ERLANG

Inets

Copyright © 1997-2020 Ericsson AB. All Rights Reserved.
inets 7.3

September 22, 2020

Copyright © 1997-2020 Ericsson AB. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance
with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless
required by applicable law or agreed to in writing, software distributed under the License is distributed on an
"AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See

the License for the specific language governing permissions and limitations under the License. Ericsson AB. All
Rights Reserved..

September 22, 2020

1.1 Introduction

1 Inets User's Guide

Thel net s application provides a set of Internet-related services as follows:
e AnHTTPclient and server
The HTTP client and server are HTTP 1.1 compliant as defined in RFC 2616.

1.1 Introduction

1.1.1 Purpose

| net s isacontainer for Internet clients and serversincluding the following:
* AnHTTPclient and server

The HTTP client and server are HTTP 1.1 compliant as defined in RFC 2616.

1.1.2 Prerequisites

It is assumed that the reader is familiar with the Erlang programming language, concepts of OTP, and has a basic
understanding of and HTTP protocaol.

1.2 Inets

1.2.1 Service Concept

Each client and server in| net s isviewed as a service. Services can be configured to be started at application startup
or dynamically in runtime. Torun | net s as adistributed application that handles application failover and takeover,
configure the services to be started at application startup. When starting the | net s application, the | net s top
supervisor starts a number of subsupervisors and worker processes for handling the provided services. When starting
services dynamically, new children are added to the supervision tree, unless the service is started with the standalone
option. In this case the service is linked to the calling process and al OTP application features, such as soft upgrade,
arelost.

Services to be configured for startup at application startup are to be put into the Erlang node configuration file on
the following form:

[{inets, [{services, ListofConfiguredServices}]}].

For details of what to put in the list of configured services, see the documentation for the services to be configured.

1.3 HTTP Client

1.3.1 Configuration

The HTTP client default profileis started when the | net s application is started and is then available to all processes
on that Erlang node. Other profiles can also be started at application startup, or profiles can be started and stopped
dynamically in runtime. Each client profile spawnsanew processto handle each request, unless a persi stent connection

Ericsson AB. All Rights Reserved.: inets | 1

href
href

1.3 HTTP Client

can be used with or without pipelining. The client adds ahost header and an empty t e header if there are no such
headers present in the request.

The client supports I Pv6 as long as the underlying mechanisms also do so.

Thefollowing isto be put in the Erlang node application configuration file to start a profile at application startup:

[{inets, [{services, [{httpc, PropertyList}1}1}]

For valid properties, see httpc(3).

1.3.2 Getting Started

Start | net s:

1 > inets:start().
ok

The following calls use the default client profile. Use the proxy " www pr oxy. nyconpany. com 8000" , except
from requests to localhost. This appliesto al the following requests.

Example:
2 > httpc:set options([{proxy, {{"www-proxy.mycompany.com", 8000},
["localhost"]}}1).
ok

The following is an ordinary synchronous request:

3 > {ok, {{Version, 200, ReasonPhrase}, Headers, Body}} =
httpc:request(get, {"http://www.erlang.org", [1}, [1, []).

With al the default values presented, a get request can also be written as follows:

4 > {ok, {{Version, 200, ReasonPhrase}, Headers, Body}} =
httpc:request("http://www.erlang.org").

Thefollowing is an ordinary asynchronous request:

5 > {ok, RequestId} =
httpc:request(get, {"http://www.erlang.org", [1}, [1, [{sync, false}l).

Theresult issent tothe calling processas{ htt p, {Reqestld, Result}}.

In this case, the calling process is the shell, so the following result is received:

6 > receive {http, {RequestId, Result}} -> ok after 500 -> error end.
ok

This sends a request with a specified connection header:
7 > {ok, {{NewVersion, 200, NewReasonPhrase}, NewHeaders, NewBody}} =
httpc:request(get, {"http://www.erlang.org", [{"connection", "close"}1},
[1, .

This sends an HTTP request over a unix domain socket (experimental):

8 > httpc:set options([{ipfamily, local},
{unix_socket,"/tmp/unix_socket/consul http.sock"}]).

9 > {ok, {{NewVersion, 200, NewReasonPhrase}, NewHeaders, NewBody}} =
httpc:request(put, {"http:///v1l/kv/foo", [1, [], "hello"}, [1, [1).

2 | Ericsson AB. All Rights Reserved.: inets

1.4 HTTP server

Start an HTTP client profile:

10 > {ok, Pid} = inets:start(httpc, [{profile, foo}]).
{ok, <0.45.0>}

The new profile has no proxy settings, so the connection is refused:

11 > httpc:request("http://www.erlang.org", foo).
{error, econnrefused}

Stop the HTTP client profile:

12 > inets:stop(httpc, foo).
ok

Alternative way to stop the HTTP client profile:

13 > inets:stop(httpc, Pid).
ok

1.4 HTTP server

1.4.1 Configuration

The HTTP server, also referred to as httpd, handles HTTP requests as described in RFC 2616 with afew exceptions,
such as gateway and proxy functionality. The server supports IPv6 as long as the underlying mechanisms also do so.

The server implements numerous features, such as:

e Secure Sockets Layer (SSL)

e Erlang Scripting Interface (ESI)

e Common Gateway Interface (CGI)

e User Authentication (using Mnesia, Dets or plain text database)

e Common Logfile Format (with or without disk_log(3) support)

* URL Aliasing

e Action Mappings

» Directory Listings

The configuration of the server is provided as an Erlang property list.

Asof I net s 5.0the HTTP server is an easy to start/stop and customize web server providing the most basic web

server functionality. Inetsis designed for embedded systems and if you want a full-fledged web server there are other
erlang open source alternatives.

Almost all server functionality has been implemented using an especialy crafted server API, which is described in
the Erlang Web Server API. This API can be used to enhance the core server functionality, for example with custom
logging and authentication.

The following is to be put in the Erlang node application configuration file to start an HTTP server at application
startup:

[{inets, [{services, [{httpd, [{proplist file,
"/var/tmp/server root/conf/8888 props.conf"}1},
{httpd, [{proplist file,
"/var/tmp/server root/conf/8080 props.conf"}1}1}1}1.

The server is configured using an Erlang property list. For the available properties, see httpd(3).

Ericsson AB. All Rights Reserved.: inets | 3

href

1.4 HTTP server

The available configuration properties are as follows:

httpd service() -> {httpd, httpd()}

httpd() -> [httpd config()]

httpd config() -> {proplist file, file()}
{debug, debug()} |
{accept timeout, integer()}

debug() disable | [debug options()]

debug options() -> {all functions, modules()} |
{exported functions, modules()} |
{disable, modules()}

modules () -> [atom()]

\

Here:
{proplist_file, file()}
File containing an Erlang property list, followed by afull stop, describing the HTTP server configuration.
{debug, debug()}
Can enable trace on all functions or only exported functions on chosen modules.
{accept tineout, integer()}
Sets the wanted time-out value for the server to set up arequest connection.

1.4.2 Getting Started

Start | net s:

1 > inets:start().
ok

Start an HTTP server with minimal required configuration. If you specify port 0, an arbitrary available port is used,
and you can use function i nf o to find which port number that was picked:

2 > {ok, Pid} = inets:start(httpd, [{port, 0O},

{server name,"httpd test"}, {server root,"/tmp"},
{document_root,"/tmp/htdocs"}, {bind address, "localhost"}]).
{ok, 0.79.0}

Cdli nf o:

3 > httpd:info(Pid).

[{mime types, [{"html", "text/html"},{"htm", "text/html"}1},
{server name, "httpd test"},

{bind address, {127,0,0,1}},

{server root,"/tmp"},

{port,59408},

{document root,"/tmp/htdocs"}]

Reload the configuration without restarting the server:

4 > httpd:reload config([{port, 59408},
{server name,"httpd test"}, {server root,"/tmp/www test"},
{document root,"/tmp/www test/htdocs"},
{bind address, "localhost"}], non disturbing).

ok.

4 | Ericsson AB. All Rights Reserved.: inets

1.4 HTTP server

port and bi nd_addr ess cannot be changed. Clients trying to access the server during the reload get a service
temporary unavailable answer.

5 > httpd:info(Pid, [server root, document root]).
[{server root,"/tmp/www test"},{document root,"/tmp/www test/htdocs"}]

6 > ok = inets:stop(httpd, Pid).
Alternative:
6 > ok = inets:stop(httpd, {{127,0,0,1}, 59408}).

Notice that bi nd_addr ess must be the |P address reported by function i nf o and cannot be the hostname that is
allowed when putting in bi nd_addr ess.

1.4.3 Dynamic Web Pages

I nets HTTP server provides two ways of creating dynamic web pages, each with its own advantages and
disadvantages:

CGI scripts

Common Gateway Interface (CGI) scripts can be written in any programming language. CGI scripts are
standardized and supported by most web servers. The drawback with CGI scripts is that they are resource-
intensive because of their design. CGI requires the server to fork a new OS process for each executable it needs
to start.

ESI-functions

Erlang Server Interface (ESI) functions provide atight and efficient interface to the execution of Erlang functions.
This interface, on the other hand, is| net s specific.

CGI Version 1.1, RFC 3875

Themodulenod_cgi enablesexecution of CGI scriptson the server. A file matching the definition of a ScriptAlias
config directiveistreated asa CGI script. A CGI script is executed by the server and its output isreturned to the client.

The CGlI script response comprises a message header and a message body, separated by a blank line. The message
header contains one or more header fields. The body can be empty.

Example:

"Content-Type:text/plain\nAccept-Ranges:none\n\nsome very
plain text"

The server interprets the message headers and most of them are transformed into HTTP headers and sent back to the
client together with the message-body.

Support for CGI-1.1 isimplemented in accordance with RFC 3875.
ESI

The Erlang server interface isimplemented by module nod_esi .
ERL Scheme

The erl scheme is designed to mimic plain CGlI, but without the extra overhead. An URL that calls an Erlang er |
function has the following syntax (regular expression):

Ericsson AB. All Rights Reserved.: inets | 5

href
href

1.4 HTTP server

http://your.server.org/***/Module[:/]1Function(?QueryString|/PathInfo)

*** depends on how the ErlScriptAlias config directive has been used.

The module Modul e referred to must be found in the code path, and it must define a function Funct i on with an
arity of two or three. It is preferable to implement a function with arity three, asit permits to send chunks of the web
page to the client during the generation phase instead of first generating the whole web page and then sending it to
the client. The option to implement a function with arity two is only kept for backwards compatibility reasons. For
implementation details of the ESI callback function, see mod_esi(3).

1.4.4 Logging

Three types of logs are supported: transfer logs, security logs, and error logs. The de-facto standard Common Logfile
Format is used for the transfer and security logging. There are numerous statistics programs available to anayze
Common Logfile Format. The Common Logfile Format looks as follows:

remotehost rfc931 authuser [date] " request” status bytes
Here:

remotehost
Remote hostname.
rfco3l
The client remote username (RFC 931).
authuser
The username used for authentication.
[date]
Date and time of the request (RFC 1123).
"request”
The request line exactly asit came from the client (RFC 1945).
status
The HTTP status code returned to the client (RFC 1945).
bytes
The content-length of the document transferred.

Internal server errors are recorded in the error log file. The format of thisfile isamore unplanned format than the logs
using Common Logfile Format, but conforms to the following syntax:

[date] accessto path failed for remotehost, reason: reason

1.4.5 Erlang Web Server API

The process of handling an HTTP request involves several steps, such as:

e Setting up connections, sending and receiving data.

