ERLANG

Secure Socket Layer

Copyright © 1999-2020 Ericsson AB. All Rights Reserved.
Secure Socket Layer 10.1
September 22, 2020

Copyright © 1999-2020 Ericsson AB. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance
with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless
required by applicable law or agreed to in writing, software distributed under the License is distributed on an
"AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See

the License for the specific language governing permissions and limitations under the License. Ericsson AB. All
Rights Reserved..

September 22, 2020

1.1 Introduction

1 SSL User's Guide

The SSL application implements Transport Layer Security (TLS), formerly known as the Secure Socket Layer (SSL),
that isit provides secure communication over sockets.

1.1 Introduction

1.1.1 Purpose

Transport Layer Security (TLS) and its predecessor, the Secure Sockets Layer (SSL), are cryptographic protocols
designed to provide communications security over a computer network. The protocols use X.509 certificates and
hence public key (asymmetric) cryptography to authenticate the counterpart with whom they communicate, and to
exchange a symmetric key for payload encryption. The protocol provides data/message confidentiality (encryption),
integrity (through message authentication code checks) and host verification (through certificate path validation).
DTLS (Datagram Transport Layer Security) that is based on TLS but datagram oriented instead of stream oriented.

1.1.2 Prerequisites

It is assumed that the reader is familiar with the Erlang programming language, the concepts of OTP, and has a basic
understanding of TLS/DTLS.

1.2 TLS/DTLS and TLS Predecessor, SSL

The Erlang SSL application implements the TLS/DTLS protocol for the currently supported versions, see the ssl(3)
manual page.

By default TLS is run over the TCP/IP protocol even though you can plug in any other reliable transport protocol
with the same Application Programming Interface (API) asthegen_t cp modulein Kernel. DTLS is by default run
over UDP/IP, which means that application data has no delivery guarentees. Other transports, such as SCTP, may be
supported in future rel eases.

If aclient and a server wants to use an upgrade mechanism, such as defined by RFC 2817, to upgrade aregular TCP/
I P connection to a TLS connection, this is supported by the Erlang SSL application API. This can be useful for, for
example, supporting HTTP and HTTPS on the same port and implementing virtual hosting. Note thisisa TLS feature
only.

1.2.1 Security Overview

To achieve authentication and privacy, the client and server perform a TLS/DTLS handshake procedure before
transmitting or receiving any data. During the handshake, they agree on a protocol version and cryptographic
algorithms, generate shared secrets using public key cryptographies, and optionally authenticate each other with digital
certificates.

1.2.2 Data Privacy and Integrity

A symmetric key algorithm has one key only. The key is used for both encryption and decryption. These algorithms
are fast, compared to public key algorithms (using two keys, one public and one private) and are therefore typicaly
used for encrypting bulk data.

Ericsson AB. All Rights Reserved.: Secure Socket Layer | 1

1.3 Using SSL application API

Thekeysfor the symmetric encryption are generated uniquely for each connection and are based on a secret negotiated
inthe TLS/DTLS handshake.

The TLS/DTLS handshake protocol and data transfer is run on top of the TLS/DTLS Record Protocol, which uses a
keyed-hash M essage A uthenticity Code (MAC), or aHash-based MAC (HMAC), to protect the message dataintegrity.
From the TLS RFC: "A Message Authentication Code is a one-way hash computed from a message and some secret
data. It is difficult to forge without knowing the secret data. Its purpose isto detect if the message has been altered.”

1.2.3 Digital Certificates

A certificate is similar to a driver's license, or a passport. The holder of the certificate is called the subject. The
certificate is signed with the private key of the issuer of the certificate. A chain of trust is built by having the issuer
in itsturn being certified by another certificate, and so on, until you reach the so called root certificate, which is self-
signed, that is, issued by itself.

Certificatesareissued by Certification Authorities (CAs) only. A handful of top CAsintheworld issueroot certificates.
Y ou can examine severa of these certificates by clicking through the menus of your web browser.

1.2.4 Peer Authentication

Authentication of the peer is done by public key path validation as defined in RFC 3280. This means basically the
following:

» Each certificate in the certificate chain isissued by the previous one.

* Thecertificates attributes are valid.

* Theroot certificate is atrusted certificate that is present in the trusted certificate database kept by the peer.

The server always sends a certificate chain as part of the TLS handshake, but the client only sends one if requested by
the server. If the client does not have an appropriate certificate, it can send an "empty" certificate to the server.

The client can choose to accept some path evaluation errors, for example, a web browser can ask the user whether
to accept an unknown CA root certificate. The server, if it requests a certificate, does however not accept any path
validation errors. It is configurable if the server isto accept or reject an "empty" certificate as response to a certificate
request.

1.2.5 TLS Sessions

From the TLS RFC: "A TLS session is an association between a client and a server. Sessions are created by the
handshake protocol. Sessions define a set of cryptographic security parameters, which can be shared among multiple
connections. Sessions are used to avoid the expensive negotiation of new security parameters for each connection."

Session data is by default kept by the SSL application in a memory storage, hence session data is lost at application
restart or takeover. Users can define their own callback module to handle session data storage if persistent data storage
isrequired. Session datais also invalidated after 24 hours from it was saved, for security reasons. The amount of time
the session data is to be saved can be configured.

By default the TLS/DTL S clientstry to reuse an available session and by default the TLS/DTL S servers agree to reuse
sessions when clients ask for it.

1.3 Using SSL application API

To seerelevant version information for sd, call ssl : ver si ons/ 0.

To see all supported cipher suites, call ssl : ci pher _sui tes(al |) . Theavailable cipher suites for aconnection
depend on your certificate. Specific cipher suites that you want your connection to use can also be specified. Default
isto use the strongest available.

2 | Ericsson AB. All Rights Reserved.: Secure Socket Layer

1.3 Using SSL application API

1.3.1 Setting up Connections

This section shows a small example of how to set up client/server connections using the Erlang shell. The returned
value of thessl socket isabbreviated with[. ..] asit canbefairly large and is opaque.

Minimal Example

| The minimal setup is not the most secure setup of TLS/DTLS. |

To set up client/server connections:
Step 1: Start the server side:

1 server> ssl:start().
ok

Step 2: Createa TLSlisten socket: (To run DTLS add the option { protocol, dtls})
2 server> {ok, ListenSocket} =
ssl:listen(9999, [{certfile, "cert.pem"}, {keyfile, "key.pem"},{reuseaddr, true}]).
{ok, {sslsocket, [...1}}

Step 3: Do atransport accept on the TLS listen socket:

3 server> {ok, TLSTransportSocket} = ssl:transport accept(ListenSocket).
{ok, {sslsocket, [...]1}}

Step 4: Start the client side:

1 client> ssl:start().
ok

Torun DTLS add the option { protocal, dtls} to third argument.

2 client> {ok, Socket} = ssl:connect("localhost", 9999, [], infinity).
{ok,{sslsocket, [...]1}}

Step 5: Do the TLS handshake:

4 server> {ok, Socket} = ssl:handshake(TLSTransportSocket).
{ok, {sslsocket, [...]1}}

Step 6: Send amessage over TLS:

5 server> ssl:send(Socket, "foo").
ok

Step 7: Flush the shell message queue to see that the message was sent on the server side:

3 client> flush().
Shell got {ssl,{sslsocket,[...]1},"foo"}
ok

Ericsson AB. All Rights Reserved.: Secure Socket Layer | 3

1.3 Using SSL application API

Upgrade Example - TLS only

To upgrade a TCP/IP connection to a TLS connection, the client and server must agree to do so. The agreement
can be accomplished by using a protocol, for example, the one used by HTTP specified in RFC 2817.

To upgradeto a TL S connection:
Step 1: Start the server side:

1 server> ssl:start().
ok

Step 2: Create anormal TCP listen socket:

2 server> {ok, ListenSocket} = gen tcp:listen(9999, [{reuseaddr, true}]).
{ok, #Port<0.475>}

Step 3: Accept client connection:

3 server> {ok, Socket} = gen tcp:accept(ListenSocket).
{ok, #Port<0.476>}

Step 4. Start the client side:

1 client> ssl:start().
ok

2 client> {ok, Socket} = gen tcp:connect("localhost", 9999, [], infinity).

Step 5: Ensureact i ve issetto f al se before trying to upgrade a connection to a TLS connection, otherwise TLS
handshake messages can be delivered to the wrong process:

4 server> inet:setopts(Socket, [{active, false}l]).
ok

Step 6: Do the TLS handshake:
5 server> {ok, TLSSocket} = ssl:handshake(Socket, [{cacertfile, "cacerts.pem"},
{certfile, "cert.pem"}, {keyfile, "key.pem"}]).
{ok, {sslsocket,[...]1}}

Step 7: Upgrade to a TLS connection. The client and server must agree upon the upgrade. The server must call
ssl : handshake/ 2 beforetheclient callsssl : connect / 3.

3 client>{ok, TLSSocket} = ssl:connect(Socket, [{cacertfile, "cacerts.pem"},
{certfile, "cert.pem"}, {keyfile, "key.pem"}1, infinity).
{ok, {sslsocket,[...]1}}

Step 8: Send amessage over TLS:

4 client> ssl:send(TLSSocket, "foo").
ok

Step 9: Setacti ve true onthe TLS socket:

4 server> ssl:setopts(TLSSocket, [{active, true}]).
ok

4 | Ericsson AB. All Rights Reserved.: Secure Socket Layer

1.3 Using SSL application API

Step 10: Flush the shell message queue to see that the message was sent on the client side:

5 server> flush().
Shell got {ssl,{sslsocket,[...]},"foo"}
ok

1.3.2 Customizing cipher suites
Fetch default cipher suite list for aTLS/DTLS version. Change default to all to get al possible cipher suites.

1> Default = ssl:cipher suites(default, 'tlsvl.2').
[#{cipher => aes 256 gcm,key exchange => ecdhe ecdsa,
mac => aead,prf => sha384},]

In OTP 20 it is desirable to remove all cipher suites that uses rsa kexchange (removed from default in 21)

2> NoRSA =
ssl:filter cipher suites(Default,
[{key exchange, fun(rsa) -> false;
() -> true end}]).
[...]

Pick just afew suites

3> Suites =
ssl:filter cipher suites(Default,
[{key exchange, fun(ecdh ecdsa) -> true;
() -> false end},
{cipher, fun(aes 128 cbc) ->true;
() ->false end}]).
[#{cipher => aes 128 cbc,key exchange => ecdh ecdsa,
mac => sha256,prf => sha256},
#{cipher => aes 128 cbc,key exchange => ecdh ecdsa,mac => sha,
prf => default prf}]

Make some particular suites the most preferred, or least preferred by changing prepend to append.

4>ssl:prepend cipher suites(Suites, Default).
[#{cipher => aes 128 cbc,key exchange => ecdh ecdsa,
mac => sha256,prf => sha256},
#{cipher => aes 128 cbc,key exchange => ecdh ecdsa,mac => sha,
prf => default prf},
#{cipher => aes 256 cbc,key exchange => ecdhe ecdsa,
mac => sha384,prf => sha384}, ...]

1.3.3 Using an Engine Stored Key
Erlang ssl application is able to use private keys provided by OpenSSL engines using the following mechanism:

1> ssl:start().
ok

Load a crypto engine, should be done once per engine used. For example dynamically load the engine called
M/Engi ne:

2> {ok, EngineRef} =

crypto:engine load(<<"dynamic">>,

[{<<"SO PATH">>, "/tmp/user/engines/MyEngine"},<<"LOAD">>]1,[]).
{ok,#Ref<0.2399045421.3028942852.173962>}

Create amap with the engine information and the algorithm used by the engine:

Ericsson AB. All Rights Reserved.: Secure Socket Layer | 5

1.3 Using SSL application API

3> PrivKey =
#{algorithm => rsa,
engine => EngineRef,
key id => "id of the private key in Engine"}.

Use the map in the sdl key option:

4> {ok, SSLSocket} =

ssl:connect("localhost", 9999,
[{cacertfile, "cacerts.pem"},
{certfile, "cert.pem"},
{key, PrivKey}], infinity).

See also crypto documentation

1.3.4 Session Tickets and Session Resumption in TLS 1.3

TLS 1.3introduces a new secure way of resuming sessions by using session tickets. A session ticket is an opaque data
structure that is sent inthe pre_shared key extension of a ClientHello, when aclient attempts to resume a session with
keying material from a previous successful handshake.

Session tickets can be stateful or stateless. A stateful session ticket isadatabase reference (session ticket store) and used
with stateful servers, while astatel essticket isaself-encrypted and self-authenticated data structure with cryptographic
keying material and state data, enabling session resumption with statel ess servers.

The choice between stateful or statel ess depends on the server requirements as the session tickets are opaque for the
clients. Generaly, stateful tickets are smaller and the server can guarantee that tickets are only used once. Stateless
tickets contain additional data, require less storage on the server side, but they offer different guarantees against anti-
replay. See also Anti-Replay Protectionin TLS 1.3

Session tickets are sent by servers on newly estalished TL S connections. The humber of tickets sent and their lifetime
are configurable by application variables. See also SSL's configuration.

Session tickets are protected by application traffic keys, and in statel esstickets, the opague data structure itself is self-
encrypted.

An example with automatic and manual session resumption:
Step 1 (server): Start the server:

= application:ensure all started(ssl).
[{certfile, "cert.pem"},
{keyfile, "key.pem"},
{versions, ['tlsvl.2',6 'tlsvl.3']},
{session tickets, stateless}].
{ok, LSock} = ssl:listen(8001, LOpts).
{ok, CSock} = ssl:transport accept(LSock).

{ok, _}
LOpts =

Step 2 (client): Start the client and connect to server:

{ok, _}
COpts =

= application:ensure all started(ssl).
[{cacertfile, "cert.pem"},

{versions, ['tlsvl.2',6 'tlsvl.3']1},
{log level, debug},

{session tickets, auto}].
ssl:connect("localhost", 8001, COpts).

Step 3 (server): Start the TLS handshake:
ssl:handshake(CSock) .

A connection is established using afull handshake. Below isa summary of the exchanged messages:

6 | Ericsson AB. All Rights Reserved.: Secure Socket Layer

1.3 Using SSL application API

>>> TLS 1.3 Handshake, ClientHello ...
<<< TLS 1.3 Handshake, ServerHello ...
<<< Handshake, EncryptedExtensions ...
<<< Handshake, Certificate ...

<<< Handshake, CertificateVerify ...

<<< Handshake, Finished ...

>>> Handshake, Finished ...

<<< Post-Handshake, NewSessionTicket ...

At thispoint the client has stored the received session tickets and ready to use them when establishing new connections
to the same server.

Step 4 (server): Accept anew connection on the server:
{ok, CSock2} = ssl:transport accept(LSock).
Step 5 (client): Make a new connection:
ssl:connect("localhost", 8001, COpts).
Step 6 (server): Start the handshake:
ssl:handshake(CSock2).
The second connection is a session resumption using keying material from the previous handshake:
>>> TLS 1.3 Handshake, ClientHello ...
<<< TLS 1.3 Handshake, ServerHello ...
<<< Handshake, EncryptedExtensions ...
<<< Handshake, Finished ...
>>> Handshake, Finished ...

