [table()]}

Some applications need to wait for certain tables to be accessble to do useful work.
mesi a: wai t _for_tabl es/ 2 either hangs until all tablesin TabLi st are accessible, or until ti neout is
reached.

wread(0id :: {Tab :: table(), Key :: term()}) -> [tuple()]
Cdllsthefunction mesi a: read( Tab, Key, write).

write(Record :: tuple()) -> ok
Callsthefunctionmesi a: wi te( Tab, Record, wite),whereTabisel ement (1, Record).

write(Tab :: table(),
Record :: tuple(),
LockKind :: write locks()) ->
ok

Writes record Recor d to table Tab.

The function returns ok, or terminatesif an error occurs. For example, the transaction terminates if no per son table
exists.

The semantics of this function is context-sensitive. For details, seermesi a: acti vi t y/ 4. In transaction-context,
it acquires alock of type LockKi nd. Thelock typeswri t e andsti cky_w i t e are supported.

write lock table(Tab :: table()) -> ok
Callsthefunction mesi a: | ock({tabl e, Tab}, wite).

Configuration Parameters

Mnesia reads the following application configuration parameters:

e -mmesia access_nodul e Mdul e. The name of the Mnesia activity access callback module. Default is
mmesi a.

* -mmesia auto_repair true | fal se. Thisflag controlsif Mnesia automatically tries to repair files
that have not been properly closed. Default ist r ue.

e -mmesia backup_nodul e Modul e. The name of the Mnesia backup callback module. Default is
mesi a_backup.

102 | Ericsson AB. All Rights Reserved.: Mnesia



mnesia

-mesi a debug Level . Controlsthe debug level of Mnesia. The possible values are as follows:
none

No trace outputs. Thisisthe default.
ver bose

Activates tracing of important debug events. These eventsgenerate{ mesi a_i nf o, Format, Args}
system events. Processes can subscribe to these events with rmesi a: subscri be/ 1. The events are
aways sent to the Mnesia event handler.

debug

Activates al events at the verbose level plus full trace of al debug events. These debug events generate
{mesia_info, Format, Args} system events. Processes can subscribe to these events with
mesi a: subscr i be/ 1. The events are aways sent to the Mnesia event handler. On this debug level, the
Mnesia event handler starts subscribing to updates in the schematable.

trace

Activates all events at the debug level. On thislevel, the Mnesia event handler starts subscribing to updates
on all Mnesiatables. Thislevel isintended only for debugging small toy systems, as many large events can
be generated.

fal se

An diasfor none.
true

An alias for debug.
-mesia core_dir Directory. The name of the directory where Mnesia core files is stored, or false.
Setting it implies that also RAM-only nodes generate a corefile if acrash occurs.
-mesi a dc_dunp_l i mt Nunber. Controlshow oftendi sc_copi es tablesare dumped from memory.
Tables are dumped when fi | esi ze(Log) > (filesize(Tab)/Dc_dunp_limt). Lower values
reduce CPU overhead but increase disk space and startup times. Default is 4.

-mesi a dir Directory. The name of the directory where all Mnesia data is stored. The directory name
must be unique for the current node. Two nodes must never share the the same Mnesia directory. The results are
unpredictable.

-mesi a dunp_di sc_copies_at_startup true | fal se.If settofase, thisdisablesthe dumping
of di sc_copi es tables during startup while tables are being loaded. The default istrue.

-mesia dunp_l og | oad_regulation true | false.Controlsif logdumps are to be performed
asfast as possible, or if the dumper isto do its own load regulation. Default isf al se.

Thisfeature istemporary and will be removed in a future release

-mesi a dunp_l og_update_in_place true | false.Controlsiflog dumps are performed on a
copy of the original datafile, or if the log dump is performed on the original datafile. Defaultist r ue
-mesia dunp_log wite_ threshold Max.Mx isaninteger that specifies the maximum number of
writes allowed to the transaction log before anew dump of thelog is performed. Default is 100 log writes.
-mesia dunp_l og tinme_threshold Max. Max isan integer that specifies the dump log interval in
milliseconds. Default is 3 minutes. If a dump has not been performed within dunp_| og_ti ne_t hreshol d
milliseconds, a new dump is performed regardless of the number of writes performed.

-mesi a event _nodul e Mdul e. The name of the Mnesia event handler callback module. Default is
mesi a_event.

-mesi a extra_db_nodes Nodes specifiesalist of nodes, in addition to the ones found in the schema,
with which Mnesiais also to establish contact. Defaultis[] (empty list).