* URI tofilename trandation.

» Authentication/access checks.

* Retrieving/generating the response.

* Logging.

To provide customization and extensibility of the request handling of the HT TP servers, most of these steps are handled
by one or more modules. These modules can be replaced or removed at runtime and new ones can be added. For each
request, all modules are traversed in the order specified by the module directive in the server configuration file. Some
parts, mainly the communication- related steps, are considered server core functionality and are not implemented using

the Erlang web server API. A description of functionality implemented by the Erlang webserver API is described in
Section Inets Web Server Modules.

6 | Ericsson AB. All Rights Reserved.: inets

href
href
href
href

1.4 HTTP server

A module can use data generated by previous modulesin the Erlang webserver APl modul e sequence or generate data
to be used by consecutive Erlang Web Server APl modules. This is possible owing to an internal list of key-value
tuples, referred to as interaction data.

I nteraction dataenforcesmodul e dependenciesand isto be avoided if possible. Thismeansthat the order of modules
in the modules property is significant.

API Description

Each module that implements server functionality using the Erlang web server API isto implement the following call
back functions:

e do/ 1 (mandatory) - the function called when arequest isto be handled
e load/2

e storel/2

e renove/l

The latter functions are needed only when new config directives are to be introduced. For details, see httpd(3).

1.4.6 Inets Web Server Modules

The convention is that all modules implementing some web server functionality has the name nmod_*. When
configuring the web server, an appropriate selection of these modulesisto be present in the module directive. Notice
that there are some interaction dependencies to take into account, so the order of the modules cannot be random.

mod_action - Filetype/Method-Based Script Execution

This module runs CGI scripts whenever afile of acertain type or HTTP method (see RFC 1945) is requested.
Usesthe following Erlang Web Server API interaction data:

* real _nane -frommod dlias.

Exports the following Erlang Web Server API interaction data, if possible:

{new_request uri, RequestURl}
An alternative Request URI has been generated.

mod_alias - URL Aliasing

The mod_alias module makes it possible to map different parts of the host file system into the document tree, that
is, creates aliases and redirections.

Exports the following Erlang Web Server APl interaction data, if possible:

{real _nane, Pat hDat a}
Pat hDat a isthe argument used for API function mod_alias: path/3.

mod_auth - User Authentication

The mod_auth(3) module provides for basic user authentication using textual files, Dets databases as well as Mnesia
databases.

Uses the following Erlang Web Server API interaction data:
e real _nane -frommod_dlias
Exports the following Erlang Web Server API interaction data:

Ericsson AB. All Rights Reserved.: inets | 7

href

1.4 HTTP server

{renmote_user, User}
The username used for authentication.

Mnesia As Authentication Database

If Mnesiais used as storage method, Mnesia must be started before the HTTP server. Thefirst time Mnesiais started,
the schema and the tables must be created before Mnesiais started. A simple example of a module with two functions
that creates and start Mnesiais provided here. Function f i r st _st art/ 0 isto be used the first time. It creates the
schemaandthetables. st ar t / 0 isto beused in consecutive startups. st ar t / 0 startsMnesiaand waitsfor thetables
to beinitiated. This function must only be used when the schema and the tables are already created.

-module(mnesia test).
-export([start/0,load data/0]).
-include lib("mod auth.hrl").

first start() ->

mnesia:create schema([node()]),
mnesia:start(),
mnesia:create table(httpd user,

[{type, bag},

{disc copies, [node()]},

{attributes, record info(fields,

httpd user)}l),

mnesia:create table(httpd group,

[{type, bag},
{disc_copies, [node()]},
{attributes, record info(fields,

httpd group)}l),
mnesia:wait for tables([httpd user, httpd group], 60000).

start() ->
mnesia:start(),
mnesia:wait for tables([httpd user, httpd group], 60000).

To create the Mnesia tables, we use two records defined in nod_aut h. hr |, so that file must be included.
first_start/ O createsaschemathat specifies on which nodes the databaseisto reside. Then it starts Mnesiaand
creates the tables. The first argument is the name of the tables, the second argument isalist of options of how to create
thetable, seemmesi a(3) , documentation for more information. Astheimplementation of thernrod_aut h_nmmesi a
savesonerow for each user, thetype must be bag. When the schemaand the tables are created, function mnesia:start/0
isused to start Mnesia and waits for the tables to be loaded. Mnesia uses the directory specified asmmesi a_di r at
startup if specified, otherwise Mnesia usesthe current directory. For security reasons, ensure that the Mnesiatablesare
stored outside the document tree of the HTTP server. If they are placed in the directory which it protects, clients can
download the tables. Only the Dets and Mnesia storage methods allow writing of dynamic user data to disk. pl ai n
isaread only method.

mod_cgi - CGI Scripts
This module handles invoking of CGI scripts.

mod_dir - Directories

This module generates an HTML directory listing (Apache-style) if a client sends aregquest for a directory instead of
afile. This module must be removed from the Modules config directive if directory listings is unwanted.

Uses the following Erlang Web Server API interaction data:
e real nane -frommod alias
Exports the following Erlang Web Server API interaction data:

{m nme_type, M neType}
The file suffix of theincoming URL mapped intoaM neType.

8 | Ericsson AB. All Rights Reserved.: inets

1.4 HTTP server

mod_disk log - Logging Using Disk_Log.

Standard logging using the "Common Logfile Format" and disk_log(3).
Usesthe following Erlang Web Server API interaction data:

e renpote_user -fromnod_auth

mod_esi - Erlang Server Interface

The mod_esi(3) module implements the Erlang Server Interface (ESI) providing atight and efficient interface to the
execution of Erlang functions.

Uses the following Erlang web server API interaction data:
e renote_user -fromnod_aut h
Exports the following Erlang web server API interaction data:
{m ne_type, M neType}
The file suffix of the incoming URL mapped intoaM neType
mod_get - Regular GET Requests

This module is responsible for handling GET requests to regular files. GET requests for parts of filesis handled by
nod_r ange.

Uses the following Erlang web server API interaction data:

* real _nane -frommod_dlias

mod_head - Regular HEAD Requests

Thismoduleisresponsiblefor handling HEAD requeststo regul ar files. HEAD requestsfor dynamic content ishandled
by each module responsible for dynamic content.

Uses the following Erlang Web Server API interaction data:
e real nane -frommod aias

mod_log - Logging Using Text Files.

Standard logging using the "Common L ogfile Format" and text files.
Uses the following Erlang Web Server API interaction data:

e renote_user -fromnod_aut h

mod_range - Requests with Range Headers

This module responses to requests for one or many ranges of afile. Thisis especially useful when downloading large
files, as a broken download can be resumed.

Notice that request for multiple parts of adocument report a size of zero to thelog file.
Usesthe following Erlang Web Server API interaction data:
e real nane -frommod_alias

mod_response_control - Requests with If* Headers

Thismodule controlsthat the conditionsin the requests are fulfilled. For example, arequest can specify that the answer
only isof interest if the content is unchanged since the last retrieval. If the content is changed, the range request is to
be converted to arequest for the whole file instead.

Ericsson AB. All Rights Reserved.: inets | 9

1.4 HTTP server

If a client sends more than one of the header fields that restricts the servers right to respond, the standard does not
specify how thisis to be handled. httpd(3) controls each field in the following order and if one of the fields does not
match the current state, the request is rejected with a proper response:

I f-nodified

I f-Unnodified

| f-Match

| f- Nomat ch

Uses the following Erlang Web Server API interaction data:

* real _name -frommod alias

Exports the following Erlang Web Server API interaction data:

{if_range, send file}
The conditions for the range request are not fulfilled. The response must not be treated as a range request,
instead it must be treated as an ordinary get request.

mod_security - Security Filter

Themod_security module serves as afilter for authenticated requests handled in mod_auth(3). It provides apossibility
to restrict users from access for a specified amount of time if they fail to authenticate severa times. It logs failed
authentication as well as blocking of users, and it calls a configurable callback module when the events occur.

Thereisalso an API to block or unblock users manually. This API can also list blocked users or users who have been
authenticated within a configurable amount of time.

mod_trace - TRACE Request

nmod_t r ace isresponsiblefor handling of TRACE requests. Traceisanew regquest method in HTTP/1.1. Theintended
use of trace requests is for testing. The body of the trace response is the request message that the responding web
server or proxy received.

10 | Ericsson AB. All Rights Reserved.: inets

1.4 HTTP server

2 Reference Manual

| net s isacontainer for an HTTP client and server.

Ericsson AB. All Rights Reserved.: inets | 11

inets

inets

Erlang module

This module provides the most basic API to the clients and servers that are part of the | net s application, such as
start and stop.

DATA TYPES

Type definitions that are used more than once in this module:
service() = ftpc | tftp | httpc | httpd
property() = atom()

Exports

services() -> [{Service, Pid}]

Types:
Service = service()
Pid = pid()

Returns alist of currently running services.

|Servicesstarted asst and_al one arenot listed. |

services info() -> [{Service, Pid, Info}]

Types.
Service = service()
Pid = pid()

Info = [{Option, Value}]
Option = property()
Value = term))

Returns alist of currently running services where each service is described by an[{ Opti on, Val ue}] list. The
information in the list is specific for each service and each service has probably its own info function that gives more
details about the service.

service names() -> [Service]
Types.
Service = service()

Returns alist of available service names.

start() ->
start(Type) -> ok | {error, Reason}
Types:

12 | Ericsson AB. All Rights Reserved.: inets

inets

Type = permanent | transient | tenporary
Startsthe | net s application. Default typeist enpor ar y. See also application(3).

start(Service, ServiceConfig) -> {ok, Pid} | {error, Reason}
start(Service, ServiceConfig, How) -> {ok, Pid} | {error, Reason}
Types:

Service = service()

ServiceConfig = [{Option, Value}]

Option = property()

Value = term)

How = inets | stand_alone - default is inets.

Dynamically startsan | net s service after the | net s application has been started.

Dynamically started services are not handled by application takeover and failover behavior when | net s isrun as
adistributed application. Nor are they automatically restarted when the | net s application isrestarted. Aslong as
thel net s application is operational, they are supervised and can be soft code upgraded.

A service started as st and_al one, that is, the service is not started as part of the | net s application, lose all
OTP application benefits, such as soft upgrade. The st and_al one-service is linked to the process that started
it. Usually some supervision functionality is still in place and in some sense the calling process becomes the top
supervisor.

stop() -> ok
Stopsthe |l net s application. See also application(3).

stop(Service, Reference) -> ok | {error, Reason}

Types:
Service = service() | stand_al one
Reference = pid() | term() - service-specified reference
Reason = term()

Stops a started service of the | net s application or takes down a st and_al one-service gracefully. When option
st and_al one isused in start, only the pid isavalid argument to stop.

SEE ALSO
httpc(3), httpd(3)

Ericsson AB. All Rights Reserved.: inets | 13

httpc

httpc

Erlang module

This module providesthe API to an HTTP/1.1 compatible client according to RFC 2616. Caching is not supported.

When starting the | net s application, a manager process for the default profile is started. The functions in this
API that do not explicitly use aprofile accesses the default profile. A profile keepstrack of proxy options, cookies,
and other options that can be applied to more than one request.

If the schemeht t ps isused, the SSL application must be started. When ht t ps links need to go through a proxy,
the CONNECT method extension to HTTP-1.1 is used to establish atunnel and then the connection is upgraded to
TLS. However, "TLS upgrade" according to RFC 2817is not supported.