<<< Post-Handshake, NewSessionTicket ...

Manual handling of session tickets is also supported. In manual mode, it is the responsibility of the client to handle
received session tickets.

Step 7 (server): Accept a new connection on the server:
{ok, CSock3} = ssl:transport accept(LSock).
Step 8 (client): Make a new connection to server:
{ok, } = application:ensure all started(ssl).
COpts2 = [{cacertfile, "cert.pem"},
{versions, ['tlsvl.2',6 'tlsvl.3']},
{log level, debug},
{session tickets, manual}].
ssl:connect("localhost", 8001, COpts).
Step 9 (server): Start the handshake:
ssl:handshake(CSock3).
After the handshake is performed, the user process receives messages with the tickets sent by the server.
Step 10 (client): Receive a new session ticket:
Ticket = receive {ssl, session ticket, { , TicketData}} -> TicketData end.

Step 11 (server): Accept a new connection on the server:

{ok, CSock4} = ssl:transport accept(LSock).

Ericsson AB. All Rights Reserved.: Secure Socket Layer | 7

1.3 Using SSL application API

Step 12 (client): Initiate a new connection to the server with the session ticket received in Step 10:

{ok, _} = application:ensure_all started(ssl).
COpts2 = [{cacertfile, "cert.pem"},

{versions, ['tlsvl.2',6 'tlsvl.3']},

{log _level, debug},

{session tickets, manual},

{use ticket, [Ticket]}].
ssl:connect("localhost", 8001, COpts).

Step 13 (server): Start the handshake:

ssl:handshake(CSock3).

1.3.5 Anti-Replay Protection in TLS 1.3

The TLS 1.3 protocol does not provide inherent protection for replay of O-RTT data but describes mechanisms
that SHOULD be implemented by compliant server implementations. The implementation of TLS 1.3 in the SSL
application employs all standard methods to prevent potential threats.

Single-usetickets

This mechanism is available with stateful session tickets. Session tickets can only be used once, subsequent use of
the sameticket resultsin afull handshake. Stateful servers enforce this rule by maintaining a database of outstanding
valid tickets.

Client Hello Recording

This mechanism is available with stateless session tickets. The server records a unique value derived from
the ClientHello (PSK binder) in a given time window. The ticket's age is verified by using both the
"obsfuscated_ticket_age" and an additional timestamp encrypted in the ticket data. Asthe used datastore allows false
positives, apparent replays will be answered by doing afull 1-RTT handshake.

Freshness Checks

Thismechanismisavailablewith the statel ess session tickets. Astheticket data has an embedded timestamp, the server
can determine if a ClientHello was sent reasonably recently and accept the O-RTT handshake, otherwise if falls back
toafull 1-RTT handshake. This mechanism istightly coupled with the previous one, it prevents storing an unlimited
number of ClientHellos.

The current implementation uses a pair of Bloom filtersto implement the last two mechanisms. Bloom filters are fast,
memory-efficient, probabilistic data structures that can tell if an element may be in a set or if it is definitely not in
the set.

If the option anti_replay isdefined in the server, apair of Bloom filters (current and old) are used to record incoming
ClientHello messages (it is the unique binder value that is actually stored). The current Bloom filter is used for
W ndowSi ze secondsto store new elements. At the end of thetime window the Bloom filtersarerotated (the current
Bloom filter becomes the old and an empty Bloom filter is set as current.

The Anti-Replay protection feature in stateless servers executes in the following steps when a new ClientHello is
received:
* Reported ticket age (obfuscated ticket age) shall be less than ticket lifetime.

» Actual ticket age shall belessthan theticket lifetime (statel ess session tickets contain the servers timestamp when
the ticket was issued).

e Ticket shall be used within specified time window (freshness checks).

» If al above checks passed both current and old Bloom filters are checked to detect if binder was already seen.
Being a probabilistic data structure, false positives can occur and they trigger a full handshake.

8 | Ericsson AB. All Rights Reserved.: Secure Socket Layer

1.4 Using TLS for Erlang Distribution

e If the binder is not seen, the binder is validated. If the binder is valid, the server proceeds with the O-RTT
handshake.

1.4 Using TLS for Erlang Distribution

This section describes how the Erlang distribution can use TL S to get extra verification and security.

The Erlang distribution can in theory use almost any connection-based protocol as bearer. However, a module
that implements the protocol-specific parts of the connection setup is needed. The default distribution module is
i net _tcp_di st in the Kernel application. When starting an Erlang node distributed, net _ker nel uses this
module to set up listen ports and connections.

Inthe SSL application, an extradistribution module, i net _t 1 s_di st , canbeused asan aternative. All distribution
connectionswill use TLS and al participating Erlang nodesin a distributed system must use this distribution module.

The security level depends on the parameters provided to the TL S connection setup. Erlang node cookies are however
always used, as they can be used to differentiate between two different Erlang networks.

To set up Erlang distribution over TLS:

e Step 1: Build boot scripts including the SSL application.

e Step 2: Specify the distribution module for net _ker nel .
e Step 3: Specify the security options and other SSL options.
e Step 4: Set up the environment to always use TLS.

The following sections describe these steps.

1.4.1 Building Boot Scripts Including the SSL Application

Boot scriptsare built using the sy st ool s utility in the SASL application. For moreinformation onsyst ool s, see
the SASL documentation. Thisis only an example of what can be done.

The simplest boot script possible includes only the Kernel and STDLIB applications. Such a script is located in the
bi n directory of the Erlang distribution. The source for the script is found under the Erlang installation top directory
under r el eases/ <OTP version>/start_clean.rel.

Do the following:

e Copy that script to another location (and preferably another name).

e Add the applications Crypto, Public Key, and SSL with their current version numbers after the STDLIB
application.

The following shows an example. r el filewith TLS added:

{release, {"OTP APN 181 01","R15A"}, {erts, "5.9"},
[{kernel,"2.15"},

{stdlib,"1.18"},

{crypto, "2.0.3"},

{public key, "0.12"},

{asnl, "4.0"},

{ssl, "5.0"}

1}.

Theversion numbersdiffer inyour system. Whenever one of the applicationsincluded in the script isupgraded, change
the script.

Do the following:
* Build the boot script.

Ericsson AB. All Rights Reserved.: Secure Socket Layer | 9

1.4 Using TLS for Erlang Distribution

Assumingthe.rel fileisstoredinafilestart _ssl.rel inthe current directory, a boot script can be
built as follows:

1> systools:make script("start ssl",[]).

Thereisnow ast art _ssl . boot filein the current directory.

Do the following:

» Test the boot script. To do this, start Erlang with the - boot command-line parameter specifying this boot script
(with itsfull path, but without the . boot suffix). In UNIX it can look asfollows:

$ erl -boot /home/me/ssl/start ssl
Erlang (BEAM) emulator version 5.0

Eshell V5.0 (abort with ~G)
1> whereis(ssl manager).
<0.41.0>

Thewher ei s function-call verifies that the SSL application is started.

Asan alternative to building abootscript, you can explicitly add the path to the SSL ebi n directory on the command
line. Thisisdone with command-line option - pa. Thisworksasthe SSL application does not need to be started for the
distribution to come up, as a clone of the SSL application is hooked into the Kernel application. So, aslong as the SSL
application code can be reached, the distribution starts. The - pa method is only recommended for testing purposes.

The clone of the SSL application must enable the use of the SSL code in such an early bootstage as needed to set
up the distribution. However, this makes it impossible to soft upgrade the SSL application.

1.4.2 Specifying Distribution Module for net_kernel

The distribution module for TLSisnamed i net _t | s_di st and is specified on the command line with option -
prot o_di st.Theargumentto- pr ot o_di st istobethe module namewithout suffix _di st . So, thisdistribution
moduleis specified with - pr ot o_di st i net _t| s onthecommand line.

Extending the command line gives the following:
$ erl -boot /home/me/ssl/start ssl -proto dist inet tls
For the distribution to be started, give the emulator a name as well:

$ erl -boot /home/me/ssl/start ssl -proto dist inet tls -sname ssl test
Erlang (BEAM) emulator version 5.0 [source]

Eshell V5.0 (abort with ~G)
(ssl test@myhost)1>

However, a node started in this way refuses to talk to other nodes, as no TLS parameters are supplied (see the next
section).
1.4.3 Specifying TLS Options

The TL S distribution options can be written into afile that is consulted when the node is started. Thisfile nameisthen
specified with the command line argument - ssl _di st _optfil e.

Any available TLS option can be specified in an options file, but note that options that take af un() hasto use the
syntax f un Mbd: Func/ Ari t y since afunction body cannot be compiled when consulting afile.

10 | Ericsson AB. All Rights Reserved.: Secure Socket Layer

1.4 Using TLS for Erlang Distribution

Do not tamper with the socket options | i st, bi nary, acti ve, packet, nodel ay and del i ver since they
are used by the distribution protocol handler itself. Other raw socket options such as packet _si ze may interfere
severely, so beware!

For TLSto work, at least apublic key and a certificate must be specified for the server side. In the following example,
the PEM file" / home/ me/ ssl / er| server. pem' contains both the server certificate and its private key.

Create afile named for example” / home/ e/ ssl / ssl _t est @ryhost . conf™:

[{server,
[{certfile, "/home/me/ssl/erlserver.pem"},
{secure _renegotiate, true}l},

{client,
[{secure renegotiate, true}l}].

And then start the node like this (line breaks in the command are for readability, and shall not be there when typed):

$ erl -boot /home/me/ssl/start ssl -proto dist inet tls
-ssl dist optfile "/home/me/ssl/ssl test@myhost.conf"
-sname ssl_test

Theoptionsinthe{ server, Opts} tupleareused when calling ssl : ssl _accept/ 3, and the options in the
{client, Opts} tupleareusedwhencalingssl:connect/ 4.

For the client, the option { ser ver _nan®_i ndi cation, atomto_list(TargetNode)} isadded when
connecting. This makes it possible to use the client option { veri fy, verify_peer}, andthe client will verify
that the certificate matches the node name you are connecting to. This only worksif the the server certificate isissued
tothenameat om to_I| i st (Tar get Node) .

For the server it is aso possible to use the option { verify, verify_peer} and the server will only accept
client connections with certificates that are trusted by a root certificate that the server knows. A client that presents
an untrusted certificate will be rejected. This option is preferably combined with {fai |l _i f_no_peer _cert,
t rue} or aclient will still be accepted if it does not present any certificate.

A node started in thisway is fully functional, using TL S as the distribution protocol.

1.4.4 Specifying TLS Options (Legacy)

Asin the previous section the PEM file" / home/ e/ ssl / er | server. pem' contains both the server certificate
and its private key.

Ontheer | command line you can specify options that the TL S distribution adds when creating a socket.

The simplest TLS options in the following list can be specified by adding the prefix server _or cl i ent _ to the
option name:

« certfile

o keyfile

e password

« cacertfile

e verify

o verify_fun (writeas{ Modul e, Function, Initial UserState})

e crl_check

e crl _cache (write as Erlang term)

e reuse_sessions

e secure_renegotiate

e depth

Ericsson AB. All Rights Reserved.: Secure Socket Layer | 11

1.4 Using TLS for Erlang Distribution

e hibernate_ after
e ci phers (useold string format)

Note that veri fy fun needsto be written in a different form than the corresponding TLS option, since funs are
not accepted on the command line.

The server can also take the optionsdhfi | eandfai | _i f _no_peer _cert (also prefixed).

cl i ent _-prefixed options are used when the distribution initiates a connection to another node. ser ver _-prefixed
options are used when accepting a connection from a remote node.

Raw socket options, such aspacket and si ze must not be specified on the command line.

The command-line argument for specifying the TLS optionsis named - ssl _di st _opt and is to be followed by
pairs of SSL options and their values. Argument - ssl _di st _opt can be repeated any number of times.

An example command line doing the same as the exampl e in the previous section can now look asfollows (line breaks
in the command are for readability, and shall not be there when typed):

$ erl -boot /home/me/ssl/start ssl -proto dist inet tls
-ssl dist opt server certfile "/home/me/ssl/erlserver.pem"
-ssl dist opt server secure renegotiate true client secure renegotiate true
-sname ssl_ test

Erlang (BEAM) emulator version 5.0 [source]

Eshell V5.0 (abort with "G)
(ssl test@myhost)1>

1.4.5 Setting up Environment to Always Use TLS (Legacy)

A convenient way to specify arguments to Erlang is to use environment variable ERL_FLAGS. All the flags needed
to use the TLS distribution can be specified in that variable and are then interpreted as command-line arguments for
all subsequent invocations of Erlang.

InaUnix (Bourne) shell, it can look as follows (line breaks are for readability, they are not to be there when typed):

$ ERL _FLAGS="-boot /home/me/ssl/start ssl -proto dist inet tls
-ssl dist opt server certfile /home/me/ssl/erlserver.pem
-ssl dist opt server secure renegotiate true client secure renegotiate true"
$ export ERL FLAGS
$ erl -sname ssl test
Erlang (BEAM) emulator version 5.0 [source]

Eshell V5.0 (abort with ~G)

(ssl test@myhost)1l> init:get arguments().

[{root,["/usr/local/erlang"]},

{progname, ["erl "1},

{sname, ["ss1l test"]},

{boot, ["/home/me/ssl/start ssl"]},

{proto dist,["inet tls"]},

{ssl dist opt,["server certfile","/home/me/ssl/erlserver.pem"]},

{ssl dist opt,["server secure renegotiate","true",
"client secure renegotiate","true"]

{home, ["/home/me"]}]

Theinit: get_argunent s() cal verifiesthat the correct arguments are supplied to the emulator.

1.4.6 Using TLS distribution over IPv6

It is possible to use TLS distribution over 1Pv6 instead of IPv4. To do this, pass the option - prot o_di st
inet6_tl s instead of - proto_di st inet_tls when starting Erlang, either on the command line or in the
ERL_FLAGS environment variable.

12 | Ericsson AB. All Rights Reserved.: Secure Socket Layer

1.5 Standards Compliance

An example command line with this option would look like this:

$ erl -boot /home/me/ssl/start ssl -proto dist inet6 tls
-ssl dist optfile "/home/me/ssl/ssl test@myhost.conf"
-sname ssl_test

A node started in this way will only be able to communicate with other nodes using TL S distribution over |Pv6.

1.5 Standards Compliance

1.5.1 Purpose

This section describes the current state of standards compliance of the ssl application.

1.5.2 Common (pre TLS 1.3)

» For security reasons RSA key exchange cipher suites are no longer supported by default, but can be configured.
(OTP21)

» For security reasons DES cipher suites are no longer supported by default, but can be configured. (OTP 20)

» For security reasons 3DES cipher suites are no longer supported by default, but can be configured. (OTP 21)

* Renegotiation Indication Extension RFC 5746 is supported

« Ephemeral Diffie-Hellman cipher suites are supported, but not Diffie Hellman Certificates cipher suites.

» Elliptic Curve cipher suites are supported if the Crypto application supports it and named curves are used.