Ericsson AB. All Rights Reserved.: Mnesia | 103



mnesia

e -mmesia fall back_error_function {User Modul e, User Func}. Specifies a user-
supplied callback function, which is called if a falback is installed and Mnesia goes down on
another node. Mnesia calls the function with one argument, the name of the dying node, for example,
User Mbdul e: User Func( Dyi ngNode) . Mnesia must be restarted, otherwise the database can be
inconsistent. The default behavior is to terminate Mnesia.

e -mmesia max_wait_for_deci si on Ti meout . Specifieshow long Mnesiawaitsfor other nodesto share
their knowledge about the outcome of an unclear transaction. By default, Ti meout issettotheatomi nfinity.
Thisimpliesthat if Mnesia upon startup detects a"heavyweight transaction" whose outcome is unclear, the local
Mnesia waits until Mnesia is started on some (in the worst case all) of the other nodes that were involved in the
interrupted transaction. Thisis a rare situation, but if it occurs, Mnesia does not guess if the transaction on the
other nodes was committed or terminated. Mnesiawaits until it knows the outcome and then acts accordingly.

If Ti meout issettoaninteger value in milliseconds, Mnesia forces "heavyweight transactions" to be finished,
even if the outcome of the transaction for the moment is unclear. After Ti meout milliseconds, Mnesia commits
or terminates the transaction and continues with the startup. This can lead to a situation where the transaction
is committed on some nodes and terminated on other nodes. If the transaction is a schema transaction, the
inconsistency can be fatal.

e -mmesia no_table_ | oaders NUVBER. Specifiesthe number of parallel table loaders during start. More
loaders can be good if the network latency is high or if many tables contain few records. Default is 2.

e -mmesia send_conpressed Level . Specifiesthe level of compression to be used when copying atable
from the local node to another one. Default isO.

Level must be an integer in the interval [ 0, 9], where O means no compression and 9 means maximum
compression. Before setting it to a non-zero value, ensure that the remote nodes understand this configuration.

e -mmesia schenma_| ocati on Loc. Controls where Mnesia looks for its schema. Parameter Loc can be
one of the following atoms:

di sc

Mandatory disc. The schemais assumed to be located in the Mnesiadirectory. If the schema cannot be found,
Mnesiarefuses to start. Thisisthe old behavior.

ram

Mandatory RAM. The schemaresidesin RAM only. At startup, atiny new schemais generated. This default
schema only contains the definition of the schema table and only resides on the local node. Since no other
nodes are found in the default schema, configuration parameter ext r a_db_nodes must be used to let the
node share its table definitions with other nodes.

Parameter ext r a_db_nodes can also be used on disc based nodes.
opt _di sc

Optional disc. The schema can reside on disc or in RAM. If the schemais found on disc, Mnesia starts as a
disc-based node and the storage type of the schematableisdi sc_copi es. If no schemaisfound on disc,
Mnesia starts as a disc-less node and the storage type of the schematableisram copi es. Default value
for the application parameter isopt _di sc.

First, the SASL application parameters are checked, then the command-line flags are checked, and finally, the default
valueis chosen.

See Also
application(3), dets(3), disk_log(3), ets(3), mnesia_registry(3), glc(3)

104 | Ericsson AB. All Rights Reserved.: Mnesia



mnesia_frag_hash

mnesia_frag_hash

Erlang module

This module defines a callback behavior for user-defined hash functions of fragmented tables.

Which module that is selected to implement the mesi a_f r ag_hash behavior for a particular fragmented table
is specified together with the other fr ag_properti es. The hash_nodul e defines the module name. The
hash_st at e definestheinitia hash state.

This module implements dynamic hashing, which is a kind of hashing that grows nicely when new fragments are
added. It iswell suited for scalable hash tables.

Exports

init state(Tab, State) -> NewState | abort(Reason)
Types.

Tab = aton()

State = term))

NewState = term()

Reason = term()

Starts when a fragmented table is created with the function rmesi a: creat e_t abl e/ 2 or when a normal
(unfragmented) table is converted to be afragmented table with mesi a: change_t abl e_frag/ 2.

Notice that the function add_f r ag/ 2 is started one time for each of the other fragments (except number 1) as a part
of the table creation procedure.

St at e istheinitial value of thehash_state frag_property. NewSt at e isstored ashash_st at e among
theother f rag_properti es.

add frag(State) -> {NewState, IterFrags, AdditionallLockFrags} | abort(Reason)
Types.

State = term)

NewState = term()

IterFrags = [integer()]

Addi ti onal LockFrags = [integer()]

Reason = term)
Toscalewell, itisagood ideato ensurethat therecordsare evenly distributed over al fragments, including the new one.
NewSt at e isstored ashash_st at e anongtheother f rag_pr operti es.