Pipelining is only used if the pipeline time-out is set, otherwise persistent connections without pipelining are used.
That is, the client always waits for the previous response before sending the next request.

Some exampl es are provided in the Inets User's Guide.

DATA TYPES

Type definitions that are used more than once in this module:

bool ean() = true | false

string() =list of ASCII characters

request _id() = reference()

profile() = aton()

path() = string() representing afile path or directory path

i p_address() = Seetheinet(3) manual pagein Kernel.

socket _opt () = Seetheoptionsused by gen_tcp(3) gen_t cp(3) and ssl(3) connect(s)

HTTP DATA TYPES
Type definitions related to HTTP:
met hod() = head | get | put | post | trace | options | delete | patch
request ()
={url (), headers()}
[{url (), headers(), content_type(), body()}

url () = string() syntax according to the URI definition in RFC 3986, for example "http://
www. er | ang. or g"

14 | Ericsson AB. All Rights Reserved.: inets

href
href
href

httpc

Please note that httpc normalizes input URIs before internal processing and special care shall be taken when the
URI has percent ("%") characters. A percent serves as the indicator for percent-encoded octets and it must be
percent-encoded as "%25" for that octet to be used as data within the URI.

For example, in order to send an HTTP GET request with the URI http:/ /1 ocal host/foo%5bar,
the percent character must be percent-encoded when creating the request: htt pc: request ("http://
| ocal host/f oo%®2525bar").

status_line() = {http_version(), status_code(), reason_phrase()}
http_version() = string(),forexample, "HTTP/ 1. 1"
status_code() = integer()
reason_phrase() = string()
content _type() = string()
headers() = [header ()]
header () = {field(), value()}
field() = string()
val ue() = string()
body ()
=string() | binary()
|[{fun(accumnul ator())
-> body_processing result(), accunulator()}
|{chunki fy, fun(accunul ator())
-> body_processing result(), accumulator()}
body processing_result() = eof | {ok, iolist(), accumulator()}
accunul ator() = term)
filenanme() = string()
For more information about HTTP, see RFC 2616.

SSL DATA TYPES
See sd(3) for information about SSL options (ssl opti ons()).

HTTP CLIENT SERVICE START/STOP

An HTTP client can be configured to start when starting the | net s application or started dynamically in runtime by
caling the | net s application APl i nets: start(httpc, ServiceConfig) orinets:start(httpc,
Servi ceConfig, How),seeinets(3). The configuration options are as follows:

{profile, profile()}
Name of the profile, see DATA TYPES. This option is mandatory.

{data_dir, path()}
Directory where the profile can save persistent data. If omitted, al cookies are treated as session cookies.

Ericsson AB. All Rights Reserved.: inets | 15

href

httpc

The client can be stopped usingi net s: stop(httpc, Pid) orinets:stop(httpc, Profile).

Exports

cancel request(RequestId) ->

cancel request(RequestId, Profile) -> ok

Types:
Requestld = request_id() - A unique identifier as returned by request/4
Profile = profile() | pid()
When started st and_al one only the pid can be used.

Cancels an asynchronous HT TP request. Notice that this does not guarantee that the request response is not delivered.
Because it is asynchronous, the request can already have been completed when the cancellation arrives.

cookie header(Url) ->
cookie header(Url, Profile | Opts) -> header() | {error, Reason}
cookie header(Url, Opts, Profile) -> header() | {error, Reason}
Types:

Ul = url()

Opts = [cooki e_header _opt ()]

Profile = profile() | pid()

When started st and_al one.

cooki e_header _opt() = {ipv6_host_wi th _brackets, bool ean()}

Returns the cookie header that would have been sent when making a request to Ur | using profile Prof i | e. If no
profile is specified, the default profile is used.

Optioni pv6_host _wi t h_bracket dealswith how to parse |Pv6 addresses. For details, see argument Opt i ons
of request/[4,5].

get options(OptionItems) -> {ok, Values} | {error, Reason}
get options(OptionItems, Profile) -> {ok, Values} | {error, Reason}
Types:
Optionltens = all | [option_item()]
option_itenm() = proxy | https_proxy | nmax_sessions | keep_alive_tineout
max_keep_alive length | pipeline_timout | max_pipeline_|length | cookies
ipfamily | ip | port | socket_opts | verbose | unix_socket
Profile = profile() | pid()
When started st and_al one only the pid can used.
Val ues = [{option_item(), term)}]
Reason = term()

Retrieves the options currently used by the client.

info() -> list()
info(Profile) -> list()
Types:
Profile = profile() | pid()

16 | Ericsson AB. All Rights Reserved.: inets

httpc

When started st and_al one only the pid can be used.

Produces a list of miscellaneous information. Intended for debugging. If no profile is specified, the default profile
isused.

reset cookies() -> void()
reset cookies(Profile) -> void()
Types:
Profile = profile() | pid()
When started st and_al one only the pid can be used.

Resets (clears) the cookie database for the specified Pr of i | e. If no profileis specified the default profile is used.

request(Url) ->
request(Url, Profile) -> {ok, Result} | {error, Reason}
Types:
Ul = url()
Result = {status_line(), headers(), Body} | {status_code(), Body}
request _id()
Body = string() | binary()
Profile = profile() | pid()
When started st and_al one only the pid can be used.
Reason = term)

Equivalenttoht t pc: request (get, {Ul, [1}, [1, [1).

request (Method, Request, HTTPOptions, Options) ->

request(Method, Request, HTTPOptions, Options, Profile) -> {ok, Result} |
{ok, saved to file} | {error, Reason}

Types:
Met hod = net hod()
Request = request ()
HTTPOptions = http_options()
http_options() = [http_option()]
http option() = {tinmeout, tineout()} | {connect tineout, tineout()}
{ssl, ssloptions()} | {essl, ssloptions()} | {autoredirect, boolean()}

{proxy_auth, {userstring(), passwordstring()}} | {version, http_version()}
| {rel axed, bool ean()}

timeout () = integer() >= 0| infinity

Options = options()

options() = [option()]

option() = {sync, boolean()} | {stream streamto()} | {body_fornmat,
body format ()} | {full _result, boolean()} | {headers_as_is,

bool ean() | {socket opts, socket _opts()} | {receiver, receiver()}
{ipv6_host_with_brackets, bool ean()}

streamto() = none | self | {self, once} | filenane()
socket _opts() = [socket _opt()]
receiver() = pid() | function()/1 | {Mdule, Function, Args}

Ericsson AB. All Rights Reserved.: inets | 17

httpc

Modul e = atom()

Function = atom()

Args = list()

body_format() = string | binary

Result = {status_line(), headers(), Body} | {status_code(), Body} |
request _id()

Body = string() | binary()

Profile = profile() | pid()

When started st and_al one only the pid can be used.

Reason = term()

Sends an HTTP request. The function can be both synchronous and asynchronous. In the latter case, the function
returns{ ok, Request | d} and then theinformationisdeliveredtother ecei ver depending on that value.

HTTPoption (ht t p_opti on()) details:
ti meout
Time-out time for the request.
The clock starts ticking when the request is sent.
Timeisin milliseconds.
Defaultisi nfinity.
connect _ti nmeout
Connection time-out time, used during the initial request, when the client is connecting to the server.
Timeisin milliseconds.
Default isthe value of optiont i neout .
ssl
Thisisthe SSL/ TLS connectin configuration option.
Defaultsto[] . See sdl:connect/[2,3,4] for available options.
aut or edi r ect

The client automatically retrieves the information from the new URI and returns that as the result, instead of a
30X-result code.

For some 30X-result codes, automatic redirect is not allowed. In these cases the 30X -result is always returned.
Defaultist r ue.

proxy_aut h
A proxy-authorization header using the provided username and password is added to the request.

version

Can be used to make the client act asan HTTP/ 1. 0 or HTTP/ 0. 9 client. By default thisisan HTTP/ 1. 1
client. When using HTTP/ 1. O persistent connections are not used.

Default isthestring" HTTP/ 1. 1".

rel axed
If settot r ue, workarounds for known server deviations from the HTTP-standard are enabled.
Default isf al se.

18 | Ericsson AB. All Rights Reserved.: inets

httpc

Option (opt i on()) details:

sync
Option for the request to be synchronous or asynchronous.
Defaultist r ue.

stream

Streams the body of a 200 or 206 response to the calling process or to a file. When streaming to the calling
process using option sel f, the following stream messages are sent to that process. { htt p, {Request|d,

stream start, Headers}}, {http, {Requestld, stream BinBodyPart}}, and
{http, {Requestld, stream end, Headers}}.

When streaming to the calling processes using option { sel f, once}, thefirst message has an extra element,
thatis, {http, {Requestld, streamstart, Headers, Pid}}. Thisisthe processid to be used
asanargumentto ht t pc: st ream next/ 1 to trigger the next message to be sent to the calling process.

Notice that chunked encoding can add headers so that there are more headers in the st r eam _end message
than in st r eam st art . When streaming to a file and the request is asynchronous, the message { htt p,
{Request|d, saved to file}} issent.

Defaultisnone.

body_f or nat
Definesif the body isto be delivered as a string or binary. This option is only valid for the synchronous request.
Defaultisstri ng.

full _result

Definesif a"full result" isto be returned to the caller (that is, the body, the headers, and the entire status line)
or not (the body and the status code).

Defaultist r ue.
headers_as_is
Definesif the headers provided by the user are to be made lower case or to be regarded as case sensitive.

The HTTP standard requires them to be case insensitive. Use this feature only if there is no other way to
communicate with the server or for testing purpose. When this option is used, no headers are automatically added.
All necessary headers must be provided by the user.

Defaultisf al se.

socket _opts
Socket options to be used for this request.
Overrides any value set by function set_options.

Thevalidity of the optionsisnot checked by the HTTP client they are assumed to be correct and passed on to ssl
application and inet driver, which may reject them if they are not correct.

Persistent connections are not supported when setting the socket _opt s option. When socket _opt s is
not set the current implementation assumes the requests to the same host, port combination will use the same
socket options.

By default the socket options set by function set_options/[1,2] are used when establishing a connection.

Ericsson AB. All Rights Reserved.: inets | 19

httpc

recei ver

Defines how the client deliversthe result of an asynchronous request (sync hasthevaluef al se).
pi d()
Messages are sent to this processintheformat { ht t p, Repl yl nf o}.
function/1
Information is delivered to the receiver through calls to the provided fun Recei ver (Repl yI nf 0) .
{Modul e, Function, Args}
Information is delivered to the receiver through cals to the callback function appl y(Modul e,
Function, [Replylnfo | Args]).
In all of these cases, Repl yI nf o has the following structure:

{RequestId, saved to file}

{RequestId, {error, Reason}}

{RequestId, Result}

{RequestId, stream start, Headers}

{RequestId, stream start, Headers, HandlerPid}
{RequestId, stream, BinBodyPart}

{RequestId, stream end, Headers}

Default isthe pi d of the process calling the request function (sel f ()).
i pv6_host _wi th_brackets

Defines when parsing the Host-Port part of an URI with an |Pv6 address with brackets, if those brackets are to
beretained (t r ue) or stripped (f al se).