« Export cipher suites are not supported asthe U.S. lifted its export restrictions in early 2000.

» |DEA cipher suites are not supported as they have become deprecated by the TLS 1.2 specification so it is not
motivated to implement them.

e Compression is not supported.

1.5.3 Common

e CRL validation is supported.
» Poalicy certificate extensions are not supported.
e 'Server Name Indication' extension (RFC 6066) is supported.

» Application Layer Protocol Negotiation (ALPN) and its successor Next Protocol Negotiation (NPN) are
supported.

e |tispossibleto use Pre-Shared Key (PSK) and Secure Remote Password (SRP) cipher suites, but they are not
enabled by default.

1.5.4 SSL 2.0
For security reasons SSL-2.0 is hot supported. Interoperability with SSL-2.0 enabled clients dropped. (OTP 21)

1.5.5 SSL 3.0

For security reasons SSL-3.0 is no longer supported at all. (OTP 23)
For security reasons SSL-3.0 is ho longer supported by default, but can be configured. (OTP 19)

1.5.6 TLS1.0
For security reasons TLS-1.0 is no longer supported by default, but can be configured. (OTP 22)

Ericsson AB. All Rights Reserved.: Secure Socket Layer | 13

href
href

1.5 Standards Compliance

157 TLS 1.1
For security reasons TLS-1.1 is no longer supported by default, but can be configured. (OTP 22)

1.5.8 TLS 1.2
Supported

1.5.9 DTLS 1.0
For security reasons DTLS-1.0 (based on TLS 1.1) isno longer supported by default, but can be configured. (OTP 22)

1.5.10 DTLS 1.2
Supported (based on TLS 1.2)

1.5.11 DTLS 1.3
Not yet supported

1.5.12 TLS 1.3

OTP-22 introduces support for TLS 1.3. The current implementation supports a selective set of cryptographic
algorithms:

e Key Exchange: ECDHE

* Groups: al standard groups supported for the Diffie-Hellman key exchange

» Ciphers: all cipher suites are supported

e Signature Algorithms: All algorithms form RFC 8446

* Caertificates: RSA and ECDSA keys

Other notable features:

» PSK and session resumption is supported (stateful and statel ess tickets)

* Anti-replay protection using Bloom-filters with statel ess tickets

e Early dataand O-RTT not supported

« Key and Initialization Vector Update is supported

For more detailed information see the Standards Compliance below.

The following table describes the current state of standards compliance for TLS 1.3.

(C = Compliant, NC = Non-Compliant, PC = Partially-Compliant, NA = Not Applicable)

Section Feature State Since
1.3. Updates Affecting
TLS1.2 c 22
Version downgrade
. . C 22
protection mechanism
RSASSA-PSS signature PC 23
schemes

14 | Ericsson AB. All Rights Reserved.: Secure Socket Layer

href
href

1.5 Standards Compliance

supported_versions C 2
(ClientHello) extension
signature_algorithms_cert c 2
extension
2. Protocol Overview PC 22
(EC)DHE C 22
PSK-only NC
PSK with (EC)DHE C 222
2.1. Incorrect DHE
share HelloRetryRequest C 22
2.2. Resumption and
Pre-Shared Key (PSK) c 222
2.3.0-RTT Data NC
4.1.1. Cryptographic C 29
Negotiation '
supported_groups C 2
extension
signature_algorithms C 2o
extension
pre_shared key extension |C 222
4.1.2. Client Hello Client PC 221
server_name (RFC6066) PC 22.2
max_fragment_length
(RFC6066) c 230
status_request (RFC6066) | NC
supported_groups
(RFC7919) c 221
signature_algorithms
(RFC8446) c 221
use_srtp (RFC5764) NC
heartbeat (RFC6520) NC

Ericsson AB. All Rights Reserved.: Secure Socket Layer | 15

href
href
href
href
href
href
href
href
href

1.5 Standards Compliance

application_layer_protocol_pegotiation

(RFC7301) & 221
signed_certificate_timestam Pne

(RFC6962)

client_certificate type NC

(RFC7250)

server_certificate type NC

(RFC7250)

padding (RFC7685) NC

key share (RFC8446) C 221
pre_shared key

(RFC8446) c 22:2
psk_key exchange modes

(RFCB8446) c 222
early_data (RFC8446) NC

cookie (RFCB8446) C 231
supported versions

(RFC8446) c 22.1
certificate_authorities NG

(RFC8446)

oid_filters (RFC8446) NC

post_handshake auth NC

(RFCB8446)

signature_algorithms_cert

(RFCB8446) c 221
Server PC 22
server_name (RFC6066) PC 22.2
max_fragment_length

(RFC6066) c 230
status_request (RFC6066) | NC

supported_groups

(RFC7919) c 22

16 | Ericsson AB. All Rights Reserved.: Secure Socket Layer

1.5 Standards Compliance

? Rg:gtéjﬁg;\l gorithms C 2o

use_srtp (RFC5764) NC

heartbeat (RFC6520) NC

?SFI;I |C c%g)lr;_l ayer jrotocol_n@otl ation 21

signed_certificate timestam PNC

(RFC6962)

client_certificate type NG

(RFC7250)

server_certificate type NG

(RFC7250)

padding (RFC7685) NC

key_share (RFC8446) C 22

E’é‘;—g‘&eg—key C 22

?S::_CKSZZ g;(Change_modes C 29

early data (RFC8446) NC

cookie (RFC8446) C 231

?é?:[zg&?g)vers ons c 2

certificate_authorities NC

(RFC8446)

oid_filters (RFC8446) NC

post_handshake auth NG

(RFC8446)

? Igggtgﬁg;\l gorithms_cert c 2o
4.1.3. Server Hello Client C 222

v o

key_share (RFC8446) C 22.1

Ericsson AB. All Rights Reserved.: Secure Socket Layer | 17

href

1.5 Standards Compliance

pre_shared key
(RFCB8446) c 22:2
supported _versions
(RFCB8446) c 221
Server C 222
Version downgrade C 2
protection
key share (RFC8446) C 22
pre_shared key
(RFCB8446) c 22:2
supported _versions
(RFCB8446) c 22
4.1.4. Hello Retry
Request Server C 22
key_share (RFC8446) C 22
cookie (RFCB8446) C 231
supported versions
(RFCB8446) c 22
4.2.1. Supported Client c 221
Versions
Server C 22
4.2.2. Cookie Client C 231
Server C 231
4.2.3. Signature .
Algorithms Client ¢ 23
rsa_pkcsl sha256 C 221
rsa_pkcsl sha384 C 221
rsa_pkecsl sha512 C 221
ecdsa_secp256rl_sha256 | C 22.1
ecdsa secp384rl sha3g4 | C 22.1
ecdsa secp521rl shabl2 |C 22.1

18 | Ericsson AB. All Rights Reserved.: Secure Socket Layer

href
href
href
href
href
href
href

1.5 Standards Compliance

rsa_pss rsae sha?56 C 22.1
rsa_pss rsae sha3g4 C 22.1
rsa_pss rsae shab12 C 22.1
ed25519 NC

ed448 NC

rsa pss pss sha256 C 23
rsa_pss pss sha3g4 C 23
rsa_pss pss shabl2 C 23
rsa_pkcsl shal C 22.1
ecdsa shal C 22.1
Server PC 22
rsa_pkcsl sha256 C 22
rsa_pkcsl sha384 C 22
rsa_pkesl sha512 C 22
ecdsa secp256rl sha256 |C 22.1
ecdsa secp384rl sha3g4 | C 22.1
ecdsa secp521rl shabl2 | C 22.1
rsa_pss rsae sha?56 C 22
rsa_pss rsae sha3g4 C 22
rsa_pss rsae shab12 C 22
ed25519 NC

ed448 NC

rsa_pss pss sha256 C 23
rsa_pss pss sha3g4 C 23
rsa_pss pss shabl2 C 23
rsa_pkesl shal C 22
ecdsa shal C 22

Ericsson AB. All Rights Reserved.: Secure Socket Layer | 19

1.5 Standards Compliance

4.2.4. Certificate

Authorities Client NC
Server NC

4.2.5. OID Filters Client NC
Server NC

Chent Authenication | Clien NC
Server NC

4.2.7. Supported Groups | Client C 221
secp256rl C 221
secp384rl C 221
secp521rl C 22.1
x25519 C 22.1
x448 C 22.1
ffdhe2048 C 221
ffdhe3072 C 221
ffdhe4096 C 22.1
ffdhe6144 C 22.1
ffdhe8192 C 22.1
Server C 22
secp256rl C 22
secp384rl C 22
secp521rl C 22
x25519 C 22
X448 C 22
ffdhe2048 C 22
ffdhe3072 C 22
ffdhe4096 C 22

20 | Ericsson AB. All Rights Reserved.: Secure Socket Layer

href
href
href
href
href
href

1.5 Standards Compliance

ffdhe6144 C 22

ffdhe8192 C 22
4.2.8. Key Share Client C 22.1

Server C 22
‘é‘féf\';;‘:fﬂhg‘;g K&Y | Client c 222

Server C 222
ndication || Cle NC

Server NC
4.211. _PreShared Key Client C 299
Extension

Server C 222
4.2.11.1. Ticket Age Client C 22.2

Server C 222
4.2.11.2. PSK Binder Client C 22.2

Server C 22.2
4.2.11.3. Processing Client NC
Order

Server NC
4.3.1. Encrypted Client PC 21
Extensions

server_name (RFC6066) NC

z;a;(c_:ggggmt_l ength C 23.0

supported_groups NC

(RFC7919)

use_srtp (RFC5764) NC

heartbeat (RFC6520) NC

application_layer jrotocol_nm?ti ation

(RFC7301)

Ericsson AB. All Rights Reserved.: Secure Socket Layer | 21

href
href
href
href
href
href
href
href
href
href
href
href
href

1.5 Standards Compliance

client_certificate type

(RFC7250) NC
server_certificate type NC
(RFC7250)
early_data (RFC8446) NC
supported _versions NC
(RFCB8446)
Server PC 22
server_name (RFC6066) NC
max_fragment_length
(RFC6066) c 230
supported_groups NC
(RFC7919)
use_srtp (RFC5764) NC
heartbeat (RFC6520) NC
application_layer JJrotocoI_nﬁ%rl)ti ation
(RFC7301)
client_certificate type NG
(RFC7250)
server_certificate type NG
(RFC7250)
early_data (RFC8446) NC
supported versions NC
(RFCB8446)

4.3.2. Certificate .

Request Client PC 221
status request (RFC6066) | NC
signature_algorithms
(RFC8446) c 221
signed_certificate timestam N
(RFC6962)
certificate_authorities NC

(RFC8446)

22 | Ericsson AB. All Rights Reserved.: Secure Socket Layer

href
href

1.5 Standards Compliance

oid_filters (RFC8446) NC
signature_algorithms_cert
(RFCB8446) c 221
Server PC 22
status request (RFC6066) | NC
signature_algorithms
(RFC8446) c 22
signed_certificate_timestam PNC
(RFC6962)
certificate_authorities NG
(RFC8446)
oid_filters (RFC8446) NC
signature_algorithms_cert
(RFCB8446) ¢ 22
4.4.1. The Transcript
Hash C 22
4.4.2. Certificate Client PC 22.1
status_request (RFC6066) | NC
signed_certificate timestam PNC
(RFC6962)
Server PC 22
status _request (RFC6066) | NC
signed_certificate timestam PNe
(RFC6962)
4.4.2.1. OCSP Statusand .
SCT Extensions Client NC
Server NC
4.4.2.2. Server
Certificate Selection PC 22
The certificate type
MUST be X.509v3, unless C 2
explicitly negotiated
otherwise

Ericsson AB. All Rights Reserved.: Secure Socket Layer | 23

href
href
href
href
href
href
href

1.5 Standards Compliance

The server's end-entity
certificate's public

key (and associated
restrictions) MUST be
compatible with the
selected authentication
algorithm from the client's
"signature_algorithms'
extension (currently RSA,
ECDSA, or EdDSA).

22

The certificate MUST
allow the key to be
used for signing with

a signature scheme
indicated in the client's

C

"signature_algorithms'/"signature_algorithms_cert"

extensions

22

The"server_name" and
"certificate_authorities'
extensions are used to
guide certificate selection.
Asservers MAY require
the presence of the
"server_name" extension,
clients SHOULD send
this extension, when
applicable.

NC

4.4.2.3. Client Certificate
Selection

PC

221

The certificate type
MUST be X.509v3, unless
explicitly negotiated
otherwise

221

If the
"certificate_authorities'
extension in the
CertificateRequest
message was present, at
least one of the certificates
in the certificate chain
SHOULD beissued by one
of thelisted CAs.

NC

The certificates MUST be
signed using an acceptable
signature algorithm

221

24 | Ericsson AB. All Rights Reserved.: Secure Socket Layer

href
href

1.5 Standards Compliance

If the CertificateRequest
message contained a
non-empty "oid_filters’

extension, the end-entity NC
certificate MUST match
the extension Ol Ds that are
recognized by the client
4.4.2.4. Receiving a .
Certificate M essage Client c 221
Server C 22
4.4.3. Certificate Verify | Client C 22.1
Server C 22
4.4.4. Finished Client C 221
Server C 22
4.5. End of Early Data Client NC
Server NC
4.6.1. New Session Ticket Client PC 29
M essage
early data (RFC8446) NC
Server PC 22.2
early data (RFC8446) NC
4.6.2. Post-Handshake .
Authentication Client NC
Server NC
4.6.3. Key and
Initialization Vector Client C 22.3
Update
Server C 22.3
5.1. Record L ayer C 22
MUST NOT be interleaved C 2
with other record types
MUST NOT span key c 2

changes

Ericsson AB. All Rights Reserved.:

Secure Socket Layer | 25

href
href
href
href
href
href
href
href
href
href
href
href
href

1.5 Standards Compliance

MUST NOT send zero-
C 22

length fragments

Alert messages MUST C 2

NOT be fragmented
5.2. Rec_ord Payload C 2
Protection
5.3. Per-Record Nonce C 22
5.4. Record Padding PC 22

MAY choose to pad NC

MUST NOT send

Handshake and

Alert records that NC

have a zero-length

TL SInnerPlaintext.content

The padding sent is C 2

automatically verified
5.5. Limitson Key Usage C 22.3
6.1. Closure Alerts NC

close_notify NC

user_cancelled NC
6.2. Error Alerts PC 22
7.1. Key Schedule C 22
7.2. Updating Traffic
Secrets ¢ 22
7.3. Traffic Key
Calculation ¢ 22
7.5. Exporters NC
8. O-RTT and Anti- c 299
Replay
8.1. Single-Use Tickets C 222
8.2. Cllt_ent Hello C 29
Recording
8.3. Freshness Checks C 22.2

26 | Ericsson AB. All Rights Reserved.: Secure Socket Layer

href
href
href
href
href
href
href
href
href
href
href
href
href
href
href
href
href
href
href

1.5 Standards Compliance

9.1. Mandatory-to-

Implement Cipher Suites c 221
MUST implement the 2
TLS AES 128 GCM_SHA 2%6
SHOULD implement the
TLS _AES 256_GCM_SHA 3%4 22
SHOULD implement the 2
TLS CHACHA20 POLY1 385_5HA256
Digital signatures C 221
MUST support
rsa_pkesl sha256 (for C 22
certificates)
MUST support
rsa_pss rsae sha?56 (for C 2
CertificateVerify and
certificates)
MUST support
ecdsa_secp256r1_sha?56 c 221
Key Exchange C 22
MUST support key C 2
exchange with secp256r1
SHOUL D support key C 2
exchange with X25519

9.2. M andatory-toj PC 2

Implement Extensions
Supported Versions C 22
Cookie C 231
Signature Algorithms C 22
Signature Algorithms
Certificate c 22
Negotiated Groups C 22
Key Share C 22
Server Name Indication NC

Ericsson AB. All Rights Reserved.: Secure Socket Layer | 27

href
href
href
href

1.5 Standards Compliance

MUST send and use

these extensions c 222

"supported_versions'

is REQUIRED for
ClientHello, ServerHello
and HelloRetryRequest

C 221

"signature_algorithms' is
REQUIRED for certificate | C 22
authentication

"supported_groups"
is REQUIRED for
ClientHello messages C 22
using (EC)DHE key
exchange

"key share" is
REQUIRED for (EC)DHE |C 22
key exchange

"pre_shared key" is
REQUIRED for PSK key |C 222
agreement

"psk_key exchange modes|
is REQUIRED for PSK C 222
key agreement

TLS 1.3 ClientHello C 221

If not containing a
"pre_shared key"
extension, it MUST
contain both a
"signature_algorithms'
extension and a
"supported_groups"
extension.