Asapart of theadd_f r ag procedure, Mnesiaiterates over all fragments correspondingtothel t er Fr ags numbers
and startskey _to_frag_nunber ( NewSt at e, Recor dKey) for each record. If the new fragment differs from
the old fragment, the record is moved to the new fragment.

Asthe add_f r ag procedure is a part of a schema transaction, Mnesia acquires write locks on the affected tables.
That is, both the fragments corresponding to | t er Fr ags and those corresponding to Addi t i onal LockFr ags.

del frag(State) -> {NewState, IterFrags, AdditionallLockFrags} | abort(Reason)
Types:

Ericsson AB. All Rights Reserved.: Mnesia | 105



mnesia_frag_hash

State = term)

NewState = term()

IterFrags = [integer()]

Addi ti onal LockFrags = [integer()]
Reason = term()

NewSt at e isstored ashash_st at e amongtheother f rag_pr operti es.

Asapart of thedel _fr ag procedure, Mnesiaiterates over all fragments correspondingtothel t er Fr ags numbers
and startskey _t o_frag_nunber ( NewSt at e, Recor dKey) for each record. If the new fragment differs from
the old fragment, the record is moved to the new fragment.

Noticethat al recordsin the last fragment must be moved to another fragment, as the entire fragment is del eted.

Asthedel _frag procedure is a part of a schema transaction, Mnesia acquires write locks on the affected tables.
That is, both the fragments corresponding to | t er Fr ags and those corresponding to Addi t i onal LockFr ags.

key to frag number(State, Key) -> FragNum | abort(Reason)
Types:

FragNum = i nteger ()

Reason = term()

Starts whenever M nesia needs to determine which fragment acertain record belongsto. It istypicaly started at r ead,
write,anddel et e.

match spec to frag numbers(State, MatchSpec) -> FragNums | abort(Reason)
Types.

Mat cSpec = ets_sel ect _mat ch_spec()

FragNums = [ FragNuni

FragNum = i nteger ()

Reason = term()

This function is called whenever Mnesia needs to determine which fragments that need to be searched for a
Mat chSpec. Itistypicaly called by sel ect and nat ch_obj ect .

See Also
mnesia(3)

106 | Ericsson AB. All Rights Reserved.: Mnesia



mnesia_registry

mnesia_registry

Erlang module

Thismoduleisusually part of theer | _i nt er f ace application, but is currently part of the Mnesia application.
Thismoduleis mainly intended for internal use within OTP, but it has two functions that are exported for public use.

On C-nodes, er | _i nt er f ace has support for registry tables. These tables reside in RAM on the C-node, but can
also be dumped into Mnesia tables. By default, the dumping of registry tables through er | _i nt er f ace causesa
corresponding Mnesiatable to be created withrmesi a_r egi stry: creat e_t abl e/ 1, if necessary.

Tables that are created with these functions can be administered as all other Mnesia tables. They can be included in
backups, replicas can be added, and so on. Thetables are normal Mnesiatables owned by the user of the corresponding
erl __interface registries.

Exports

create table(Tab) -> ok | exit(Reason)

A wrapper function for mesi a: cr eat e_t abl e/ 2, which creates a table (if there is no existing table) with an
appropriate set of at t ri but es. The table only resides on the local node and its storage type is the same as the
schena table on thelocal node, that is, { r am copi es, [ node()]} or{di sc_copi es, [ node()]}.

Thisfunctionisused by er | _i nt er f ace to create the Mnesiatableif it does not already exist.

create table(Tab, TabDef) -> ok | exit(Reason)

A wrapper function for mesi a: cr eat e_t abl e/ 2, which creates a table (if there is no existing table) with an
appropriate set of at t ri but es. The attributes and TabDef are forwarded to rmesi a: cr eat e_t abl e/ 2. For
example, if thetableistoresideasdi sc_onl y_copi es on all nodes, acal looks as follows:

TabDef = [{{disc only copies, node()|nodes()]1}],
mnesia registry:create table(my reg, TabDef)

See Also
erl_interface(3), mnesia(3)

Ericsson AB. All Rights Reserved.: Mnesia | 107



	Mnesia
	Mnesia User's Guide
	Introduction
	Scope
	Prerequisites

	Mnesia
	Mnesia Database Management System (DBMS)
	Features
	Add-On Application
	When to Use Mnesia


	Getting Started
	Starting Mnesia for the First Time
	Example
	Database
	Defining Structure and Content
	Program
	Program Explained
	Initial Database Content
	Adding Records and Relationships to Database
	Writing Queries
	Using Mnesia Functions
	Using QLC 



	Build a Mnesia Database
	Define a Schema
	Schema Functions

	Data Model
	Start Mnesia
	Initialize a Schema and Start Mnesia
	Startup Procedure