Defaultisf al se.

set options(Options) ->

set options(Options, Profile) -> ok | {error, Reason}

Types:
Options = [Option]
Option = {proxy, {Proxy, NoProxy}}
| {https_proxy, {Proxy, NoProxy}}
| {max_sessi ons, MaxSessi ons}
| {max_keep_alive_l ength, MaxKeepAlive}
| {keep_alive_tineout, KeepAliveTi neout}
| {max_pipeline_|l ength, MxPipeline}
| {pipeline_tinmeout, PipelineTimeout}
| {cookies, CookieMbde}
| {ipfamly, |pFamnly}
| {ip, |pAddress}
| {port, Port}

| {socket_opts, socket_opts()}

| {verbose, Verbosehbde}

| {unix_socket, UnixSocket}

Proxy = {Hostnane, Port}

20 | Ericsson AB. All Rights Reserved.: inets

httpc

Host name = string()

Example: "localhost" or "foo.bar.se”

Port = integer()

Example: 8080

NoPr oxy = [NoPr oxyDesc]

NoPr oxyDesc = Donai nDesc | HostName | | PDesc

Domai nDesc = "*. Domai n"

Example: "*.ericsson.se”

| pDesc = string()

Example: "134.138" or "[FEDC:BA98" (all IP addresses starting with 134.138 or FEDC:BA98),

"66.35.250.150" or "[2010:836B:4179::836B:4179]" (a complete IP address). pr oxy defaultsto
{undefined, []},thatis, noproxy isconfigured and htt ps_pr oxy defaultsto the value of pr oxy.

MaxSessi ons = integer()

Maximum number of persistent connections to a host. Default is 2.

MaxKeepAlive = integer()

Maximum number of outstanding requests on the same connection to a host. Default is 5.

KeepAl i veTi meout = integer()

If apersistent connectionisidle longer thanthekeep_al i ve_t i meout in milliseconds, the client closes the
connection. The server can aso have such atime-out but do not take that for granted. Default is 120000 (= 2
min).

MaxPi pel i ne = integer()

Maximum number of outstanding requests on a pipelined connection to a host. Default is 2.

Pi pel i neTi meout = integer()

If apersistent connection isidle longer than the pi pel i ne_t i meout in milliseconds, the client closes the
connection. Default is 0, which results in pipelining not being used.

Cooki eMbde = enabled | disabled | verify

If cookies are enabled, all valid cookies are automatically saved in the cookie database of the client manager. If
optionveri fy isused, functionst or e_cooki es/ 2 hasto be called for the cookies to be saved. Default is
di sabl ed.

IpFamily = inet | inet6 | |ocal
Defaultisi net .
| pAddress = i p_address()

If the host has several network interfaces, this option specifies which one to use. See gen_tcp:connect/3,4 for
details.

Port = integer()
Local port number to use. See gen_tcp:connect/3,4 for details.
socket _opts() = [socket _opt()]

The options are appended to the socket options used by the client. These are the default values when a
new request handler is started (for the initial connect). They are passed directly to the underlying transport
(gen_t cp or SSL) without verification.

Ver boseMode = fal se | verbose | debug | trace

Defaultisf al se. Thisoption is used to switch on (or off) different levels of Erlang trace on theclient. It isa
debug feature.

Profile = profile() | pid()
When started st and__al one only the pid can be used.

Ericsson AB. All Rights Reserved.: inets | 21

httpc

Uni xSocket = pat h()

Experimental option for sending HTTP requests over a unix domain socket. The value of uni x_socket

shall be the full path to a unix domain socket file with read/write permissions for the erlang process. Default is
undefi ned.

Sets options to be used for subsequent requests.

If possible, the client keepsits connections alive and uses persistent connections with or without pipeline depending
on configuration and current circumstances. The HT TP/1.1 specification does not provide aguideline for how many
requests that are ideal to be sent on a persistent connection. This depends much on the application.

A long queue of requests can cause a user-perceived delay, as earlier requests can take a long time to complete.
The HTTP/1.1 specification suggests a limit of two persistent connections per server, which is the default value
of option max_sessi ons.

The current implementation assumes the reguests to the same host, port combination will use the same socket
options.

store cookies(SetCookieHeaders, Url) ->
store cookies(SetCookieHeaders, Url, Profile) -> ok | {error, Reason}

Types:
Set Cooki eHeaders = headers() - where field = "set-cookie"
Ul = url()

Profile = profile() | pid()
When started st and_al one only the pid can be used.

Saves the cookies defined in Set Cooki eHeader s in the client profile cookie database. Call this function if option
cooki esissettoveri fy.If noprofileis specified, the default profileis used.

stream next(Pid) -> ok
Types:
Pid = pid()
Asreceivedinthestream start nessage
Triggers the next message to be streamed, that is, the same behavior as active ones for sockets.

which cookies() -> cookies()
which cookies(Profile) -> cookies()
Types.
Profile = profile() | pid()
When started st and_al one only the pid can be used.
cooki es() = [cookie_stores()]
cooki e _stores() = {cookies, cookies()} | {session_cookies, cookies()}
cooki es() = [cookie()]
cookie() = term)

Produces a list of the entire cookie database. Intended for debugging/testing purposes. If no profile is specified, the
default profileis used.

22 | Ericsson AB. All Rights Reserved.: inets

httpc

which sessions() -> session_info()
which sessions(Profile) -> session info()
Types:
Profile = profile() | pid()
When started st and__al one only the pid can be used.
session_info() = {[session()], [term()], [term()]}
session() =term) - Internal representation of a session
This function isintended for debugging only. It produces a slightly processed dump of the session database. The first
list of the session information tuple will contain session information on an internal format. The last two lists of the

session information tuple should always be empty if the code is working as intended. If no profile is specified, the
default profileis used.

SEE ALSO
RFC 2616, inets(3), gen_tcp(3), sd(3)

Ericsson AB. All Rights Reserved.: inets | 23

href

httpd

httpd

Erlang module

Animplementation of an HTTP 1.1 compliant web server, asdefined in RFC 2616. Provides web server start options,
administrative functions, and an Erlang callback API.

DATA TYPES

Type definitions that are used more than once in this module:

bool ean() = true | false

string() =list of ASCII characters

pat h() = string() representing afile or adirectory path

i p_address() = {N1, N2, N3, N4} % I Pv4 | {K1, K2, K3, K4, K5, K6, K7, K8} % | Pv6
host name() = string() representing ahost, for example, "foo.bar.com”

property() = atom()

ERLANG HTTP SERVER SERVICE START/STOP

A web server can be configured to start when starting the | net s application, or dynamically in runtime by
caling the |l net s application APl i nets: start (httpd, ServiceConfig) orinets:start(httpd,
Servi ceConfig, How), seeinets(3). The configuration options, also called properties, are as follows:

File Properties

When the web server is started at application start time, the properties are to be fetched from a configuration file that
can consist of aregular Erlang property list, that is, [{ Opti on, Val ue}],where Option = property()
and Val ue = term(), followed by afull stop. If the web server is started dynamically at runtime, afile can still
be specified but also the complete property list.

{proplist_file, path()}

If this property is defined, | net s expectsto find all other properties defined in this file. The file must include
all properties listed under mandatory properties.

Note support for legacy configuration file with Apache syntax is dropped in OTP-23. ‘

Mandatory Properties

{port, integer()}

The port that the HTTP server listen to. If zero is specified as port, an arbitrary available port is picked and
function ht t pd: i nf o/ 2 can be used to determine which port was picked.

{server_name, string()}
The name of your server, normally afully qualified domain name.
{server_root, path()}

Defines the home directory of the server, where log files, and so on, can be stored. Relative paths specified in
other properties refer to this directory.

24 | Ericsson AB. All Rights Reserved.: inets

href

httpd

{ document_root, path()}
Defines the top directory for the documents that are available on the HTTP server.
Communication Properties
{bind_address, ip_address() | hostname() | any}
Default isany
{profile, atom()}

Used together with bi nd_addr ess and port to uniquely identify a HTTP server. This can be useful in a
virtualized environment, where there can be more that one server that has the same bind_address and port. If this
property is not explicitly set, it is assumed that the bi nd_addr ess and por t uniquely identifies the HTTP
server.

{socket_type, ip_comm |{ip_comm, Config::proplist()} | {essl, Config::proplist()}}

For i p_commconfiguration options, see gen_tcp:listen/2, some options that are used internally by httpd cannot
be sat.

For SSL configuration options, see s3l:listen/2.
Defaultisi p_comm
{ipfamily, inet | inet6}
Defaultisi net , legacy optioni net 6f b4 no longer makes sense and will be translated to inet.
{minimum_bytes per_second, integer()}
If given, sets a minimum of bytes per second value for connections.
If the value is unreached, the socket closes for that connection.
The option is good for reducing the risk of "slow DoS" attacks.
Erlang Web Server APl Modules
{modules, [atom()]}

Defines which modulesthe HTTP server uses when handling requests. Defaultis[nmod_al i as, nod_aut h,
nmod_esi , nod_acti ons, nmod_cgi , nod_dir, nod_get, nod_head, nod_| og,
nmod_di sk_| og] . Notice that some nod-modules are dependent on others, so the order cannot be entirely
arbitrary. See the Inets Web Server Modules in the User's Guide for details.

Limit properties
{ customize, atom()}

A callback module to customize the inets HTTP servers behaviour see httpd _custom_api
{disable_chunked transfer_encoding_send, boolean()}

Allows you to disable chunked transfer-encoding when sending a response to an HTTP/1.1 client. Default is
fal se.

{keep_alive, boolean()}

Instructs the server whether to use persistent connections when the client claims to be HTTP/1.1 compliant.
Defaultist r ue.

{keep_alive_timeout, integer()}

The number of seconds the server waits for a subsequent request from the client before closing the connection.
Default is 150.

Ericsson AB. All Rights Reserved.: inets | 25

httpd

{max_body_size, integer()}

Limits the size of the message body of an HTTP request. Default is no limit.
{max_clients, integer()}

Limits the number of simultaneous requests that can be supported. Default is 150.
{max_header_size, integer()}

Limits the size of the message header of an HTTP request. Default is 10240.
{ max_content_length, integer()}

Maximum content-length in an incoming request, in bytes. Requests with content larger than this are answered
with status 413. Default is 100000000 (100 MB).

{max_uri_size, integer()}
Limitsthe size of the HTTP request URI. Default is no limit.
{max_keep alive request, integer()}

The number of requests that a client can do on one connection. When the server has responded to the number
of requests defined by max_keep_al i ve_r equest s, the server closes the connection. The server closes it
even if there are queued request. Default is no limit.

{max_client_body_chunk, integer()}

Enforces chunking of aHTTP PUT or POST body data to be deliverd to the mod_esi callback. Note thisis not
supported for mod_cgi. Default is no limit e.i the whole body is deliverd as one entity, which could be very
memory consuming. mod_esi(3).

Administrative Properties
{mime_types, [{MimeType, Extension}] | path()}

M nmeType = string() and Extensi on = string(). Filesdelivered to the client are MIME typed
according to RFC 1590. File suffixes are mapped to MIME types before file delivery. The mapping between file
suffixes and MIME types can be specified as an Apache-like file or directly in the property list. Such afile can
look like the follwoing:

MIME type Extension
text/html html htm
text/plain asc txt

Default is [{"html","text/html"} ,{ "htm","text/html"}].
{mime_type, string()}

When the server is asked to provide a document type that cannot be determined by the MIME Type Settings,
the server uses this default type.

{server_admin, string()}

Defines the email-address of the server administrator to beincluded in any error messages returned by the server.
{ server_tokens, nonelprod|major|minor|minimal|os|ful l|{ private, string()} }

Defines the ook of the value of the server header.