C 221

If containing a
"supported_groups"
extension, it MUST also
contain a"key_share"
extension, and vice
versa. An empty
KeyShare.client_shares
vector is permitted.

C 221

TLS 1.3 ServerHello PC 22

28 | Ericsson AB. All Rights Reserved.: Secure Socket Layer

1.5 Standards Compliance

MUST support the use
of the "server_name" NC
extension
9.3. Protocol Invariants C 221

MUST correctly handle

extensible fields c 221

A client sending a
ClientHello MUST support
all parameters advertised
init. Otherwise, the server | C 221
may fail to interoperate
by selecting one of those
parameters.

A server receiving a
ClientHello MUST
correctly ignore all
unrecognized cipher suites,
extensions, and other
parameters. Otherwise, it
may fail to interoperate C 221
with newer clients. In
TLS 1.3, aclient receiving
a CertificateRequest

or NewSessionTicket
MUST alsoignoreal
unrecognized extensions.

A middlebox which
terminatesa TLS
connection MUST behave
asacompliant TLS server

NA

A middlebox which
forwards ClientHello
parameters it does not
understand MUST NOT
process any messages
beyond that ClientHello.
It MUST forward all
subsequent traffic
unmodified. Otherwise,
it may fail to interoperate
with newer clients and
servers.

NA

B.4. Cipher Suites C 23

TLS_AES 128 GCM_SHAZ56 22

Ericsson AB. All Rights Reserved.: Secure Socket Layer | 29

href
href

1.5 Standards Compliance

Backward Compatibility

TLS AES 256 GCM_SHA3B4 22
TLS CHACHA20 POLY 18@5_SHA256 22
TLS AES 128 CCM_SHAZ56 22
TLS AES 128 CCM_8 SHIE256 23
C.1. Random Number C 2
Generation and Seeding
C.2. Certificatesand
Authentication ¢ 22
C.3. Implementation
Pitfalls PC 22
Cc.a. Cln_ent Tracking C 29
Prevention
C.5. Un_authentlcated c 2
Operation
D.1. Negotiating with an
Older Server ¢ 222
D.2. Negotiating with an
Older Client c 22
D.3.0-RTT Backward NC
Compatibility
D.4. Middlebox
Compatibility Mode c 23
D.5. Security
Restrictions Related to C 22

Table 5.1: Standards Compliance

30 | Ericsson AB. All Rights Reserved.: Secure Socket Layer

href
href
href
href
href
href
href
href
href
href
href
href
href
href
href
href
href
href
href
href
href

1.5 Standards Compliance

2 Reference Manual

Ericsson AB. All Rights Reserved.: Secure Socket Layer | 31

ssl

ssl
Application

The sdl application is an implementation of the SSL, TLSand DTLS protocolsin Erlang.
For current statement of standards compliance see the User's Guide.

DEPENDENCIES

The SSL application uses the publ i ¢_key, asnl and Crypto application to handle public keys and encryption,
hence these applications must be loaded for the SSL application to work. In an embedded environment this means
they must be started with appl i cati on: start/[1, 2] beforethe SSL application is started.

CONFIGURATION

The application environment configuration parameters in this section are defined for the SSL application. For more
information about configuration parameters, see the application(3) manual page in Kernel.

The environment parameters can be set on the command line, for example:
erl -ssl protocol _version "["tlsvl.2", "tlsvl.1']"
prot ocol _version = sd:sd_tls protocol()<opt i onal >

Protocol supported by started clients and servers. If thisoption isnot set, it defaultsto all TLS protocols currently
supported, more might be configurable, by the SSL application. This option can be overridden by the version
optiontossl : connect/[2, 3] andssl :listen/2.

dtls_protocol version = sd:dtls protocol()<opt i onal >

Protocol supported by started clientsand servers. If thisoptionisnot set, it defaultsto all DTL S protocolscurrently
supported, more might be configurable, by the SSL application. This option can be overridden by the version
optiontossl : connect/[2, 3] andssl:listen/2.

session_lifetinme = integer() <optional>

Maximum lifetime of the session data in seconds. Defaults to 24 hours which is the maximum recommended
lifetime by RFC 5246. However sessions may beinvalidated earlier due to the maximum limitation of the session
cache table.

session_cb = atom() <optional >

Name of the session cache callback module that implements the ssl _sessi on_cache_api behavior.
Defaultstossl _sessi on_cache.

session_cb init_args = proplist:proplist() <optional>
List of extra user-defined argumentsto thei ni t function in the session cache callback module. Defaultsto[] .
session_cache_client_nmax = integer() <optional>

Limits the growth of the clients session cache, that is how many sessions towards servers that are cached to be
used by new client connections. If the maximum number of sessions is reached, the current cache entries will
be invalidated regardless of their remaining lifetime. Defaults to 1000. Recommended ssl-8.2.1 or later for this
option to work as intended.

session_cache_server_max = integer() <optional >

Limits the growth of the servers session cache, that is how many client sessions are cached by the server. If the
maximum number of sessionsisreached, the current cache entrieswill beinvalidated regardless of their remaining
lifetime. Defaults to 1000. Recommended ssl-8.2.1 or later for this option to work as intended.

32 | Ericsson AB. All Rights Reserved.: Secure Socket Layer

href

ssl

ssl _pem cache_clean = integer() <optional >
Number of milliseconds between PEM cache validations. Defaults to 2 minutes.

sdl:clear_pem_cache/O
bypass_pem cache = bool ean() <optional >

Introduced in ss1-8.0.2. Disables the PEM-cache. Can be used as a workaround for the PEM-cache bottleneck
before ss1-8.1.1. Defaults to false.

alert _tinmeout = integer() <optional>

Number of milliseconds between sending of a fatal alert and closing the connection. Waiting a little while
improves the peers chances to properly receiving the aert so it may shutdown gracefully. Defaults to 5000
milliseconds.

internal _active_n = integer() <optional>

For TLS connections this value is used to handle the internal socket. As the implementation was changed from
an active onceto an active N behavior (N = 100), for performance reasons, this option exist for possible tweaking
or restoring of the old behavior (internal_active_n = 1) in unforeseen scenarios. The option will not affect erlang
distribution over TLS that will always run in active N mode. Added in sdl-9.1 (OTP-21.2).

server_session_tickets_amunt = integer() <optional>
Number of session tickets sent by the server. It must be greater than 0. Defaultsto 3.
server_session_ticket |lifetime = integer() <optional>

Lifetime of session tickets sent by the server. Servers must not use any value greater than 604800 seconds (7
days). Expired tickets are automatically removed. Defaults to 7200 seconds (2 hours).

server_session_ticket_store_size = integer() <optional>

Sets the maximum size of the server session ticket store (stateful tickets). Defaultsto 1000. Size limit is enforced
by dropping old tickets.

client_session_ticket |lifetime = integer() <optional>

Lifetime of session ticketsin the client ticket store. Expired tickets are automatically removed. Defaultsto 7200
seconds (2 hours).

client_session_ticket store size = integer() <optional>

Sets the maximum size of the client session ticket store. Defaults to 1000. Size limit is enforced by dropping
old tickets.

ERROR LOGGER AND EVENT HANDLERS

The SSL application uses OTP logger. TLS/DTLS alerts are logged on notice level. Unexpected errors are logged on
error level. These log entries will by default end up in the default Erlang log. The option | og_| evel may be used
to in run-time to set the log level of a specific TLS connection, which is handy when you want to use level debug to
inspect the TL S handshake setup.

SEE ALSO
application(3)

Ericsson AB. All Rights Reserved.: Secure Socket Layer | 33

ssl

ssli

Erlang module

This module contains interface functions for the TLS/DTLS protocol. For detailed information about the supported
standards see s3l(6).

Data Types

Types used in TLS/DTLS

socket() = gen tcp:socket()
sslsocket() = any()

An opaque reference to the TLS/DTL S connection, may be used for equality matching.

tls option() = tls client option() | tls server option()

tls client option() =
client option() |
common_option() |
socket option() |
transport option()

tls server option() =
server _option() |
common_option() |
socket option() |

transport _option()

socket _option() =
gen_tcp:connect_option() |
gen_tcp:listen option() |
gen _udp:option()

The default socket optionsare[{ node, | i st}, { packet, 0}, {header, 0},{active, true}].

For valid options, seetheinet(3), gen_tcp(3) and gen_udp(3) manual pagesin Kernel. Notethat stream oriented options
such as packet are only relevant for TLSand not DTLS

active msgs() =
{ssl, sslsocket(), Data :: binary() | list()} |
{ss1 closed, sslsocket()} |
{ssl error, sslsocket(), Reason :: any()} |
{ssl passive, sslsocket()}

When aTLS/DTL S socket isin active mode (the default), data from the socket is delivered to the owner of the socket
in the form of messages as described above.

Thessl _passi ve messageis sent only when the socket isin{ acti ve, N} mode and the counter dropped to O.
It indicates that the socket has transitioned to passive ({ act i ve, fal se}) mode.

transport option() =
{cb_info,

{CallbackModule :: atom(),
DataTag :: atom(),
ClosedTag :: atom(),
ErrTag :: atom()}} |

34 | Ericsson AB. All Rights Reserved.: Secure Socket Layer

ssl

{cb _info,

{CallbackModule :: atom(),
DataTag :: atom(),
ClosedTag :: atom(),
ErrTag :: atom(),
PassiveTag :: atom()}}

Defaults to { gen_tcp, tcp, tcp_closed, tcp_error, tcp_passive} for TLS (for backward
compatibility a four tuple will be converted to a five tuple with the last element "second_element”_passive) and
{gen_udp, udp, udp_closed, udp_error} for DTLS (might aso be changed to five tuplein the future).
Can be used to customize the transport layer. The tag values should be the values used by the underlying transport
in its active mode messages. For TL S the callback module must implement a reliable transport protocol, behave as
gen_t cp, and have functions corresponding to i net : set opt s/ 2,i net: get opts/ 2,i net: peer nane/ 1,
i net: socknane/ 1,andi net : port/ 1. Thecallback gen_t cp istreated specially and callsi net directly. For
DTL S this feature must be considered exprimental .
host() = hostname() | ip address()
hostname() = string()
ip _address() = inet:ip address()
protocol version() = tls version() | dtls version()
tls version() = 'tlsvl.2' | 'tlsvl.3' | tls legacy version()
dtls version() = 'dtlsvl.2' | dtls legacy version()
tls legacy version() = tlsvl | 'tlsvl.1'
dtls legacy version() = dtlsvl
prf random() = client random | server random
verify type() = verify none | verify peer
ciphers() = [erl cipher suite()] | string()
erl cipher suite() =

#{key exchange := kex algo(),

cipher := cipher(),
mac := hash() | aead,
prf := hash() | default prf}

cipher() =
aes 128 cbc | aes 256 cbc | aes 128 gcm | aes 256 gcm |
aes 128 ccm | aes 256 ccm | aes 128 ccm 8 | aes 256 ccm 8 |
chacha20 poly1305 |
legacy cipher()
legacy cipher() = rc4 128 | des cbc | '3des ede cbc'
cipher filters() =
[{key exchange | cipher | mac | prf, algo filter()}]
hash() = sha | sha2() | legacy hash()
sha2() = sha224 | sha256 | sha384 | sha512
legacy hash() = md5
old cipher suite() =
{kex algo(), cipher(), hash()} |
{kex_algo(), cipher(), hash() | aead, hash()}

signature _algs() = [{hash(), sign algo()}]
sign algo() = rsa | dsa | ecdsa
sign _scheme() =

Ericsson AB. All Rights Reserved.: Secure Socket Layer | 35

ssl

rsa_pkcsl sha256 | rsa pkcsl sha384 | rsa pkcsl sha512 |
ecdsa secp256rl sha256 | ecdsa secp384rl sha384 |
ecdsa secp521rl sha512 | rsa pss_rsae sha256 |
rsa _pss rsae sha384 | rsa pss rsae sha512 |
rsa _pss pss sha256 | rsa pss pss sha384 | rsa pss pss sha512 |
rsa_pkcsl shal | ecdsa shal

group() =
secp256rl | secp384rl | secp521rl | ffdhe2048 | ffdhe3072 |
ffdhed4096 | ffdhe6144 | ffdhe8192

kex algo() =
rsa | dhe rsa | dhe dss | ecdhe ecdsa | ecdh ecdsa |
ecdh rsa | srp rsa | srp _dss | psk | dhe psk | rsa psk |
dh_anon | ecdh anon | srp_anon | any

algo filter() =
fun((kex algo() | cipher() | hash() | aead | default prf) ->

true | false)

named curve()

sect571rl | sect571kl | secp521rl | brainpoolP512rl1 |
sect409kl | sect409rl | brainpoolP384rl | secp384rl |
sect283kl | sect283rl | brainpoolP256rl | secp256kl |
secp256rl | sect239kl | sect233kl | sect233rl | secp224kl |
secp224rl | sectl93rl | sectl93r2 | secpl92kl | secpl92rl |
sectle3kl | sectl63rl | sectl63r2 | secpl6Okl | secpl6Orl |
secpl6Or2

psk identity() = string()

srp_identity() = {Username :: string(), Password :: string()}

srp_param_type() =
srp 1024 | srp 1536 | srp 2048 | srp 3072 | srp 4096 |
srp_6144 | srp 8192

app_level protocol() = binary()

protocol extensions() =
#{renegotiation info => binary(),
signature algs => signature algs(),
alpn => app_level protocol(),
srp => binary(),
next protocol => app level protocol(),
max_frag _enum => 1. .4,
ec_point formats => [0..2],
elliptic curves => [public key:oid()],
sni => hostname()}
error _alert() =
{tls alert, {tls alert(), Description :: string()}}

tls alert() =
close notify | unexpected message | bad record mac |
record overflow | handshake failure | bad certificate |
unsupported certificate | certificate revoked |
certificate expired | certificate unknown |
illegal parameter | unknown ca | access denied |
decode error | decrypt error | export restriction |
protocol version | insufficient security | internal error |