	Create Tables

	Transactions and Other Access Contexts
	Transaction Properties
	Atomicity
	Consistency
	Isolation
	Durability

	Locking
	Sticky Locks
	Table Locks
	Global Locks

	Dirty Operations
	Record Names versus Table Names
	Activity Concept and Various Access Contexts
	Nested Transactions
	Pattern Matching
	Iteration

	Miscellaneous Mnesia Features
	Indexing
	Distribution and Fault Tolerance
	Table Fragmentation
	Concept
	Fragmentation Properties
	Management of Fragmented Tables
	Extensions of Existing Functions
	Load Balancing

	Local Content Tables
	Disc-Less Nodes
	More about Schema Management
	Mnesia Event Handling
	System Events
	Activity Events
	Table Events

	Debugging Mnesia Applications
	Concurrent Processes in Mnesia
	Prototyping
	Object-Based Programming with Mnesia

	Mnesia System Information
	Database Configuration Data
	Core Dumps
	Dumping Tables
	Checkpoints
	Startup Files, Log File, and Data Files
	Startup Files
	Log File
	Data Files

	Loading Tables at Startup
	Recovery from Communication Failure
	Recovery of Transactions
	Backup, Restore, Fallback, and Disaster Recovery
	Backup
	Restore
	Fallback
	Disaster Recovery


	Combine Mnesia with SNMP
	Combine Mnesia and SNMP

	Appendix A: Backup Callback Interface
	mnesia_backup Callback Behavior

	Appendix B: Activity Access Callback Interface
	mnesia_access Callback Behavior

	Appendix C: Fragmented Table Hashing Callback Interface
	mnesia_frag_hash Callback Behavior


	Reference Manual
	mnesia
	abort/1
	activate_checkpoint/1
	activity/2
	activity/4
	add_table_copy/3
	add_table_index/2
	all_keys/1
	async_dirty/1
	async_dirty/2
	backup/1
	backup/2
	backup_checkpoint/2
	backup_checkpoint/3
	change_config/2
	change_table_access_mode/2
	change_table_copy_type/3
	change_table_load_order/2
	change_table_majority/2
	clear_table/1
	create_schema/1
	create_table/2
	deactivate_checkpoint/1
	del_table_copy/2
	del_table_index/2
	delete/1
	delete/3
	delete_object/1
	delete_object/3
	delete_schema/1
	delete_table/1
	dirty_all_keys/1
	dirty_delete/1
	dirty_delete/2
	dirty_delete_object/1
	dirty_delete_object/2
	dirty_first/1
	dirty_index_match_object/2
	dirty_index_match_object/3
	dirty_index_read/3
	dirty_last/1
	dirty_match_object/1
	dirty_match_object/2
	dirty_next/2
	dirty_prev/2
	dirty_read/1
	dirty_read/2
	dirty_select/2
	dirty_update_counter/2
	dirty_update_counter/3
	dirty_write/1
	dirty_write/2
	dump_log/0
	dump_tables/1
	dump_to_textfile/1
	error_description/1
	ets/1
	ets/2
	first/1
	foldl/3
	foldr/3
	force_load_table/1
	index_match_object/2
	index_match_object/4
	index_read/3
	info/0
	install_fallback/1
	install_fallback/1
	install_fallback/2
	is_transaction/0
	last/1
	load_textfile/1
	lock/2
	match_object/1
	match_object/3
	move_table_copy/3
	next/2
	prev/2
	read/1
	read/2
	read/3
	read_lock_table/1
	report_event/1
	restore/2
	s_delete/1
	s_delete_object/1
	s_write/1
	schema/0
	schema/1
	select/2
	select/3
	select/4
	select/1
	set_debug_level/1
	set_master_nodes/1
	set_master_nodes/2
	snmp_close_table/1
	snmp_get_mnesia_key/2
	snmp_get_next_index/2
	snmp_get_row/2
	snmp_open_table/2
	start/0
	stop/0
	subscribe/1
	sync_dirty/1
	sync_dirty/2
	sync_log/0
	sync_transaction/1
	sync_transaction/2
	sync_transaction/2
	sync_transaction/3
	system_info/1
	table/1
	table/2
	table_info/2
	transaction/1
	transaction/2
	transaction/2
	transaction/3
	transform_table/4
	transform_table/3
	traverse_backup/4
	traverse_backup/6
	uninstall_fallback/0
	uninstall_fallback/1
	unsubscribe/1
	wait_for_tables/2
	wread/1
	write/1
	write/3
	write_lock_table/1

	mnesia_frag_hash
	init_state/2
	add_frag/1
	del_frag/1
	key_to_frag_number/2
	match_spec_to_frag_numbers/2

	mnesia_registry
	create_table/1
	create_table/2