Example: Assuming the version of | net s is5.8.1, the server header string can look as follows for the different
values of server-tokens:

none
"" % A Server: header will not be generated

26 | Ericsson AB. All Rights Reserved.: inets

httpd

prod
"inets"
maj or
"Inetsy/5"
ni nor
"inets/5.8"
m ni mal
"inets/5.8.1"
0s
"inetsy/5.8.1 (unix)"
full
"inety/5.8.1 (unix/linux) OTP/R15B"
{private, "fool/bar"}
"foo/bar"
By default, the value is as before, that is, m ni mal .
{logger, Options::list()}
Currently only one option is supported:
{error, ServerlD: :atom()}

Produces logger events on logger level error under the hierarchical logger domain: [ot p, i nets,
httpd, ServerlD, error] Thebuiltinlogger formatting function produces log entries from the
error reports:

#{server name => string()

protocol => internal | 'TCP' | 'TLS' | 'HTTP',
transport => "TCP "| "TLS", %% Present when protocol = 'HTTP'
uri => string(), %% Present when protocol = 'HTTP' and URI is valid

peer => inet:peername(),
host => inet:hostname(),
reason => term()

}
An example of alog entry with only default settings of logger

=ERROR REPORT==== 9-0ct-2019::09:33:27.350235 ===
Server: My Server
Protocol: HTTP
Transport: TLS
URI: /not there
Host: 127.0.1.1:80
Peer: 127.0.0.1:45253
Reason: [{statuscode, 404}, {description,"Object Not Found"}]

Using this option makes mod_log and mod_disk log error logs redundant.
Add thefilter

{fun logger filters:domain/2,
{log,equal, [otp,inets, httpd, ServerID, error]}

Ericsson AB. All Rights Reserved.: inets | 27

httpd

to appropriate logger handler to handle the events. For example to write the error log from an httpd server
withaSer ver | Dof ny_ser ver to afile you can use the following sys.config:

[{kernel,
[{logger,
[{handler, http error test, logger std h,
#{config => #{ file => "log/http error.log" },
filters => [{inets httpd, {fun logger filters:domain/2,

{log, equal,
[otp, inets, httpd, my server, error]
11,

filter default => stop }}1}1}].
or if you want to add it to the default logger viaan API:

logger:add handler filter(default,
inets httpd,
{fun logger filters:domain/2,
{log, equal,
[otp, inets, httpd, my server, error]}}).

{log_format, common | combined}

Definesif accesslogs are to be written according to the conmon log format or the extended common log format.
Theconmon format isonelinelooking likethis: r enot ehost rfc931 aut huser [date] "request"
status bytes.

Here:

r enot ehost
Remote.
rfco3l
The remote username of the client (RFC 931).
aut huser
The username used for authentication.
[dat e]
Date and time of the request (RFC 1123).
"request”
Therequest line as it came from the client (RFC 1945).
status
The HTTP status code returned to the client (RFC 1945).
byt es
The content-length of the document transferred.

The conbi ned format is one line looking like this: r enot ehost rfc931 aut huser [date]
"request" status bytes "referer" "user_agent"

In addition to the earlier:

"referer”
The URL the client was on before requesting the URL (if it could not be determined, aminus signis
placed in this field).

"user_agent"
The software the client claims to be using (if it could not be determined, aminus sign is placed in this
field).

This affects the access logs written by nod_| og and nmod_di sk_I og.
{error_log_format, pretty | compact}
Defaultispret ty. If theerror log is meant to be read directly by ahuman, pr et t y isthe best option.

28 | Ericsson AB. All Rights Reserved.: inets

href
href
href
href

httpd

pretty hasaformat corresponding to:
io:format("[~s] ~s, reason: ~n ~p ~n~n", [Date, Msg, Reason]).
conpact hasaformat corresponding to:
io:format("[~s] ~s, reason: ~w ~n", [Date, Msg, Reason]).
This affects the error logs written by nod_| og and nod_di sk_| og.
URL Aliasing Properties- Requiresmod_alias
{alias, {Alias, ReaName}}
Alias = string() andReal Name = string().alias alowsdocumentsto bestoredin thelocal file
system instead of the docunent _r oot location. URLs with a path beginning with url-path is mapped to local
files beginning with directory-filename, for example:
{alias, {"/image", "/ftp/pub/image"}}
Access to http://your.server.org/image/foo.gif would refer to the file /ftp/pub/image/foo.gif.
{re_write, { Re, Replacement}}

Re = string() andRepl acenment = string().re_wite alowsdocumentsto bestoredinthelocal
file system instead of the docurrent _r oot location. URLSs are rewritten by r e: repl ace/ 3 to produce a
path in the local file-system, for example:

{re_write, {"~/[~1(["/1+)(.*)$", "/home/\\1/public\\2"}}
Access to http://your.server.org/~bob/foo.gif would refer to the file /home/bob/public/foo.gif.

{directory_index, [string()]}

di rectory_i ndex specifiesalist of resourcesto look for if aclient requests adirectory usinga/ at the end
of thedirectory name. f i | e depicts the name of afilein the directory. Several files can be given, in which case
the server returns the first it finds, for example:

{directory index, ["index.html", "welcome.html"]}

Access to http://your.server.org/docy would return http://your.server.org/docs/index.html or http://
your.server.org/docs/welcome.html if index.html does not exist.

CGI Properties- Requiresmod_cgi
{script_alias, { Alias, RealName} }

Alias = string() andReal Name = string() . Have the same behavior as property al i as, except
that they also mark the target directory as containing CGI scripts. URLs with a path beginning with url-path are
mapped to scripts beginning with directory-filename, for example:

{script _alias, {"/cgi-bin/", "/web/cgi-bin/"}}
Access to http://your.server.org/cgi-bin/foo would cause the server to run the script /web/cgi-bin/foo.

{script_re_write, { Re, Replacement} }

Re = string() and Repl acenment = string(). Have the same behavior as property re_wite,
except that they also mark the target directory as containing CGI scripts. URLs with a path beginning with url-
path are mapped to scripts beginning with directory-filename, for example:

{script re write, {"~/cgi-bin/(\\d+)/", "/web/\\1/cgi-bin/"}}

Ericsson AB. All Rights Reserved.: inets | 29

httpd

Access to http://your.server.org/cgi-bin/17/foo would cause the server to run the script /web/17/cgi-bin/foo.
{ script_nocache, boolean()}

If scri pt_nocache issettot rue, the HTTP server by default adds the header fields necessary to prevent
proxies from caching the page. Generally thisis preferred. Default tof al se.

{ script_timeout, integer()}

Thetime in seconds the web server waits between each chunk of data from the script. If the CGI script does not
deliver any data before the timeout, the connection to the client is closed. Default is 15.

{action, { MimeType, CgiScript}} - requires mod_action

M meType = string() andCgi Scri pt = string().acti on addsan action activating a CGI script
whenever afileof acertain MIME typeisrequested. It propagatesthe URL and file path of the requested document
using the standard CGI PATH_INFO and PATH_TRANSLATED environment variables.

Example:
{action, {"text/plain", "/cgi-bin/log and deliver text"}}

{ script, { Method, CgiScript}} - requires mod_action

Met hod = string() and Cgi Script = string().script addsan action activating a CGI script
whenever afile is requested using a certain HTTP method. The method is either GET or POST, as defined in
RFC 1945. It propagates the URL and file path of the requested document using the standard CGI PATH_INFO
and PATH_TRANSLATED environment variables.

Example:
{script, {"PUT", "/cgi-bin/put"}}
ESI Properties- Requiresmod_esi
{erl_script_alias, { URLPath, [AllowedModule]} }

URLPath = string() and Al | owedModul e = aton{).erl _script_alias marks al URLs
matching url-path as erl scheme scripts. A matching URL is mapped into a specific module and function, for
example:

{erl script alias, {"/cgi-bin/example", [httpd examplel}}

A request to http://your.server.org/cgi-bin/example/httpd_example:yahoo would refer to httpd_example:yahoo/3
or, if that does not exist, httpd_example:yahoo/2 and http://your.server.org/cgi-bin/exampl e/other:yahoo would
not be allowed to execute.

{ erl_script_nocache, boolean()}

Iferl script_nocacheissettot r ue, theserver addsHTTP header fields preventing proxiesfrom caching
the page. Thisis generally a good idea for dynamic content, as the content often varies between each request.
Defaultisf al se.

{erl_script_timeout, integer()}

Iferl _script_timeout setsthetimein secondsthe server waits between each chunk of datato be delivered
through mod_esi : del i ver/ 2. Defaultis15. Thisisonly relevant for scripts that use the erl scheme.

L og Properties - Requires mod_log
{error_log, path()}

Defines the filename of the error log file to be used to log server errors. If the filename does not begin with a
slash (/), it isassumed to berelativeto theser ver _r oot .

30 | Ericsson AB. All Rights Reserved.: inets

href

httpd

{ security_log, path()}

Defines the filename of the access log file to be used to log security events. If the filename does not begin with
adlash (/), itisassumed to be relativeto theser ver _r oot .

{transfer_log, path()}

Defines the filename of the access log file to be used to log incoming requests. If the filename does not begin
with adash (/), it isassumed to be relativeto theser ver _r oot .

Disk Log Properties - Requiresmod_disk_log
{disk_log format, internal | external}

Definesthe file format of the log files. Seedi sk_I| og for details. If theinternal file format is used, thelog file
is repaired after a crash. When alog file is repaired, data can disappear. When the external file format is used,
ht t pd does not start if the log file is broken. Default isext er nal .

{error_disk_log, path()}

Defines the filename of the (di sk_I og(3)) error log file to be used to log server errors. If the filename does
not begin with aslash (/), it is assumed to berelativeto theser ver _r oot .

{error_disk _log_size, { MaxBytes, MaxFiles}}

MaxByt es = i nteger () andVaxFi |l es = i nt eger () .Definesthe propertiesof the(di sk_1 og(3))
error log file. Thisfileis of type wrap log and max bytes is written to each file and max filesis used before the
first fileis truncated and reused.

{'security_disk_log, path()}

Defines the filename of the (di sk_I og(3)) access log file logging incoming security events, that is,
authenticated requests. If the filename does not begin with a slash (/), it is assumed to be relative to the
server _root.

{security_disk_log_size, { MaxBytes, MaxFiles}}

MaxByt es = integer() andMaxFiles = integer () .Definesthe propertiesof thedi sk_I og(3)
access log file. This fileis of type wrap log and max bytes is written to each file and max files is used before
thefirst fileis truncated and reused.

{transfer_disk_log, path()}

Definesthe filename of the (di sk_| og(3)) accesslog file logging incoming requests. If the filename does not
begin with aslash (/), it isassumed to berelativeto theser ver _r oot .

{transfer_disk log_size, { MaxBytes, MaxFiles}}

MaxByt es = integer() andMaxFiles = integer () .Definesthe propertiesof thedi sk_I og(3)
access log file. This fileis of type wrap log and max bytes is written to each file and max files is used before
thefirst fileis truncated and reused.

Authentication Properties - Requires mod_auth

{directory, {path(), [{property(), term()}]}}
The properties for directories are as follows:

{alow_from, al | [RegxpHostString]}
Defines a set of hosts to be granted access to a given directory, for example:

{allow from, ["123.34.56.11", "150.100.23"]}

Thehost 123. 34. 56. 11 and al machines on the 150. 100. 23 subnet are allowed access.

Ericsson AB. All Rights Reserved.: inets | 31

httpd

{deny_from, all | [RegxpHostString]}

Defines a set of hosts to be denied accessto a given directory, for example:
{deny_ from, ["123.34.56.11", "150.100.23"]}

Thehost 123. 34. 56. 11 and al machineson the 150. 100. 23 subnet are not allowed access.
{auth_type, plain | dets | mnesia}

Sets the type of authentication database that is used for the directory. The key difference between the different
methods is that dynamic data can be saved when Mnesia and Dets are used.