36 | Ericsson AB. All Rights Reserved.: Secure Socket Layer

ssl

inappropriate fallback | user canceled | no renegotiation |
unsupported extension | certificate unobtainable |
unrecognized name | bad certificate status response |

bad certificate hash value | unknown psk identity |
no_application protocol

reason() = any()

bloom filter window size() = integer()

bloom filter hash functions() = integer()

bloom filter bits() = integer()

client session_ tickets() = disabled | manual | auto
server_session tickets() disabled | stateful | stateless

TLS/DTLS OPTION DESCRIPTIONS - COMMON for SERVER and CLIENT

common_option() =
{protocol, protocol()} |
{handshake, handshake completion()} |
{cert, cert()} |
{certfile, cert pem()} |
{key, key()} |
{keyfile, key pem()} |
{password, key password()} |
{ciphers, cipher suites()} |
{eccs, [named curve()]} |
{signature_algs cert, signature schemes()} |
{supported groups, supported groups()} |
{secure_renegotiate, secure renegotiation()} |
{depth, allowed cert chain length()} |
{verify fun, custom verify()} |
{crl _check, crl check()} |
{crl _cache, crl cache opts()} |
{max_handshake size, handshake size()} |
{partial chain, root fun()} |
{versions, protocol versions()} |
{user_lookup fun, custom user lookup()} |
{log_level, logging level()} |
{log alert, log alert()} |
{hibernate after, hibernate after()} |
{padding check, padding check()} |
{beast mitigation, beast mitigation()} |
{ss1 imp, ssl imp()} |
{session tickets, session tickets()} |
{key update at, key update at()} |
{middlebox comp mode, middlebox comp mode()}

protocol() = tls | dtls

Choose TLS or DTLS protocol for the transport layer security. Defaultstot | s. For DTLS other transports than UDP

are not yet supported.

Ericsson AB. All Rights Reserved.: Secure Socket Layer | 37

ssl

handshake completion() = hello | full

Defaults to ful | . If hello is specified the handshake will pause after the hello message and give the user a
possibility make decisions based on hello extensions before continuing or aborting the handshake by calling
handshake_continue/3 or handshake _cancel/1

cert() = public key:der encoded()

The DER-encoded users certificate. If this option is supplied, it overrides optioncertfil e.
cert pem() = file:filename()

Path to afile containing the user certificate on PEM format.

key() =

{'RSAPrivateKey' | 'DSAPrivateKey' | 'ECPrivateKey' |
'PrivateKeyInfo',
public key:der encoded()} |

#{algorithm := rsa | dss | ecdsa,
engine := crypto:engine ref(),
key id crypto:key id(),
password => crypto:password()}

The DER-encoded user's private key or a map refering to a crypto engine and its key reference that optionally can
be password protected, seealso crypto:engine load/4 and Crypto's Users Guide. If this option is supplied, it overrides
optionkeyfil e.

key pem() = file:filename()

Path to the file containing the user's private PEM-encoded key. As PEM-files can contain several entries, this option
defaultsto the samefile asgiven by optioncertfil e.

key password() = string()

String containing the user's password. Only used if the private keyfile is password-protected.
cipher_suites() = ciphers()

A list of cipher suites that should be supported

The function ssl:cipher_suites/2 can be used to find all cipher suites that are supported by default and all cipher suites
that may be configured.

If you compose your own cipher_suites() make sure they are filtered for cryptolib support
sdl:filter_cipher_suites/2 Additionaly the functions sd:append cipher suites2 , sdl:prepend cipher suites/2,
sdl:suite to_str/1, sdl:str_to suite/1, and sdl:suite_to _openssl_str/1 also exist to help creating customized cipher suite
lists.

Note that TLS-1.3 and TLS-1.2 cipher suites are not overlapping sets of cipher suites so to support both these
versions cipher suites from both versions need to be included. If supporting TLS-1.3 versions prior to TLS-1.2
can not be supported.

Non-default cipher suitesincluding anonymous cipher suites (PRE TL S-1.3) are supported for interop/testing purposes
and may be used by adding them to your cipher suite list. Note that they must also be supported/enabled by the peer
to actually be used.

signature schemes() = [sign scheme()]

In addition to the signature_algorithms extension from TLS 1.2, TLS 1.3 (RFC 5246 Section 4.2.3)adds the
signature_algorithms_cert extension which enables having specia requirements on the signatures used in the

38 | Ericsson AB. All Rights Reserved.: Secure Socket Layer

href

ssl

certificates that differs from the requirements on digital signatures as a whole. If thisis not required this extension
is ot needed.

The client will send a signature_algorithms_cert extension (ClientHello), if TLS version 1.3 or later is used, and the
signature_algs_cert option is explicitly specified. By default, only the signature_algs extension is sent.

The signature schemes shall be ordered according to the client's preference (favorite choice first).
supported groups() = [group()]

TLS 1.3 introduces the "supported_groups" extension that is used for negotiating the Diffie-Hellman parametersin a
TLS 1.3 handshake. Both client and server can specify alist of parameters that they are willing to use.

If itisnot specifiedit will useadefault list ([x25519, X448, secp256r1, secp384rl]) that isfiltered based ontheinstalled
crypto library version.

secure_renegotiation() = boolean()

Specifiesif to reject renegotiation attempt that does not live up to RFC 5746. By default secur e_r enegot i at e is
settot r ue, that is, secure renegotiation isenforced. If settof al se secure renegotiation will still be used if possible,
but it falls back to insecure renegotiation if the peer does not support RFC 5746.

allowed cert chain length() = integer()

Maximum number of non-self-issued intermediate certificatesthat can follow the peer certificateinavalid certification
path. So, if depth is 0 the PEER must be signed by the trusted ROOT-CA directly; if 1 the path can be PEER, CA,
ROQOT-CA,; if 2 the path can be PEER, CA, CA, ROOT-CA, and so on. The default valueis 1.

custom verify() =
{Verifyfun :: function(), InitialUserState :: any()}

The verification fun is to be defined as follows:

fun(OtpCert :: #'OTPCertificate'{}, Event :: {bad cert, Reason :: atom() |
{revoked, atom()}} |

{extension, #'Extension'{}} | valid | valid peer, InitialUserState :: term()) ->
{valid, UserState :: term()} |
{fail, Reason :: term()} | {unknown, UserState :: term()}.

The verification fun is called during the X509-path validation when an error or an extension unknown to the SSL
application isencountered. It isalso called when acertificate is considered valid by the path validation to allow access
to each certificatein the path to the user application. It differentiates between the peer certificate and the CA certificates
by using val i d_peer or val i d as second argument to the verification fun. See the public_key User's Guide for
definitionof # OTPCertificate' {} and#' Extension'{}.

e |f theverify callback funreturns{f ai | , Reason}, the verification process is immediately stopped, an aert
is sent to the peer, and the TLS/DTL S handshake terminates.
« If theverify callback funreturns{ val i d, User St at e}, the verification process continues.

» If theverify calback fun alwaysreturns{ val i d, User St at e}, the TLS/DTL S handshake does not terminate
regarding verification failures and the connection is established.

e |f called with an extension unknown to the user application, return value { unknown, User St at e} isto be
used.

Note that if the fun returns unknown for an extension marked as critical, validation will fail.
Default optionveri fy_funinverify_peer node:

Ericsson AB. All Rights Reserved.: Secure Socket Layer | 39

href
href

ssl

{fun(_,{bad cert, } = Reason,) ->
{fail, Reason};
(_,{extension, }, UserState) ->
{unknown, UserState};
(_, valid, UserState) ->

{valid, UserState};
(_, valid peer, UserState) ->
{valid, UserState}
end, [1}

Default optionveri fy funinmodeverify none:

{fun(_,{bad cert, }, UserState) ->
{valid, UserState};
(_,{extension, #'Extension'{critical = true}}, UserState) ->
{valid, UserState};
(_,{extension, }, UserState) ->
{unknown, UserState};
(_, valid, UserState) ->
{valid, UserState};
(_, valid peer, UserState) ->
{valid, UserState}
end, [1}

The possible path validation errors are given on form{ bad_cert, Reason} whereReason is:
unknown_ca

No trusted CA was found in the trusted store. The trusted CA isnormally a so called ROOT CA, which isaself-
signed certificate. Trust can be claimed for an intermediate CA (trusted anchor does not have to be self-signed
according to X-509) by using option parti al _chai n.

sel f si gned_peer

The chain consisted only of one self-signed certificate.
PKI X X-509-path validation error

For possible reasons, see public_key:pkix_path validation/3
crl check() = boolean() | peer | best effort

Perform CRL (Certificate Revocation List) verification (public_key:pkix_crls validate/3) on all the certificates during
the path validation (public_key:pkix_path_validation/3) of the certificate chain. Defaultstof al se.

peer
check is only performed on the peer certificate.

best effort
if certificate revocation status cannot be determined it will be accepted as valid.

The CA certificates specified for the connection will be used to construct the certificate chain validating the CRLs.
The CRLswill be fetched from alocal or external cache. See s3_crl_cache api(3).

crl _cache opts() =
{Module :: atom(),
{DbHandle :: internal | term(), Args :: list()}}

Specify how to perform lookup and caching of certificate revocation lists. Modul e defaults to ss_crl_cache with
DbHandl e beingi nt er nal and an empty argument list.

There are two implementations available:

40 | Ericsson AB. All Rights Reserved.: Secure Socket Layer

ssl

ssl _crl _cache

Thismodule maintainsacache of CRLs. CRL s can be added to the cache using thefunctionsd_crl_cacheinsert/1,
and optionally automatically fetched through HTTP if the following argument is specified:

{http, timeout()}

Enables fetching of CRLs specified as http URIs inX509 certificate extensions. Requires the OTP inets
application.

ssl _crl _hash_dir
This module makes use of adirectory where CRLs are stored in files named by the hash of the issuer name.

Thefile names consist of eight hexadecimal digitsfollowed by . r N, where Nisaninteger, e.g. 1a2b3c4d. r 0.
For thefirst version of the CRL, Nstartsat zero, and for each new version, Nisincremented by one. The OpenSSL
utility c_r ehash creates symlinks according to this pattern.

For a given hash value, this module finds all consecutive . r * files starting from zero, and those files taken
together make up the revocation list. CRL fileswhose next Updat e fields are in the past, or that are issued by
adifferent CA that happens to have the same name hash, are excluded.

The following argument is required:
{dir, string()}
Specifies the directory in which the CRLs can be found.
root fun() = function()

fun(Chain::[public_key:der encoded()]) ->
{trusted ca, DerCert::public key:der encoded()} | unknown ca}

Claim an intermediate CA in the chain as trusted. TLS then performs public_key:pkix_path validation/3 with the
selected CA as trusted anchor and the rest of the chain.

protocol versions() = [protocol version()]

TLS protocol versions supported by started clients and servers. This option overrides the application environment
option pr ot ocol _versionanddt| s_protocol _versi on. If the environment option is not set, it defaultsto
all versions, supported by the SSL application. See also sd(6).

custom user lookup() =
{Lookupfun :: function(), UserState :: any()}

The lookup funisto defined as follows:

fun(psk, PSKIdentity :: binary(), UserState :: term()) ->

{ok, SharedSecret :: binary()} | error;

fun(srp, Username :: binary(), UserState :: term()) ->

{ok, {SRPParams :: srp param type(), Salt :: binary(),
DerivedKey :: binary()}} | error.

For Pre-Shared Key (PSK) cipher suites, the lookup funiscalled by the client and server to determine the shared secret.
When called by the client, PSKI dent i t y is set to the hint presented by the server or to undefined. When called by
the server, PSKI dent i t y istheidentity presented by the client.

For Secure Remote Password (SRP), the fun is only used by the server to obtain parameters that it uses to generate
its session keys. Der i vedKey isto be derived according to RFC 2945 and RFC 5054: cr ypt o: sha([Sal t,
crypto: sha([User nane, <<$:>>, Password])])

session_id() = binary()
Identifiesa TLS session.

Ericsson AB. All Rights Reserved.: Secure Socket Layer | 41

href
href

ssl

log alert() = boolean()

If settof al se, TLS/DTLS Alert reports are not displayed. Deprecated in OTP 22, use {log_level, logging_level()}
instead.

logging level() = logger:level()

Specifies the log level for a TLS/DTLS connection. Alerts are logged on not i ce level, which is the default level.
Thelevel debug triggers verbose logging of TLS/DTLS protocol messages. See also ssl(6)

hibernate after() = timeout()

When an integer-value is specified, TLS/ DTLS- connect i on goes into hibernation after the specified number of
milliseconds of inactivity, thus reducing its memory footprint. When undef i ned is specified (this is the default),
the process never goes into hibernation.

handshake size() = integer()

Integer (24 bits unsigned). Used to limit the size of valid TLS handshake packets to avoid DoS attacks. Defaults to
256*1024.

padding check() = boolean()

Affects TLS-1.0 connectionsonly. If settof al se, it disablesthe block cipher padding check to be ableto interoperate
with legacy software.

Using { paddi ng_check, bool ean()} makes TLS vulnerable to the Poodle attack. |

beast mitigation() = one n minus one | zero n | disabled

Affects TLS-1.0 connectionsonly. Used to changethe BEA ST mitigation strategy to interoperate with legacy software.
Defaultstoone_n_m nus_one.

one_n_m nus_one - Perform 1/n-1 BEAST mitigation.
zer o_n - Perform O/n BEAST mitigation.
di sabl ed - Disable BEAST mitigation.

Using{ beast _m tigation, disabl ed} makesTLS-1.0vulnerabletothe BEAST attack.

ssl imp() = new | old
Deprecated since OTP-17, has no affect.

session tickets() =
client session tickets() | server session tickets()

Configures the session ticket functionalty in TLS 1.3 client and server.
key update at() = integer() >=1

Configures the maximum amount of bytes that can be sent on a TLS 1.3 connection before an automatic key update
is performed.

There are cryptographic limits on the amount of plaintext which can be safely encrypted under a given set of keys.
The current default ensures that data integrity will not be breached with probability greater than 1/2°57. For more
information see Limits on Authenticated Encryption Usein TLS.

42 | Ericsson AB. All Rights Reserved.: Secure Socket Layer

href

ssl

The default value of this option shall provide the above mentioned security guarantees and it shall be reasonable
for most applications (~353 TB).

middlebox comp mode() = boolean()
Configures the middlebox compatibility mode on a TLS 1.3 connection.

A significant number of middleboxes misbehave when a TLS 1.3 connection is negotiated. Implementations can
increase the chance of making connections through those middleboxes by making the TLS 1.3 handshake more like
aTLS 1.2 handshake.

The middliebox compatibility modeis enabled (t r ue) by default.

TLS/DTLS OPTION DESCRIPTIONS - CLIENT

client option() =
{verify, client verify type()} |
{reuse session, client reuse session()} |
{reuse sessions, client reuse sessions()} |
{cacerts, client cacerts()} |
{cacertfile, client cafile()} |
{alpn_advertised protocols, client alpn()} |
{client preferred next protocols,
client preferred next protocols()} |
{psk _identity, client psk identity()} |
{srp_identity, client srp identity()} |
{server_name_indication, sni()} |
{max_fragment length, max_ fragment length()} |
{customize hostname check, customize hostname check()} |
{signature algs, client signature algs()} |
{fallback, fallback()} |
{session tickets, client session tickets()} |
{use ticket, use ticket()}

client verify type() = verify type()

Inmodeveri fy_none the default behavior isto alow all x509-path validation errors. See also option verify_fun.
client reuse session() = session id()

Reuses a specific session earlier saved with theoption { r euse_sessi ons, save} since OIP-21.3
client reuse sessions() = boolean() | save

When save is specified a new connection will be negotiated and saved for later reuse. The session ID can be fetched
with connection_information/2 and used with the client option reuse_session The boolean value true specifies that if
possible, automatized session reuse will be performed. If anew session is created, and is unique in regard to previous
stored sessions, it will be saved for possible later reuse. Since OTP-21.3

client cacerts() = [public key:der encoded()]
The DER-encoded trusted certificates. If this option is supplied it overridesoption cacertfi |l e.
client cafile() = file:filename()

Path to afile containing PEM-encoded CA certificates. The CA certificates are used during server authentication and
when building the client certificate chain.

Ericsson AB. All Rights Reserved.: Secure Socket Layer | 43

ssl

client alpn() = [app level protocol()]

The list of protocols supported by the client to be sent to the server to be used for an Application-Layer Protocol
Negotiation (ALPN). If the server supports ALPN then it will choose a protocol from this list; otherwise it will fail
the connection with a"no_application_protocol™ aert. A server that does not support ALPN will ignore this value.

Thelist of protocols must not contain an empty binary.
The negotiated protocol can be retrieved using the negot i at ed_pr ot ocol / 1 function.
client preferred next protocols() =

{Precedence :: server | client,
ClientPrefs :: [app level protocol()1} |
{Precedence :: server | client,

ClientPrefs :: [app _level protocol()],
Default :: app level protocol()}

Indicates that the client is to try to perform Next Protocol Negotiation.

If precedence is server, the negotiated protocol is the first protocol to be shown on the server advertised list, which
is aso on the client preference list.

If precedence is client, the negotiated protocol is the first protocol to be shown on the client preference list, which is
also on the server advertised list.

If the client does not support any of the server advertised protocols or the server does not advertise any protocols, the
client falls back to thefirst protocol initslist or to the default protocol (if a default is supplied). If the server does not
support Next Protocol Negotiation, the connection terminates if no default protocol is supplied.

max_fragment length() = undefined | 512 | 1024 | 2048 | 4096

Specifies the maximum fragment length the client is prepared to accept from the server. See RFC 6066
client psk identity() = psk identity()

Specifies the identity the client presents to the server. The matching secret isfound by callinguser _| ookup_f un
client srp identity() = srp _identity()

Specifies the username and password to use to authenticate to the server.

sni() = hostname() | disable

Specify the hostnameto be used in TLS Server Name Indication extension. If not specified it will default to the Host
argument of connect/[3,4] unlessit is of type inet:ipaddress().

The Host Nane will also be used in the hosthame verification of the peer certificate using
public_key:pkix_verify_hostname/2.

Thespecia valuedi sabl e preventsthe Server Name Indication extension from being sent and disablesthe hostname
verification check public_key:pkix_verify hostname/2

customize hostname check() = list()

Customizes the hostname verification of the peer certificate, as different protocols that use TLS such as HTTP or
LDAP may want to do it differently, for possible options see public_key:pkix_verify hostname/3

fallback() = boolean()
Send special cipher suite TLS FALLBACK_SCSV to avoid undesired TLS version downgrade. Defaults to false

44 | Ericsson AB. All Rights Reserved.: Secure Socket Layer

href

ssl

Note this option is not needed in normal TLS usage and should not be used to implement new clients. But legacy
clients that retries connections in the following manner

ssl: connect (Host, Port, [...{versions, ['tlsv2', "tlsvl.1", "tlsvl']}])
ssl: connect (Host, Port, [...{versions, [tlsvl.1', ‘'tlsvl']}, {fallback,
true}])

ssl: connect (Host, Port, [...{versions, ['tlsvl']}, {fallback, true}])

may useit to avoid undesired TL S version downgrade. Notethat TLS FALLBACK _SCSV must a so be supported
by the server for the prevention to work.

client signature algs() = signature algs()

In addition to the algorithms negotiated by the cipher suite used for key exchange, payload encryption, message
authentication and pseudo random cal culation, the TL'S signature algorithm extension Section 7.4.1.4.1in RFC 5246
may be used, from TLS 1.2, to negotiate which signature algorithm to use during the TL S handshake. If no lower TLS
versionsthan 1.2 are supported, the client will send a TL S signature algorithm extension with the algorithms specified
by this option. Defaults to

[

%% SHA2

{sha512, ecdsa},
{sha512, rsa},
{sha384, ecdsa},
{sha384, rsa},
{sha256, ecdsa},
{sha256, rsa},
{sha224, ecdsa},
{sha224, rsa},
%% SHA

{sha, ecdsa},
{sha, rsa},
{sha, dsa},

1

The algorithms should be in the preferred order. Selected signature algorithm can restrict which hash functions that
may be selected. Default support for { md5, rsa} removed in ssl-8.0

client session_tickets() = disabled | manual | auto

Configuresthe session ticket functionality. Allowed valuesaredi sabl ed, manual andaut o. If itissettomanual
the client will send the ticket information to user processin a 3-tuple:

{ssl, session_ticket, {SNI, TicketData}}

where SNI isthe ServerNamelndication and Ti cket Dat a isthe extended ticket data that can be used in subsequent
Session resumptions.

If it is set to aut o, the client automatically handles received tickets and tries to use them when making new TLS
connections (session resumption with pre-shared keys).

This option is supported by TLS 1.3 and above. See also SSL's Users Guide, Session Tickets and Session
Resumptionin TLS 1.3

Ericsson AB. All Rights Reserved.: Secure Socket Layer | 45

href

ssl

use ticket() = [binary()]

Configures the session tickets to be used for session resumption. It is a mandatory option in manual mode
(session_tickets = manual).

Session tickets are only sent to user if option session_ticketsis set to manual

This option is supported by TLS 1.3 and above. See also SSL's Users Guide, Session Tickets and Session
Resumptionin TLS 1.3

TLS/DTLS OPTION DESCRIPTIONS - SERVER

server _option() =
{cacerts, server cacerts()} |
{cacertfile, server cafile()} |
{dh, dh der()} |
{dhfile, dh file()} |
{verify, server verify type()} |
{fail if no peer cert, fail if no peer cert()} |
{reuse sessions, server reuse sessions()} |
{reuse session, server_reuse session()} |
{alpn_preferred protocols, server alpn()} |
{next_protocols advertised, server next protocol()} |
{psk _identity, server psk identity()} |
{honor_cipher order, boolean()} |
{sni_hosts, sni hosts()} |
{sni_fun, sni fun()} |
{honor_cipher order, honor cipher order()} |
{honor_ecc_order, honor ecc order()} |
{client_renegotiation, client renegotiation()} |
{signature algs, server signature algs()} |
{session tickets, server session tickets()} |
{anti replay, anti replay()} |
{cookie, cookie()}

server cacerts() = [public key:der encoded()]
The DER-encoded trusted certificates. If this option is supplied it overrides option cacertfi | e.
server cafile() = file:filename()

Path to a file containing PEM-encoded CA certificates. The CA certificates are used to build the server certificate
chain and for client authentication. The CAsare also used in thelist of acceptable client CAs passed to the client when
a certificate is requested. Can be omitted if there is no need to verify the client and if there are no intermediate CAs
for the server certificate.

dh _der() = binary()
The DER-encoded Diffie-Hellman parameters. If specified, it overrides option dhfi | e.

Thedh_der optionisnot supported by TLS 1.3. Usethe suppor t ed_gr oups option instead.

46 | Ericsson AB. All Rights Reserved.: Secure Socket Layer

ssl

dh file() = file:filename()

Path to afile containing PEM-encoded Diffie Hellman parametersto be used by the server if acipher suite using Diffie
Hellman key exchange is negotiated. If not specified, default parameters are used.

Thedh_fi | e optionisnot supported by TLS 1.3. Usethe suppor t ed_gr oups option instead. ‘

server verify type() = verify type()

A server only does x509-path validation in mode veri fy_ peer, as it then sends a certificate request to the
client (this message is not sent if the verify option isveri fy_none). You can then also want to specify option
fail _if_no_peer_cert.

fail if no peer cert() = boolean()

Used together with {veri fy, verify_peer} by an TLS/DTLS server. If set tot r ue, the server fails if the
client does not have a certificate to send, that is, sends an empty certificate. If settof al se, it failsonly if the client
sends an invalid certificate (an empty certificate is considered valid). Defaultsto false.

server_reuse sessions() = boolean()

The boolean value true specifies that the server will agree to reuse sessions. Setting it to false will result in an empty
session table, that is no sessions will be reused. See also option reuse_session

server reuse session() = function()

Enablesthe TLS/DTL S server to have alocal policy for deciding if a session isto be reused or not. Meaningful only
if reuse_sessions issettotrue. Suggest edSessi onl d isabi nary(), Peer Cert isaDER-encoded
certificate, Conpr essi on isan enumeration integer, and Ci pher Sui t e isof typeci phersuite().

server_alpn() = [app_level protocol()]
Indicates the server will try to perform Application-Layer Protocol Negotiation (ALPN).

The list of protocols is in order of preference. The protocol negotiated will be the first in the list that matches
one of the protocols advertised by the client. If no protocol matches, the server will fail the connection with a
"no_application_protocol” aert.

The negotiated protocol can be retrieved using the negot i at ed_pr ot ocol / 1 function.
server next protocol() = [app level protocol()]

List of protocolsto send to the client if the client indicates that it supports the Next Protocol extension. The client can
select aprotocol that is not on thislist. Thelist of protocols must not contain an empty binary. If the server negotiates
aNext Protocol, it can be accessed using the negot i at ed_next _pr ot ocol / 1 method.

server _psk identity() = psk identity()

Specifies the server identity hint, which the server presents to the client.

honor cipher order() = boolean()

If settot r ue, usethe server preference for cipher selection. If set to f al se (the default), use the client preference.

sni hosts() =
[{hostname(), [server option() | common option()]1}]

If the server receivesa SNI (Server Name Indication) from the client matching ahost listedinthesni _host s option,
the specific options for that host will override previously specified options. The optionsni _f un, andsni _host s
are mutually exclusive.

Ericsson AB. All Rights Reserved.: Secure Socket Layer | 47

ssl

sni fun() = function()

If the server receives a SNI (Server Name Indication) from the client, the given function will be caled to retrieve
[server_option()] for the indicated server. These options will be merged into predefined [server_option()] list. The
function should be defined as: fun(ServerName :: string()) -> [server_option()] and can be specified as a fun or as
named f un nmodul e: functi on/ 1 Theoptionsni _fun,andsni _host s are mutually exclusive.

client renegotiation() = boolean()

In protocolsthat support client-initiated renegotiation, the cost of resources of such an operation ishigher for the server
than the client. This can act as a vector for denial of service attacks. The SSL application aready takes measures to
counter-act such attempts, but client-initiated renegotiation can be strictly disabled by setting this optionto f al se.
The default valueist r ue. Note that disabling renegotiation can result in long-lived connections becoming unusable
due to limits on the number of messages the underlying cipher suite can encipher.

honor cipher order() = boolean()

If true, use the server's preference for cipher selection. If false (the default), use the client's preference.
honor ecc order() = boolean()

If true, use the server's preference for ECC curve selection. If false (the default), use the client's preference.
server _signature algs() = signature algs()

The algorithms specified by this option will be the ones accepted by the server in a signature algorithm negotiation,
introduced in TLS-1.2. The algorithms will also be offered to the client if a client certificate is requested. For more
details see the corresponding client option.

server session tickets() = disabled | stateful | stateless
Configures the session ticket functionality. Allowed valuesare di sabl ed, st at ef ul and st at el ess.

Ifitissettost at ef ul orst at el ess, session resumption with pre-shared keysis enabled and the server will send
stateful or statel ess session ticketsto the client after successful connections.

A stateful sessionticket isadatabasereferencetointernal stateinformation. A stateless session ticket isaself-encrypted
binary that contains both cryptographic keying material and state data.

This option is supported by TLS 1.3 and above. See also SSL's Users Guide, Session Tickets and Session
Resumptionin TLS 1.3

anti replay() =
'10k' | '100k"' |
{bloom filter window size(),
bloom filter hash functions(),
bloom filter bits()}

Configures the server's built-in anti replay feature based on Bloom filters.

Allowed values are the pre-defined ' 10k’ , ' 100k’ or a custom 3-tuple that defines the properties of the bloom
filters: { W ndowSi ze, HashFunctions, Bits}.W ndowSi ze isthe number of seconds after the current
Bloom filter is rotated and also the window size used for freshness checks. HashFunct i ons is the number hash
functionsand Bi t s isthe number of bitsinthebit vector.' 10k' and' 100k" are simple defaultswith the following
properties:

e '10k': Bloom filters can hold 10000 elements with 3% probability of false positives. W ndowSi ze: 10,
HashFunctions: 5, Bi t s: 72985 (8.91 KiB).

48 | Ericsson AB. All Rights Reserved.: Secure Socket Layer

ssl

e '100k' : Bloom filters can hold 100000 elements with 3% probability of false positives. W ndowSi ze: 10,
HashFuncti ons: 5, Bi t s: 729845 (89.09 KiB).

This optionis supported by TLS 1.3 and above and only with stateless session tickets. Ticket lifetime, the number
of tickets sent by the server and the maximum number of tickets stored by the server in stateful mode are configured
by application variables. See also SSL's Users Guide, Anti-Replay Protectionin TLS 1.3

cookie() = boolean()
If t r ue (default), the server sends a cookie extension in its HelloRetryRequest messages.

The cookie extension has two main purposes. It allows the server to force the client to demonstrate reachability
at their apparent network address (thus providing a measure of DoS protection). This is primarily useful for non-
connection-oriented transports. It also allows to offload the server's state to the client. The cookie extension is
enabled by default asit is a mandatory extension in RFC8446.

connection info() =
[common_info() |
curve _info() |
ssl options _info() |
security info()]
common_info() =
{protocol, protocol version()} |
{session id, session id()} |
{session resumption, boolean()} |
{selected cipher suite, erl cipher suite()} |
{sni hostname, term()} |
{srp username, term()}
curve_info() = {ecc, {named curve, term()}}
ssl options info() = tls option()
security info() =
{client _random, binary()
{server_random, binary()
{master secret, binary()
connection info items() = [connection info item()]
connection info item() =
protocol | session id | session_resumption |
selected cipher suite | sni hostname | srp _username | ecc
client random | server random | master secret |
tls options name()

tls options name() = atom()

b
o
}

Exports

append cipher suites(Deferred, Suites) -> ciphers()
Types.