{auth_user_file, path()}

Sets the name of afile containing the list of users and passwords for user authentication. The filename can be
either absolute or relative to the ser ver _r oot . If using the plain storage method, thisfile is a plain text file
where each line contains a username followed by acolon, followed by the non-encrypted password. If usernames
are duplicated, the behavior is undefined.

Example:

ragnar:s7Xxv7
edward:wwjau8

If the Dets storage method is used, the user database is maintained by Dets and must not be edited by hand. Use
the API functionsin module nod_aut h to create/edit the user database. This directive isignored if the Mnesia
storage method is used. For security reasons, ensurethat aut h_user _fi | e isstored outside the document tree
of the web server. If it is placed in the directory that it protects, clients can download it.

{auth_group _file, path()}

Setsthe name of afilecontaining thelist of user groupsfor user authentication. Thefilename can be either absolute
or relative to the ser ver _r oot . If the plain storage method is used, the group file is a plain text file, where
each line contains a group name followed by a colon, followed by the members usernames separated by spaces.

Example:
groupl: bob joe ante

If the Dets storage method is used, the group database is maintained by Dets and must not be edited by hand. Use
the API for module nod_aut h to create/edit the group database. This directive isignored if the Mnesia storage
method is used. For security reasons, ensure that the aut h_gr oup_fi | e is stored outside the document tree
of the web server. If it is placed in the directory that it protects, clients can download it.

{auth_name, string()}

Setsthe name of the authorization realm (auth-domain) for adirectory. This string informs the client about which
username and password to use.

{auth_access password, string()}

If set to other than "NoPassword", the password is required for all APl calls. If the password is set to
"DummyPassword", the password must be changed before any other API calls. To secure the authenticating
data, the password must be changed after the web server is started. Otherwise it is written in clear text in the
configuration file.

{require_user, [string()]}

Defines users to grant access to a given directory using a secret password.
{require_group, [string(]}

Defines users to grant access to a given directory using a secret password.

32 | Ericsson AB. All Rights Reserved.: inets

httpd

Security Properties- Requires mod_security
{security_directory, {path(), [{property(), term()}]}}
The properties for the security directories are as follows:
{data file, path()}

Name of the security data file. The filename can either be absolute or relative to the ser ver _r oot . Thisfile
is used to store persistent datafor modulenod_security.

{max_retries, integer()}
Specifies the maximum number of attempts to authenticate a user before the user is blocked out. If a user
successfully authenticates while blocked, the user receives a 403 (Forbidden) response from the server. If the
user makes afailed attempt while blocked, the server returns 401 (Unauthorized), for security reasons. Default
is 3. Can be set to infinity.

{block_time, integer()}
Specifiesthe number of minutesauser isblocked. After thistimehas passed, the user automatically regainsaccess.
Default is60.

{fail_expire_time, integer()}
Specifies the number of minutes afailed user authentication is remembered. If auser authenticates after thistime
has passed, the previous failed authentications are forgotten. Default is 30.

{auth_timeout, integer()}
Specifies the number of seconds a successful user authentication is remembered. After thistime has passed, the
authentication is no longer reported. Default is 30.

Exports

info(Pid) ->
info(Pid, Properties) -> [{Option, Value}]
Types.

Properties = [property()]

Option = property()

Val ue = term()

Fetches information about the HTTP server. When called with only the pid, al properties are fetched. When called
with alist of specific properties, they arefetched. Theavailable properties are the same asthe start options of the server.

Pid is the pid returned from i nets: start/[2, 3] . Can aso be retrieved form i net s: servi ces/ 0 and
i nets:services_info/ 0, seeinets(3).

info(Address, Port) ->
info(Address, Port, Profile) ->
info(Address, Port, Profile, Properties) -> [{Option, Value}]
info(Address, Port, Properties) -> [{Option, Value}]
Types:
Address = i p_address()

Ericsson AB. All Rights Reserved.: inets | 33

httpd

Port = integer()

Profile = atom()
Properties = [property()]
Option = property()
Value = term))

Fetches information about the HTTP server. When called with only Addr ess and Por t , al properties are fetched.
When called with alist of specific properties, they arefetched. The available properties are the same asthe start options
of the server.

| The address must be the | P address and cannot be the hostname. |

reload config(Config, Mode) -> ok | {error, Reason}

Types:
Config = path() | [{Option, Value}]
Option = property()

Value = term)
Mode = non_di sturbing | disturbing

Reloadsthe HT TP server configuration without restarting the server. Incoming requests are answered with atemporary
down message during the reload time.

Available properties are the same as the start options of the server, but the propertiesbi nd_addr ess and por t
cannot be changed.

If mode is disturbing, the server is blocked forcefully, al ongoing requests terminates, and the reload starts
immediately. If modeisnon-disturbing, no new connectionsare accepted, but ongoing requestsare allowed to complete
before the reload is done.

ERLANG WEB SERVER API DATA TYPES

The Erlang web server APl data types are as follows:

ModData = #mod{}

-record(mod, {
data = [],
socket type = ip comm,
socket,
config db,
method,
absolute uri,
request uri,
http version,
request line,
parsed_header = [],
entity body,
connection

3.

34 | Ericsson AB. All Rights Reserved.: inets

httpd

To acess the record in your callback-module use:
-include lib("inets/include/httpd.hrl").

The fields of record mod have the following meaning:
dat a

Type[{I nteracti onKey, I nt eracti onVal ue}] isused to propagate data between modules. Depicted
i nteraction_dat a() infunction type declarations.

socket _type
socket _type() indicateswhether itisan IP socket or anssl socket.
socket

The socket, informati p_commor ssl , depending on socket _t ype.

config_db
The config file directives stored as key-value tuplesin an ETS table. Depicted conf i g_db() infunction type
declarations.

nmet hod
Type" GET" | "POST" | "HEAD' | "TRACE",thatis, the HTTP method.

absol ute_uri

If the request isan HTTP/1.1 request, the URI can bein the absolute URI format. In that case, ht t pd savesthe
absolute URI in this field. An Example of an absolute URI is" htt p:// Server Nanme: Part/ cgi - bi n/
find. pl ?per son=j ocke"

request _uri

The Request - URI asdefined in RFC 1945, for example, "/ cgi - bi n/ fi nd. pl ?per son=j ocke".
htt p_version

The HTTP version of the request, that is, "HTTP/0.9", "HTTP/1.0", or "HTTP/1.1".
request _|ine

The Request - Li ne asdefined inRFC 1945, for example, " GET / cgi - bi n/ fi nd. pl ?per son=j ocke
HTTP/ 1. 0".

par sed_header
Type[{ Header Key, Header Val ue}] . par sed_header containsal HTTP header fields from the
HTTP request stored in alist as key-value tuples. See RFC 2616 for alisting of al header fields. For example,
thedatefieldisstoredas{" dat e", "Wed, 15 Qct 1997 14:35:17 GWI"}.RFC 2616 defines that
HTTP isacase-insensitive protocol and the header fields can be in lower case or upper case. ht t pd ensures
that all header field names are in lower case.

entity_ body

Theent it y- Body asdefined in RFC 2616, for example, data sent from a CGI script using the POST method.
connection

true | false.Ifsettotrue,the connection to the client is a persistent connection and is not closed when
the request is served.

Ericsson AB. All Rights Reserved.: inets | 35

href
href
href
href

httpd

Exports

Module:do(ModData)-> {proceed, OldData} | {proceed, NewData} | {break,
NewData} | done

Types.

A dData = list()

NewDat a = [{response, { St at usCode, Body}}]

| [{response, {response, Head, Body}}]

| [{response, {al ready_sent, St atuscode, Si ze}}]

St at usCode = integer()

Body = io list() | nobody | {Fun, Arg}

Head = [Header Opti on]

Header Opti on = {Option, Value} | {code, StatusCode}

Option = accept _ranges | allow

| cache_control | content_ M5

| content _encoding | content | anguage

| content _length | content_I| ocation

| content range | content type | date

| etag | expires | last_nodified

| location | pragma | retry_ after

| server | trailer | transfer_encoding

Val ue = string()

Fun = fun(Arg) -> sent| close | Body

Arg = [tern()]
When avalid request reaches ht t pd, it callsdo/ 1 in each module, defined by the configuration option of Modul e.
The function can generate data for other modules or a response that can be sent back to the client.
Thefield dat a in ModDat a isalist. Thislist isthe list returned from the last call todo/ 1.

Body is the body of the HTTP response that is sent back to the client. An appropriate header is appended to the
message. St at usCode isthe status code of the response, see RFC 2616 for the appropriate values.

Head isakey valuelist of HTTP header fields. The server constructs an HTTP header from this data. See RFC 2616
for the appropriate value for each header field. If the clientisan HTTP/1.0 client, the server filtersthe list so that only
HTTP/1.0 header fields are sent back to the client.

If Body isreturned and equal to { Fun, Ar g}, the web server tries appl y/ 2 on Fun with Ar g as argument. The
web server expectsthat the fun either returnsalist (Body) that isan HTTP repsonse, or theatom sent if theHTTP
responseis sent back to theclient. If cl ose isreturned from the fun, something has gone wrong and the server signals
this to the client by closing the connection.

Module:remove(ConfigDB) -> ok | {error, Reason}
Types.

ConfigDB = ets_table()

Reason = term()

Whenht t pd isshut down, it triesto executer enrove/ 1 ineach Erlang web server callback module. The programmer
can use this function to clean up resources created in the store function.

36 | Ericsson AB. All Rights Reserved.: inets

href
href

httpd

Module:store({Option, Value}, Config)-> {ok, {Option, NewValue}} | {error,
Reason}

Types:

Line = string()

Option = property()

Config = [{Option, Value}]

Value = term()

Reason = term()
Checks the validity of the configuration options before saving them in the internal database. This function can also
have a side effect, that is, setup of necessary extra resources implied by the configuration option. It can aso resolve

possible dependencies among configuration options by changing the value of the option. This function only needs
clauses for the options implemented by this particular callback module.

Exports

parse query(QueryString) -> [{Key,Value}]
Types:

QueryString = string()

Key = string()

Val ue = string()

par se_query/ 1 parsesincoming datato er | and eval scripts (see mod_esi(3)) as defined in the standard URL
format, that is, '+' becomes 'space’ and decoding of hexadecimal characters (% x).

SEE ALSO
RFC 2616, inets(3), ss(3)

Ericsson AB. All Rights Reserved.: inets | 37

href

httpd_custom_api

httpd _custom_api

Erlang module

The module implementing this behaviour shall be supplied to to the servers configuration with the option customize

Exports

response default headers() -> [Header]

Types:
Header = {HeaderNane :: string(), HeaderValue::string()}
string:to_lower/1 will be performed on the HeaderName

Provide default headers for the HTTP servers responses. Note that this option may override built-in defaults.

response header({HeaderName, HeaderValue}) -> {true, Header} | false
Types.

Header = {HeaderName :: string(), HeaderValue::string()}

The header name will bein lower case and should not be altered.

Filter and possible alter HTTP response headers before they are sent to the client.

request header({HeaderName, HeaderValue}) -> {true, Header} | false
Types:

Header = {HeaderNane :: string(), HeaderValue::string()}

The header name will bein lower case and should not be altered.

Filter and possible alter HTTP request headers before they are processed by the server.