Ericsson AB. All Rights Reserved.: Secure Socket Layer | 49

ssl

Deferred = ciphers() | cipher_ filters()
Suites = ciphers()
Make Def er r ed suites become the least preferred suites, that is put them at the end of the cipher suite list Sui t es

after removing them from Sui t es if present. Def er r ed may be alist of cipher suites or alist of filtersin which
casethefiltersare use on Sui t es to extract the Deferred cipher list.

cipher suites() -> [old cipher suite()] | [string()]
cipher suites(Type) -> [old cipher suite() | string()]
Types.

Type = erlang | openssl | all
Deprecated in OTP 21, use cipher_suites/2 instead.

cipher suites(Description, Version) -> ciphers()
Types:
Description = default | all | exclusive | anonymous
Version = protocol version()
Lists all possible cipher suites corresponding to Descri pti on that are available. The excl usi ve option will

exclusively list cipher suites introduced in Ver si on whereas the the other options are inclusive from the lowest
possible versionto Ver si on. Theal | optionsincludes all suites except the anonymous.

TLS1.3 has no overlapping cipher suites with previous TLS versions, that is the result of
ci pher_suites(all, 'tlsvl.3"). contains a separate set of suites that can be used with TLS-1.3 an
other set that can be used if alower version is negotiated. No anonymous suites are supported by TLS-1.3.

Also note that the cipher suites returned by this function are the cipher suites that the OTP ssl application
can support provided that they are supported by the cryptolib linked with the OTP crypto application. Use
sdl:filter_cipher_suites(Suites, []). to filter the list for the current cryptolib. Note that cipher suites may be filtered
out because they are too old or too hew depending on the cryptolib

cipher suites(Description, Version, StringType :: rfc | openssl) ->
[string()]
Types:
Description = default | all | exclusive | anonymous
Version = protocol version()

Same as cipher_suites/2 but lists RFC or OpenSSL string names instead of erl_cipher_suite()

eccs() -> NamedCurves
eccs(Version) -> NamedCurves
Types:
Version = protocol version()
NamedCurves = [named curve()]

Returns alist of supported ECCs. eccs() isequivaent to callingeccs(Pr ot ocol) with all supported protocols
and then deduplicating the output.

50 | Ericsson AB. All Rights Reserved.: Secure Socket Layer

ssl

clear pem cache() -> ok

PEM files, used by ssl API-functions, are cached. The cacheisregularly checked to seeif any cache entries should be
invalidated, however this function provides away to unconditionally clear the whole cache.

connect (TCPSocket, TLSOptions) ->
{ok, sslsocket()} |
{error, reason()} |
{option not a key value tuple, any()}

connect (TCPSocket, TLSOptions, Timeout) ->
{ok, sslsocket()} | {error, reason()}

Types:
TCPSocket = socket()
TLSOptions = [tls client option()]
Timeout = timeout()

Upgrades a gen_t cp, or equivalent, connected socket to a TLS socket, that is, performs the client-side TLS
handshake

If theoptionverifyissettoverify_peer theoptionser ver _nane_i ndi cat i on shall also be specified,
if itisnot no Server Name Indication extension will be sent, and public_key:pkix_verify _hostname/2 will be called
with the IP-address of the connection as Ref er encel D, which is proably not what you want.

If the option { handshake, hel | o} isused the handshake is paused after receiving the server hello message and
the success responseis{ ok, Ssl| Socket, Ext} instead of { ok, Ssl Socket}. Thereafter the handshakeis
continued or canceled by calling handshake_cont i nue/ 3 or handshake _cancel / 1

If theoptionact i veissettoonce,t r ue or aninteger value, the process owning the sslsocket will receive messages
of type active_ msgs()

connect(Host, Port, TLSOptions) ->
{ok, sslsocket()} |
{ok, sslsocket(), Ext :: protocol extensions()} |
{error, reason()} |
{option_not a key value tuple, any()}
connect(Host, Port, TLSOptions, Timeout) ->
{ok, sslsocket()} |
{ok, sslsocket(), Ext :: protocol extensions()} |
{error, reason()} |
{option not a key value tuple, any()}
Types:
Host host ()
Port = inet:port number()
TLSOptions = [tls client option()]
Timeout = timeout()
Opensa TLS/DTLS connection to Host , Port .

Whentheoptionveri fyissettoveri fy peer thecheck public_key:pkix_ verify hostname/2 will be performed
in addition to the usual x509-path validation checks. If the check fails the error {bad_cert, hosthame_check_failed}

Ericsson AB. All Rights Reserved.: Secure Socket Layer | 51

ssl

will be propagated to the path validation fun verify_fun, where it is possible to do customized checks by using the
full possibilities of the public_key:pkix_verify hostname/3 API. When the option ser ver _nane_i ndi cati on
isprovided, its value (the DNS name) will be used as Ref er encel Dto public_key:pkix_verify hostname/2. When
no server _name_i ndi cati on option is given, the Host argument will be used as Server Name Indication
extension. The Host argument will also be used for the public_key:pkix_verify _hostname/2 check and if the Host

argument isani net : i p_address() the Ref er encel D used for the check will be {i p, Host} otherwise
dns_i d will be assumed with afalback toi p if that fails.

According to good practices certificates should not use | P-addresses as " server names”. It would be very surprising
if this happen outside a closed network.

If the option { handshake, hel | o} isused the handshake is paused after receiving the server hello message and
the success responseis{ ok, Ssl| Socket, Ext} instead of { ok, Ssl Socket }. Thereafter the handshakeis
continued or canceled by calling handshake_conti nue/ 3 or handshake _cancel / 1.

If theoptionact i veissettoonce,t r ue or aninteger value, the process owning the sslsocket will receive messages
of type active_ msgs()

close(SslSocket) -> ok | {error, Reason}
Types:

SslSocket = sslsocket()

Reason = any()

ClosesaTLS/DTLS connection.

close(SslSocket, How) -> ok | {ok, port()} | {error, Reason}
Types:
SslSocket = sslsocket()
How = timeout() | {NewController :: pid(), timeout()}
Reason = any()
Closes or downgrades a TLS connection. In the latter case the transport connection will be handed over to the

NewCont r ol | er process after receiving the TL S close alert from the peer. The returned transport socket will have
thefollowing options set: [{ acti ve, fal se}, {packet, 0}, {node, binary}]

controlling process(SslSocket, NewOwner) -> ok | {error, Reason}
Types:

Ss1Socket = sslsocket()

NewOwner = pid()

Reason = any()

Assignsanew controlling processto the SSL socket. A controlling processisthe owner of an SSL socket, and receives
all messages from the socket.

connection information(SslSocket) ->

{ok, Result} | {error, reason()}
Types:

52 | Ericsson AB. All Rights Reserved.: Secure Socket Layer

ssl

SslSocket = sslsocket()
Result = connection info()
Returns the most relevant information about the connection, ssl options that are undefined will be filtered out.

Note that values that affect the security of the connection will only be returned if explicitly requested by
connection_information/2.

Thelegacy | tem = ci pher_sui t e was removed in OTP-23. Previoudly it returned the cipher suite on its
(undocumented) legacy format. It isreplaced by sel ect ed_ci pher _sui te.

connection information(SslSocket, Items) ->
{ok, Result} | {error, reason()}

Types:
SslSocket = sslsocket()
Items = connection info items()
Result = connection info()
Returns the requested information items about the connection, if they are defined.

Note that client_random, server_random and master_secret are values that affect the security of connection.
Meaningful atoms, not specified above, are the sd option names.

| If only undefined options are requested the resulting list can be empty. |

filter cipher suites(Suites, Filters) -> Ciphers
Types:

Suites = ciphers()

Filters = cipher filters()

Ciphers = ciphers()
Removes cipher suites if any of the filter functions returns false for any part of the cipher suite. If no filter function
is supplied for some part the default behaviour regards it as if there was a filter function that returned true. For
examples see Customizing cipher suites Additionaly thisfunction also filters the cipher suitesto exclude cipher suites

not supported by the cryptolib used by the OTP crypto application. That is calling sdl:filter_cipher_suites(Suites, [])
will be equivalent to only applying the filters for cryptolib support.

format error(Reason :: {error, Reason}) -> string()
Types.

Reason = any()
Presents the error returned by an SSL function as a printable string.

getopts(SslSocket, OptionNames) ->

{ok, [gen tcp:option()]} | {error, reason()}
Types.

Ericsson AB. All Rights Reserved.: Secure Socket Layer | 53

ssl

SslSocket = sslsocket()
OptionNames = [gen tcp:option_name()]
Gets the values of the specified socket options.

getstat(SslSocket) -> {ok, OptionValues} | {error, inet:posix()}

getstat(SslSocket, Options) ->
{ok, OptionValues} | {error, inet:posix()}

Types.

SslSocket = sslsocket()

Options = [inet:stat option()]

OptionValues = [{inet:stat option(), integer()}]
Gets one or more statistic options for the underlying TCP socket.

See inet:getstat/2 for statistic options description.

handshake(HsSocket) ->
{ok, SslSocket} |
{ok, SslSocket, Ext} |
{error, Reason}

handshake(HsSocket, Timeout) ->
{ok, SslSocket} |
{ok, SslSocket, Ext} |
{error, Reason}

Types:
HsSocket = sslsocket()
Timeout = timeout()
SslSocket = sslsocket()
Ext = protocol extensions()
Reason = closed | timeout | error_alert()

Performsthe TLS/DTLS server-side handshake.
Returnsanew TLS/DTLS socket if the handshake is successful.

If theoptionact i veissettoonce,t r ue or aninteger value, the process owning the sslsocket will receive messages
of type active_ msgs()

handshake(Socket, Options) ->
{ok, SslSocket} |
{ok, SslSocket, Ext} |
{error, Reason}
handshake(Socket, Options, Timeout) ->
{ok, SslSocket} |
{ok, SslSocket, Ext} |
{error, Reason}

Types:

54 | Ericsson AB. All Rights Reserved.: Secure Socket Layer

ssl

Socket = socket() | sslsocket()

SslSocket = sslsocket()

Options = [server option()]

Timeout timeout ()

Ext = protocol extensions()

Reason = closed | timeout | {options, any()} | error_alert()

If Socket isaordinary socket () : upgradesagen_t cp, or equivalent, socket to an SSL socket, that is, performs
the TL S server-side handshake and returns a TL S socket.

The Socket shall be in passive mode ({active, false}) before calling this function or else the behavior of this
function is undefined.

If Socket isan sdsocket() : provides extra TLS/DTLS options to those specified in listen/2 and then performs the
TLS/DTLS handshake. Returnsanew TLS/DTLS socket if the handshake is successful.

If option { handshake, hel | o} isspecified the handshake is paused after receiving the client hello message and
the success responseis{ ok, Ssl| Socket, Ext} instead of { ok, Ssl Socket}. Thereafter the handshakeis
continued or canceled by calling handshake_conti nue/ 3 or handshake cancel /1

If theoptionact i veissettoonce,t r ue or aninteger value, the process owning the sslsocket will receive messages
of type active_ msgs()

handshake cancel(Sslsocket :: #sslsocket{}) -> any()
Cancel the handshake with afatal USER_CANCELED aert.

handshake continue(HsSocket, Options) ->
{ok, SslSocket} | {error, Reason}

handshake continue(HsSocket, Options, Timeout) ->
{ok, SslSocket} | {error, Reason}

Types:
HsSocket = sslsocket()
Options = [tls client option() | tls server option()]
Timeout = timeout()
Ss1Socket = sslsocket()
Reason = closed | timeout | error_alert()

Continue the TL S handshake possiby with new, additional or changed options.

listen(Port, Options) -> {ok, ListenSocket} | {error, reason()}
Types.

Port = inet:port number()

Options = [tls _server option()]

ListenSocket = sslsocket()
Creates an SSL listen socket.

Ericsson AB. All Rights Reserved.: Secure Socket Layer | 55

ssl

negotiated protocol(SslSocket) -> {ok, Protocol} | {error, Reason}
Types.

Ss1Socket = sslsocket()

Protocol = binary()

Reason = protocol not negotiated

Returns the protocol negotiated through ALPN or NPN extensions.

peercert(SslSocket) -> {ok, Cert} | {error, reason()}
Types.

Ss1Socket = sslsocket()

Cert = binary()

The peer certificate is returned as a DER-encoded binary. The certificate can be decoded with
public_key:pkix_decode cert/2

peername(SslSocket) -> {ok, {Address, Port}} | {error, reason()}
Types:

Ss1Socket = sslsocket()

Address = inet:ip address()

Port = inet:port number()

Returns the address and port number of the peer.

prepend cipher suites(Preferred, Suites) -> ciphers()
Types:
Preferred = ciphers() | cipher_filters()
Suites = ciphers()
Make Pr ef er r ed suites become the most preferred suitesthat is put them at the head of the cipher suitelist Sui t es

after removing them from Sui t es if present. Pr ef er r ed may be alist of cipher suitesor alist of filtersin which
case thefiltersare use on Sui t es to extract the preferred cipher list.

prf(SslSocket, Secret, Label, Seed, WantedLength) ->
{ok, binary()} | {error, reason()}

Types.
SslSocket = sslsocket()
Secret = binary() | master_secret
Label = binary()
Seed = [binary() | prf random()]
WantedLength = integer() >= 0

Usesthe Pseudo-Random Function (PRF) of aTL S session to generate extrakey material. It either takes user-generated
valuesfor Secr et and Seed or atoms directing it to use a specific value from the session security parameters.

recv(SslSocket, Length) -> {ok, Data} | {error, reason()}

recv(SslSocket, Length, Timeout) -> {ok, Data} | {error, reason()}
Types:

56 | Ericsson AB. All Rights Reserved.: Secure Socket Layer

ssl

SslSocket = sslsocket()
Length = integer()
Data = binary() | list() | HttpPacket
Timeout = timeout()
HttpPacket = any()
See thedescription of Ht t pPacket inerl ang: decode_packet/ 3 in ERTS
Receives a packet from a socket in passive mode. A closed socket isindicated by return value{ er r or, cl osed}.

Argument Lengt h is meaningful only when the socket isin mode r aw and denotes the number of bytes to read. If
Lengt h =0, al available bytesarereturned. If Lengt h >0, exactly Lengt h bytesarereturned, or an error; possibly
discarding lessthan Lengt h bytes of data when the socket gets closed from the other side.

Optional argument Ti neout specifies atime-out in milliseconds. The default valueisi nfinity.

renegotiate(SslSocket) -> ok | {error, reason()}
Types:
SslSocket = sslsocket()
Initiates a new handshake. A notablereturn valueis{error, renegoti ati on_rej ect ed} indicating that the

peer refused to go through with the renegotiation, but the connection is still active using the previously negotiated
Session.

update keys(SslSocket, Type) -> ok | {error, reason()}
Types:
SslSocket = sslsocket()
Type = write | read write
There are cryptographic limits on the amount of plaintext which can be safely encrypted under a given set of keys.

If the amount of data surpasses those limits, a key update is triggered and a new set of keys are installed. See also
the option key_update at.

This function can be used to explicitly start a key update on a TLS 1.3 connection. There are two types of the key
update: if Typeis set to write, only the writing key is updated; if Typeis set to read_write, both the reading and
writing keys are updated.

send(Ss1Socket, Data) -> ok | {error, reason()}
Types:

Ss1Socket = sslsocket()

Data = iodata()
Writes Dat a to Ssl Socket .

A notablereturn valueis{ error, cl osed} indicating that the socket is closed.

setopts(SslSocket, Options) -> ok | {error, reason()}
Types.

SslSocket = sslsocket()

Options = [gen tcp:option()]
Sets options according to Opt i ons for socket Ssl Socket .

Ericsson AB. All Rights Reserved.: Secure Socket Layer | 57

ssl

shutdown(Ss1Socket, How) -> ok | {error, reason()}
Types:
Ss1lSocket = sslsocket()
How = read | write | read write
Immediately closes a socket in one or two directions.
How == wri t e means closing the socket for writing, reading from it is still possible.

To be able to handle that the peer has done a shutdown on the write side, option { exi t _on_cl ose, fal se}
isuseful.

ssl accept(SslSocket) -> ok | {error, Reason}

ssl accept(Socket, TimeoutOrOptions) ->
ok | {ok, sslsocket()} | {error, Reason}

Types:
Socket = sslsocket() | socket()
TimeoutOrOptions = timeout() | [tls server option()]
Reason = timeout | closed | {options, any()} | error_alert()

Deprecated in OTP 21, use handshake/[1,2] instead.

| handshake/[1,2] always returns a new socket.

ssl accept(Socket, Options, Timeout) ->
ok | {ok, sslsocket()} | {error, Reason}
Types:
Socket = sslsocket() | socket(
Options = [tls server option()
Timeout = timeout()
Reason = timeout | closed | {options, any()} | error_alert()

Deprecated in OTP 21, use handshake/[2,3] instead.

| handshake/[2,3] aways returns a new socket.

)
]

sockname (SslSocket) -> {ok, {Address, Port}} | {error, reason()}
Types:

Ss1Socket = sslsocket()

Address = inet:ip address()

Port = inet:port number()

Returns the local address and port number of socket Ssl Socket .

start() -> ok | {error, reason()}
start(Type :: permanent | transient | temporary) ->

58 | Ericsson AB. All Rights Reserved.: Secure Socket Layer

ssl

ok | {error, reason()}
Starts the SSL application. Default typeist enpor ar y.

stop() -> ok
Stops the SSL application.

str _to suite(CipherSuiteName) -> erl cipher suite()

Types:
CipherSuiteName =
string() |
{error, {not recognized, CipherSuiteName :: string()}}

Convertsan RFC or OpenSSL name string to an erl_cipher_suite() Returns an error if the cipher suiteis not supported
or the nameis not avalid cipher suite name.

suite to openssl str(CipherSuite) -> string()
Types:
CipherSuite = erl cipher suite()
Converts erl_cipher_suite() to OpenSSL name string.
PRE TLS-1.3 these names differ for RFC names

suite to str(CipherSuite) -> string()
Types:

CipherSuite = erl cipher suite()
Convertserl_cipher_suite() to RFC name string.

transport accept(ListenSocket) ->
{ok, SslSocket} | {error, reason()}

transport accept(ListenSocket, Timeout) ->
{ok, SslSocket} | {error, reason()}

Types:
ListenSocket = sslsocket()
Timeout = timeout()
SslSocket = sslsocket()
Accepts an incoming connection request on alisten socket. Li st enSocket must be asocket returned from listen/2.

The socket returned is to be passed to handshake/[2,3] to complete handshaking, that is, establishing the TLS/DTLS
connection.

Most API functions require that the TLS/DTL S connection is established to work as expected. |

The accepted socket inherits the options set for Li st enSocket in listen/2.

The default value for Ti meout isi nfinity. If Ti nmeout is specified and no connection is accepted within the
giventime, {error, timeout} isreturned

Ericsson AB. All Rights Reserved.: Secure Socket Layer | 59

ssl

versions() -> [VersionInfo]
Types.
VersionInfo =
{ssl app, string()} |
{supported | available | implemented, [tls version()1} |
{supported dtls | available dtls | implemented dtls,
[dtls version()1}

Listsinformation, mainly concerning TLS/DTLS versions, in runtime for debugging and testing purposes.

app_vsn
The application version of the SSL application.
supported
TL S versions supported with current application environment and crypto library configuration. Overridden
by aversion option on connect/[2,3,4], listen/2, and sd_accept/[1,2,3]. For the negotiated TL S version, see
connection_information/1 .
supported_dtls
DTLS versions supported with current application environment and crypto library configuration. Overridden
by aversion option on connect/[2,3,4], listen/2, and sd_accept/[1,2,3]. For the negotiated DTL S version, see
connection_information/1 .
avai |l abl e
All TLS versions supported with the linked crypto library.
avail abl e _dtls
All DTLS versions supported with the linked crypto library.
i mpl enent ed
All TLS versions supported by the SSL application if linked with a crypto library with the necessary support.
i npl enented _dtls
All DTLS versions supported by the SSL application if linked with a crypto library with the necessary support.

SEE ALSO
inet(3) and gen_tcp(3) gen _udp(3)

60 | Ericsson AB. All Rights Reserved.: Secure Socket Layer

ssl_crl_cache

ssl_crl_cache

Erlang module

Implements an internal CRL (Certificate Revocation List) cache. In addition to implementing the sdl_crl_cache api
behaviour the following functions are available.

Data Types

DATA TYPES

crl src() =
{file, file:filename()} | {der, public key:der encoded()}

uri() = uri string:uri string()
Exports

delete(Entries) -> ok | {error, Reason}
Types.

Entries = crl _src()]}

Reason = crl _reason()

Delete CRLs from the ssl applications local cache.

insert(CRLSrc) -> ok | {error, Reason}
insert(URI, CRLSrc) -> ok | {error, Reason}

Types.
CRLSrc = crl _src()]}
URI = uri()

Reason = term)
Insert CRLs, available to fetch on DER format from URI , into the sdl applications local cache.

Ericsson AB. All Rights Reserved.: Secure Socket Layer | 61

ssl_crl_cache_api

ssl_crl_cache_api

Erlang module

When TL S performs certificate path validation according to RFC 5280 it should a so perform CRL validation checks.
To enable the CRL checks the application needs accessto CRLs. A database of CRLs can be set up in many different
ways. This module provides the behavior of the APl needed to integrate an arbitrary CRL cache with the erlang ssl
application. It isaso used by the application itself to provide a simple default implementation of a CRL cache.

Data Types
crl _cache ref() = any()
Reference to the CRL cache.
dist point() = #'DistributionPoint'{}
For description see X509 certificates records
logger _info() =
{logger:level(),

Report :: #{description => string(), reason => term()},
logger:metadata()}

Information for ssl applications use of Logger(3)

Exports

fresh crl(DistributionPoint, CRL) -> FreshCRL
fresh crl(DistributionPoint, CRL) -> FreshCRL | {LoggerInfo, FreshCRL}
Types:

Di stributionPoint = dist_point()

CRL = [public_key:der_encoded()]

FreshCRL = [public_key: der_encoded()]

Loggerinfo = {logger, |ogger_info() }}

fun fresh_crl/2 will beused asinput option updat e_cr | to public_key:pkix_crls validate/3
Itis possible to return logger info that will be used by the TL S connection to produce log events.

lookup(DistributionPoint, Issuer, DbHandle) -> not available | CRLs |
{LoggerInfo, CRLs}

lookup(DistributionPoint, Issuer, DbHandle) -> not available | CRLs
lookup(DistributionPoint, DbHandle) -> not available | CRLs
Types:

Di stributionPoint = dist_point()

| ssuer = public_key:issuer_nane()

DbHandl e = crl _cache_ref ()

CRLs = [public_key: der_encoded()]

Loggerinfo = {l ogger, logger_info() }}

62 | Ericsson AB. All Rights Reserved.: Secure Socket Layer

href

ssl_crl_cache_api

Lookup the CRLs belonging to the distribution point Di st ri buti onpoi nt . This function may choose to only
look in the cache or to follow distribution point links depending on how the cache is administrated.

Thel ssuer argument contains the issuer name of the certificate to be checked. Normally the returned CRL should
be issued by this issuer, except if the cRLI ssuer field of Di stri buti onPoi nt hasavalue, in which case that
value should be used instead.

In an earlier version of this API, thel ookup function received two arguments, omitting | ssuer . For compatibility,
thisis still supported: if thereisno| ookup/ 3 function in the callback module, | ookup/ 2 iscalled instead.

It is possible to return logger info that will be used by the TL S connection to produce log events.

select(Issuer, DbHandle) -> CRLs | {LoggerInfo, CRLs}
select(Issuer, DbHandle) -> CRLs
Types:
| ssuer = public_key:issuer_nane() | list()
DbHandl e = cache_ref ()
Loggerinfo = {l ogger, |ogger_info() }
Select the CRLs in the cache that are issued by | ssuer unless the value is a list of so called general names, see
X509 certificates records, originating form #' Di st ri buti onPoi nt' . cRLi ssuer and representing different

mechanism to obtain the CRLs. The cache callback needs to use the appropriate entry to retrive the CRLS or return
an empty list if it does not exist.

It is possible to return logger info that will be used by the TL S connection to produce log events.

Ericsson AB. All Rights Reserved.: Secure Socket Layer | 63

ssl_session_cache_api

ssl_session_cache_api

Erlang module

Definesthe API for the TL S session cache so that the data storage scheme can be replaced by defining a new callback
module implementing this API.

Data Types

session_cache ref()
session_cache key()

any()
{partial key(), ssl:session id()}

A key to an entry in the session cache.

partial key()

The opaque part of the key. Does not need to be handled by the callback.
session()

The session data that is stored for each session.

Exports

delete(Cache, Key) ->

Types:
Cache = session_cache_ref ()
Key = session_cache_key()

Deletes a cache entry. Isonly called from the cache handling process.

foldl(Fun, AccO, Cache) -> Acc
Types.
Fun = fun()
AccO = Acc = term)
Cache = session_cache_ref()
CdlsFun(El em Accl n) on successive elements of the cache, starting with Accl n == AccO. Fun/ 2 must

return a new accumulator, which is passed to the next call. The function returns the fina value of the accumulator.
AccO isreturned if the cache is empty.

init(Args) -> Cache
Types:
Cache = session_cache_ref()
Args = proplists:proplist()
Includes property {rol e, client | server}. Currently thisisthe only predefined property, there can aso be
user-defined properties. See also application environment variable session_cb_init_args.

Performs possible initializations of the cache and returns a reference to it that is used as parameter to the other AP
functions. Is called by the cache handling processesi ni t function, hence putting the same requirements on it as a
normal processi ni t function. This function is called twice when starting the SSL application, once with the role
client and once with the role server, as the SSL application must be prepared to take on both roles.

64 | Ericsson AB. All Rights Reserved.: Secure Socket Layer

ssl_session_cache_api

lookup(Cache, Key) -> Entry

Types.
Cache = session_cache_ref()
Key = session_cache_key()
Session = session() | undefined

Looks up a cache entry. Isto be callable from any process.

select session(Cache, PartialKey) -> [Session]
Types.

Cache = session_cache_ref()

Partial Key = partial _key()

Session = session()

Selects sessions that can be reused. Isto be callable from any process.

size(Cache) -> integer()
Types:
Cache = session_cache_ref()

Returnsthe number of sessionsin the cache. If size exceeds the maximum number of sessions, the current cache entries
will beinvalidated regardless of their remaining lifetime. Is to be callable from any process.

terminate(Cache) ->

Types.
Cache = session_cache _ref()
Asreturned by init/0

Takes care of possible cleanup that is needed when the cache handling process terminates.

update(Cache, Key, Session) ->
Types:
Cache = session_cache_ref()
Key = session_cache_key()
Session = session()

Caches anew session or updates an already cached one. Is only called from the cache handling process.

Ericsson AB. All Rights Reserved.: Secure Socket Layer | 65

	Secure Socket Layer
	SSL User's Guide
	Introduction
	Purpose
	Prerequisites

	TLS/DTLS and TLS Predecessor, SSL
	Security Overview
	Data Privacy and Integrity
	Digital Certificates
	Peer Authentication
	TLS Sessions

	Using SSL application API
	Setting up Connections
	Minimal Example
	Upgrade Example - TLS only

	Customizing cipher suites
	Using an Engine Stored Key
	Session Tickets and Session Resumption in TLS 1.3
	Anti-Replay Protection in TLS 1.3

	Using TLS for Erlang Distribution
	Building Boot Scripts Including the SSL Application
	Specifying Distribution Module for net_kernel
	Specifying TLS Options
	Specifying TLS Options (Legacy)
	Setting up Environment to Always Use TLS (Legacy)
	Using TLS distribution over IPv6

	Standards Compliance
	Purpose
	Common (pre TLS 1.3)
	Common
	SSL 2.0
	SSL 3.0
	TLS 1.0
	TLS 1.1
	TLS 1.2
	DTLS 1.0
	DTLS 1.2
	DTLS 1.3
	TLS 1.3

	Reference Manual
	ssl
	ssl
	append_cipher_suites/2
	cipher_suites/0
	cipher_suites/1
	cipher_suites/2
	cipher_suites/3
	eccs/0
	eccs/1
	clear_pem_cache/0
	connect/2
	connect/3
	connect/3
	connect/4
	close/1
	close/2
	controlling_process/2
	connection_information/1
	connection_information/2
	filter_cipher_suites/2
	format_error/1
	getopts/2
	getstat/1
	getstat/2
	handshake/1
	handshake/2
	handshake/2
	handshake/3
	handshake_cancel/1
	handshake_continue/2
	handshake_continue/3
	listen/2
	negotiated_protocol/1
	peercert/1
	peername/1
	prepend_cipher_suites/2
	prf/5
	recv/2
	recv/3
	renegotiate/1
	update_keys/2
	send/2
	setopts/2
	shutdown/2
	ssl_accept/1
	ssl_accept/2
	ssl_accept/3
	sockname/1
	start/0
	start/1
	stop/0
	str_to_suite/1
	suite_to_openssl_str/1
	suite_to_str/1
	transport_accept/1
	transport_accept/2
	versions/0

	ssl_crl_cache
	delete/1
	insert/1
	insert/2

	ssl_crl_cache_api
	fresh_crl/2
	fresh_crl/2
	lookup/3
	lookup/3
	lookup/2
	select/2
	select/2

	ssl_session_cache_api
	delete/2
	foldl/3
	init/1
	lookup/2
	select_session/2
	size/1
	terminate/1
	update/3