38 | Ericsson AB. All Rights Reserved.: inets

httpd_socket

httpd_socket

Erlang module

This module provides the Erlang web server API module programmer with utility functions for generic sockets
communication. The appropriate communication mechanism is transparently used, that is, i p_conmmor ssl .

Exports

deliver(SocketType, Socket, Data) -> Result
Types:

Socket Type = socket _type()

Socket = socket ()

Data = io_list() | binary()

Result = socket_closed | void()

del i ver/ 3 sendsDat a over Socket using the specified Socket Type. Socket and Socket Type isto bethe
socket and the socket _t ype form the nod record asdefined in ht t pd. hrl

peername (SocketType, Socket) -> {Port,IPAddress}
Types:

Socket Type = socket _type()

Socket = socket ()

Port = integer()

| PAddress = string()
peer nane/ 2 returnsthe Por t and | PAddr ess of the remote Socket .

resolve() -> HostName
Types:
Host Name = string()
r esol ve/ 0 returns the official Host Nane of the current host.

SEE ALSO
httpd(3)

Ericsson AB. All Rights Reserved.: inets | 39

httpd_util

httpd_util

Erlang module

This module provides the Erlang web server APl module programmer with miscellaneous utility functions.

Exports

convert request date(DateString) -> ErlDate|bad date
Types:

DateString = string()

Erl Date = cal endar: datetinme()

convert _request _dat e/ 1 convertsDat eSt ri ng to the Erlang date format. Dat eSt r i ng must bein one of
the three date formats defined in RFC 2616.

create etag(FileInfo) -> Etag
Types.
Filelnfo = file_info()
Etag = string()

creat e_et ag/ 1 caculates the Etag for afile from its size and time for last modification. Fi | el nf o isarecord
definedinkernel /i ncl ude/file. hrl.

day (NthDayOfWeek) -> DayOfWeek
Types:
Nt hDayOf Week = 1-7
DayOr Week = string()
day/ 1 convertsthe day of the week (Nt hDay OfF Week) from an integer (1-7) to an abbreviated string, that is:

1="Mon",2="Tue", ..., 7="Sat".

decode hex(HexValue) -> DecValue
Types:
HexVal ue = DecVal ue = string()
Converts the hexadecimal value HexVal ue into its decimal equivalent (DecVal ue).

flatlength(NestedlList) -> Size

Types.
Nest edList = list()
Size = integer()

fl atl engt h/ 1 computes the size of the possibly nested list Nest edLi st , which can contain binaries.
hexlist to _integer(HexString) -> Number

Types:
Nunmber = integer()

40 | Ericsson AB. All Rights Reserved.: inets

href

httpd_util

HexString = string()

hexl i st_t o_i nt eger convertsthe hexadecimal value of Hex St ri ng to an integer.

integer to hexlist(Number) -> HexString
Types:

Nunmber = integer()

HexString = string()

i nteger _to_hexlist/1returnsastring representing Nunber in ahexadecimal form.

lookup (ETSTable,Key) -> Result
lookup(ETSTable,Key,Undefined) -> Result

Types:
ETSTabl e = ets_tabl e()
Key = term)

Result = term() | undefined | Undefined
Undefined = tern()
| ookup extracts{ Key, Val ue} tuplesfromETSTabl e andreturnstheVal ue associatedwithKey. If ETSTabl e

is of type bag, only the first Val ue associated with Key is returned. | ookup/ 2 returns undefi ned and
| ookup/ 3 returnsUndef i ned if no Val ue isfound.

lookup mime(ConfigDB,Suffix)
lookup mime(ConfigDB,Suffix,Undefined) -> MimeType
Types.
ConfigDB = ets_table()
Suffix = string()
M meType = string() | undefined | Undefined
Undefined = term()

| ookup_mi e returns the MIME type associated with a specific file suffix as specified in the file mi nme. t ypes
(located in the config directory).

lookup mime default(ConfigDB,Suffix)
lookup mime default(ConfigDB,Suffix,Undefined) -> MimeType
Types.
ConfigDB = ets_table()
Suffix = string()
M meType = string() | undefined | Undefined
Undefined = tern()
| ookup_mi me_def aul t returns the MIME type associated with a specific file suffix as specified in the

ni me. t ypes file(located inthe config directory). If no appropriate associationisfound, thevalueof Def aul t Type
is returned.

message(StatusCode,PhraseArgs,ConfigDB) -> Message

Types:
StatusCode = 301 | 400 | 403 | 404 | 500 | 501 | 504

Ericsson AB. All Rights Reserved.: inets | 41

httpd_util

PhraseArgs = tern()
ConfigDB = ets_table
Message = string()

message/ 3 returns an informative HTTP 1.1 status string in HTML. Each St at usCode requires a specific
Phr aseAr gs:

301

string(): A URL pointing at the new document position.
400 | 401 | 500

none (no Phr aseAr gs).
403 | 404

string():ARequest-URl asdescribed in RFC 2616.
501

{Met hod, Request URI , HTTPVer si on}: The HTTP Met hod, Request - URI , and HTTP- Ver si on as
defined in RFC 2616.

504
string(): A string describing why the service was unavailable.

month(NthMonth) -> Month
Types:
Nt hvonth = 1-12
Month = string()
nont h/ 1 convertsthe month Nt hivbnt h as an integer (1-12) to an abbreviated string, that is:

1="Jan", 2 ="Feb", .., 12 ="Dec".

multi lookup(ETSTable,Key) -> Result

Types.
ETSTabl e = ets_tabl e()
Key = term)

Result = [term()]

mul ti | ookup extracts all { Key, Val ue} tuples from an ETSTabl e and returns all Val ues associated with
Key inalist.

reason_phrase(StatusCode) -> Description
Types:
St atusCode = 100| 200 | 201 | 202 | 204 | 205 | 206 | 300 | 301 | 302

303 | 304 | 400 | 401 | 402 | 403 | 404 | 405 | 406 | 410 411 | 412 | 413
| 414 415 | 416 | 417 | 500 | 501 | 502 | 503 | 504 | 505

Description = string()

reason_phrase returns Descri pti on of an HTTP 1.1 St at usCode, for example, 200 is "OK" and 201 is
"Created". For more information, see RFC 2616.

42 | Ericsson AB. All Rights Reserved.: inets

href
href

httpd_util

rfcl123 date() -> RFCl123Date
rfcll23 date(Date) -> RFCl123Date
Types:
Dat e = cal endar: datetinme()
RFC1123Date = string()

rfcl1123_dat e/ O returns the current date in RFC 1123 format. r f ¢_dat e/ 1 converts the date in the Erlang
format to the RFC 1123 date format.

split(String,RegExp,N) -> SplitRes
Types.
String = RegExp = string()
SplitRes = {ok, FieldList} | {error, errordesc()}
Fieldlist = [string()]
N = i nt eger
split/3 splits String in N chunks using RegExp. split/3 is equivalent to r egexp: spl it/ 2 with the
exception that N defines the maximum number of fieldsin Fi el dLi st .

split script path(RequestLine) -> Splitted

Types:
Request Li ne = string()
Splitted = not_a _script | {Path, Pathlnfo, QueryString}
Path = QueryString = Pathlnfo = string()

split_script_path/1lisequivalenttosplit_path/ 1 with one exception. If the longest possible path is not
aregular, accessible, and executablefile, thennot _a_scri pt isreturned.

split _path(RequestLine) -> {Path,QueryStringOrPathInfo}
Types:

RequestLine = Path = QueryStringOrPathlnfo = string()
split_path/ 1 splitsRequest Li ne in afilereference (Pat h), andaQuer ySt ri ng or aPat hl nf o string as
specified in RFC 2616. A Quer ySt ri ng isisolated from Pat h with a question mark (?) and Pat hl nf o with a
dash (/). Inthecase of aQuer ySt r i ng, everything before ? isaPat h and everything after ? isaQuer ySt ri ng.
Inthecaseof aPat hl nf o, Request Li ne isscanned from left-to-right on the hunt for longest possible Pat h being
afile or adirectory. Everything after the longest possible Pat h, isolated with a/ , is regarded as Pat hl nf 0. The
resulting Pat h isdecoded using decode_hex/ 1 before delivery.

strip(String) -> Stripped
Types:
String = Stripped = string()
stri p/ 1 removes any leading or trailing linear white space from the string. Linear white space is to be read as
horizontal tab or space.

suffix(FileName) -> Suffix

Types:
FileName = Suffix = string()

Ericsson AB. All Rights Reserved.: inets | 43

href

httpd_util

suffix/ 1 isequivalent to fil ename: ext ensi on/ 1 with the exception that Suf fi x is returned without a
leading dot (.).

SEE ALSO
httpd(3)

44 | Ericsson AB. All Rights Reserved.: inets

mod_alias

mod_alias

Erlang module

Erlang web server internal API for handling of, for example, interaction data exported by module mod_al i as.

Exports

default index(ConfigDB, Path) -> NewPath
Types:
ConfigDB = config_db()
Path = NewPath = string()
If Pat h isadirectory, def aul t _i ndex/ 2, it starts searching for resources or filesthat are specified in the config
directive Di r ect or yl ndex. If an appropriate resource or fileisfound, it is appended to the end of Pat h and then

returned. Pat h is returned unaltered if no appropriate file is found or if Pat h isnot adirectory. confi g_db() is
the server config filein ETStable format as described in Inets User's Guide.

path(PathData, ConfigDB, RequestURI) -> Path
Types.
Pat hData = interaction_data()
ConfigDB = config_db()
Request URI = Path = string()
pat h/ 3 returns the file Pat h in the Request URI (see RFC 1945). If the interaction data {r eal _nane,
{Pat h, Aft er Pat h} } has been exported by nod_al i as, Pat h is returned. If no interaction data has been

exported, Ser ver Root is used to generate a file Pat h. confi g _db() andinteraction_data() areas
defined in Inets User's Guide.

real name(ConfigDB, RequestURI, Aliases) -> Ret
Types.

ConfigDB = config_db()

Request URI = string()

Ali ases = [{FakeNane, Real Nane}]

Ret = {Short Pat h, Pat h, Aft er Pat h}

ShortPath = Path = AfterPath = string()
real nane/ 3 traverses Al i ases, typicaly extracted from Conf i gDB, and matches each FakeNane with
Request URI . If a match is found, FakeNane is replaced with Real Nane in the match. The resulting path is
split into two parts, Short Pat h and Af t er Pat h, as defined in httpd_util:split_path/1. Pat h is generated from

Shor t Pat h, that is, theresult from default_index/2 with Shor t Pat h asanargument. confi g_db() istheserver
config filein ETS table format as described in Inets User's Guide.

real script name(ConfigDB, RequestURI, ScriptAliases) -> Ret
Types:

ConfigbB = config_db()

Request URI = string()

Script Ali ases = [{FakeNane, Real Nane}]

Ericsson AB. All Rights Reserved.: inets | 45

href

mod_alias

Ret = {ShortPath, AfterPath} | not_a_script
ShortPath = AfterPath = string()

real _script_name/ 3 traverses Scri pt Al i ases, typicaly extracted from Conf i gDB, and matches each
FakeName with Request URI . If amatch isfound, FakeNane is replaced with Real Namne in the match. If the
resulting match is not an executable script, not _a_scri pt isreturned. If it isascript, the resulting script pathisin
two parts, Shor t Pat h and Af t er Pat h, as defined in httpd_util:split_script_path/1. conf i g_db() isthe server
config filein ETS table format as described in Inets User's Guide.

46 | Ericsson AB. All Rights Reserved.: inets

mod_auth

mod_auth

Erlang module

This module provides for basic user authentication using textual files, Dets databases, or Mnesia databases.

Exports

add group member(GroupName, UserName, Options) -> true | {error, Reason}

add group member(GroupName, UserName, Port, Dir) -> true | {error, Reason}
add group member(GroupName, UserName, Address, Port, Dir) -> true | {error,

Reason}
Types:
GroupNanme = string()
User Nanme = string()
Options = [Option]
Option = {port,Port} | {addr, Address} | {dir,Directory} |
{aut hPasswor d, Aut hPasswor d}

Port = integer()

Address = {A/B,C,D} | string() | undefined
Dir = string()

Aut hPassword = string()

Reason = term()

add_group_nenber/ 3, add_group_nenber/ 4,andadd_gr oup_nenber/ 5 each adds auser to agroup.
If the group does not exist, it is created and the user is added to the group. Upon successful operation, this function

returnst r ue. Whenadd_gr oup_nenber s/ 3 iscaled, optionsPort and Di r are mandatory.

add user(UserName, Options) -> true| {error, Reason}

add user(UserName, Password, UserData, Port, Dir) -> true | {error, Reason}
add user(UserName, Password, UserData, Address, Port, Dir) -> true | {error,

Reason}
Types:
User Nane = string()
Options = [Option]
Option = {password, Password} | {userData, UserData} | {port,Port} |
{addr, Address} | {dir,Directory} | {authPassword, Aut hPasswor d}

Password = string()

UserData = term)

Port = integer()

Address = {A,B,C, D} | string() | undefined
Dir = string()

Aut hPassword =string()

Reason = term()

Ericsson AB. All Rights Reserved.: inets | 47

mod_auth

add_user/2, add_user/5, and add_user/ 6 each adds a user to the user database. If the operation is
successful, this function returnst r ue. If an error occurs, { er r or , Reason} isreturned. When add_user/ 2 is
caled, options Passwor d, User Dat a, Port , and Di r are mandatory.

delete group(GroupName, Options) -> true | {error,Reason}
<name>delete group(GroupName, Port, Dir) -> true | {error, Reason}

delete group(GroupName, Address, Port, Dir) -> true | {error, Reason}
Types:

Options = [Option]

Option = {port,Port} | {addr,Address} | {dir,Directory} |

{ aut hPasswor d, Aut hPasswor d}

Port = integer()
Address = {A,B,C, D} | string() | undefined
Dir = string()
GroupNane = string()
Aut hPassword = string()
Reason = term()
del ete_group/ 2, del ete_group/ 3, anddel et e_gr oup/ 4 each deletes the group specified and returns

true. If thereisanerror,{ error, Reason} isreturned. Whendel et e_gr oup/ 2 iscalled, option Port and
Di r are mandatory.

delete group member(GroupName, UserName, Options) -> true | {error, Reason}
delete group member(GroupName, UserName, Port, Dir) -> true | {error, Reason}

delete group member(GroupName, UserName, Address, Port, Dir) -> true |
{error, Reason}

Types:
GroupNane = string()
User Nane = string()
Options = [Option]
Option = {port,Port} | {addr, Address} | {dir, Directory}
{aut hPasswor d, Aut hPasswor d}

Port = integer()
Address = {A,B,C,D} | string() | undefined
Dir = string()
Aut hPassword = string()
Reason = term()
del ete_group_nenber/ 3, del ete_group_nenber/ 4, and del et e_gr oup_nenber /5 each deletes

a user from a group. If the group or the user does not exigt, this function returns an error, otherwise t r ue. When
del et e_group_nenber/ 3 iscalled, theoptionsPort and Di r are mandatory.

delete user(UserName,Options) -> true | {error, Reason}
delete user(UserName, Port, Dir) -> true | {error, Reason}
delete user(UserName, Address, Port, Dir) -> true | {error, Reason}
Types.
User Nane = string()

48 | Ericsson AB. All Rights Reserved.: inets

mod_auth

Options = [Option]
Option = {port,Port} | {addr, Address} | {dir,Directory} |
{aut hPasswor d, Aut hPasswor d}

Port = integer()
Address = {A,B,C,D} | string() | undefined
Dir = string()
Aut hPassword = string()
Reason = term()
del ete_user/2, delete_user/3, and del ete_user/ 4 each deletes a user from the user database. If

the operation is successful, this function returns t r ue. If an error occurs, { er r or, Reason} is returned. When
del et e_user/ 2iscdled, optionsPort and Di r are mandatory.

get user(UserName,Options) -> {ok, #httpd user} |{error, Reason}
get user(UserName, Port, Dir) -> {ok, #httpd user} | {error, Reason}
get user(UserName, Address, Port, Dir) -> {ok, #httpd user} | {error, Reason}
Types:
User Nanme = string()
Options = [Option]

Option = {port,Port} | {addr, Address} | {dir,Directory} |
{aut hPasswor d, Aut hPasswor d}

Port = integer()
Address = {A/B,C,D} | string() | undefined
Dir = string()
Aut hPassword = string()
Reason = term()
get _user/2, get_user/3,andget user/ 4 eachreturnsan htt pd_user record containing the userdata

for a specific user. If the user cannot be found, { error, Reason} isreturned. When get _user/ 2 iscaled,
optionsPort and Di r are mandatory.

list groups(Options) -> {ok, Groups} | {error, Reason}
list groups(Port, Dir) -> {ok, Groups} | {error, Reason}
list groups(Address, Port, Dir) -> {ok, Groups} | {error, Reason}
Types:
Options = [Option]
Option = {port,Port} | {addr, Address} | {dir, Directory}
{aut hPasswor d, Aut hPasswor d}

Port = integer()

Address = {A,B,C,D} | string() | undefined
Dir = string()

Goups = list()

Aut hPassword = string()

Reason = term()

list groups/1, list _groups/2,andlist_groups/3 each listsal the groups available. If thereis an
error,{ error, Reason} isreturned. Whenl i st _groups/ 1 iscalled, optionsPort and Di r are mandatory.

Ericsson AB. All Rights Reserved.: inets | 49

mod_auth

list group members(GroupName, Options) -> {ok, Users} | {error, Reason}
list group members(GroupName, Port, Dir) -> {ok, Users} | {error, Reason}

list group members(GroupName, Address, Port, Dir) -> {ok, Users} | {error,
Reason}

Types:
GroupNane = string()
Options = [Option]
Option = {port,Port} | {addr, Address} | {dir,Directory} |
{aut hPasswor d, Aut hPasswor d}

Port = integer()
Address = {A/B,C,D} | string() | undefined
Dir = string()
Users = list()
Aut hPassword = string()
Reason = term()
list_group_menbers/2, 1ist_group_mnenbers/3, and | ist_group_nenbers/4 each lists the

members of a specified group. If the group does not exist or thereisan error, { err or, Reason} isreturned. When
list_group_menbers/2iscaled, optionsPort and Di r are mandatory.

list users(Options) -> {ok, Users} | {error, Reason}
list users(Port, Dir) -> {ok, Users} | {error, Reason}
list users(Address, Port, Dir) -> {ok, Users} | {error, Reason}
Types.
Options = [Option]
Option = {port,Port} | {addr, Address} | {dir, Directory}
{aut hPasswor d, Aut hPasswor d}

Port = integer()

Address = {A,B,C,D} | string() | undefined
Dir = string()

Users = list()

Aut hPassword = string()

Reason = atom()

list users/1l, list _users/2,andlist _users/3 eachreturnsalist of usersin the user database for a
specificPort/ Di r . Whenl i st _users/ 1iscalled, optionsPort and Di r are mandatory.

update password(Port, Dir, OldPassword, NewPassword, NewPassword) -> ok |
{error, Reason}

update password(Address,Port, Dir, OldPassword, NewPassword, NewPassword) ->
ok | {error, Reason}

Types:
Port = integer()
Address = {A,B,C, D} | string() | undefined
Dir = string()
GroupNanme = string()

50 | Ericsson AB. All Rights Reserved.: inets

mod_auth

ad dPasswor d string()
NewPassword = string()
Reason = term()

updat e_passwor d/ 5 and updat e_passwor d/ 6 each updates Aut hAccessPasswor d for the specified
directory. If NewPasswor d is equal to "NoPassword”, no password is required to change authorisation data. If
NewPasswor d is equa to "DummyPassword", no changes can be done without changing the password first.

SEE ALSO
httpd(3), mod_alias(3)

Ericsson AB. All Rights Reserved.: inets | 51

mod_esi

mod_esi

Erlang module

This module defines the Erlang Server Interface (ESI) API. It isamore efficient way of writing Erlang scriptsfor your
| net s web server than writing them as common CGl scripts.

DATA TYPES

The following data types are used in the functions for mod_esi:
env() =
{EnvKey()::atom(), Value::term)}
Currently supported key value pairs
{server_software, string()}
Indicates the inets version.
{server_nane, string()}
The local hostname.
{gateway_interface, string()}
Legacy string used in CGl, just ignore.
{server_protocol, string()}
HTTP version, currently "HTTP/1.1"
{server_port, integer()}
Servers port number.
{request _nethod, "GET | "PUT" | "DELETE" | "POST" | "PATCH'}
HTTP reguest method.
{renote_adress, inet:ip_address()}
The clientsip address.
{peer_cert, undefined | no_peercert | DER binary()}

For TL S connectionswhere client certificates are used thiswill bean ASN.1 DER-encoded X509-certificate
as an Erlang binary. If client certificates are not used the value will be no_peer cert, andif TLSis not
used (HTTP or connection islost due to network failure) the value will beundef i ned.

{script_nane, string()}
Request URI

{http_Lower CaseHTTPHeader Nanme, string()}
example: { http_content_type, "text/ntml"}

Exports
deliver(SessionID, Data) -> ok | {error, Reason}

Types:
SessionlD = tern()

52 | Ericsson AB. All Rights Reserved.: inets

mod_esi

Data = string() | io_ list() | binary()

Reason = term()
This function is only intended to be used from functions called by the Erl Scheme interface to deliver parts of the
content to the user.

Sends data from an Erl Scheme script back to the client.

If any HTTP header fields are added by the script, they must be in the first call to del i ver/ 2, and the datain
the call must be a string. Calls after the headers are complete can contain binary datato reduce copying overhead.
Do not assume anything about the data type of Sessi onl D. Sessi onl D must be the value given as input to the
ESI callback function that you implemented.

Exports

Module:Function(SessionID, Env, Input)-> {continue, State} | _
Types.
SessionlD = term()
Env = env()
Input = string() | chunked_data()
chunked_data() = {first, Data::binary()} | {continue, Data::binary(),
State::term()} | {last, Data::binary(), State::tern()}
State = term))

Modul e must be found in the code path and export Funct i on with an arity of three. Aner | Scri pt Al i as must
also be set up in the configuration file for the web server.

nod_esi : del i ver/ 2 shall beused to generatetheresponsetotheclient and Sessi onl Disanidentifier that shall
by used when calling this function, do not assume anything about the datatype. This function may be called severa
times to chunk the response data. Notice that the first chunk of data sent to the client must at least contain all HTTP
header fieldsthat the response will generate. If the first chunk does not contain theend of HT TP header, that is, "\ r

\n\r\n", theserver assumesthat no HTTP header fields will be generated.

Env environment data of the request see description above.

I nput isquery data of a GET request or the body of a PUT or POST request. The default behavior (legacy reasons)
for delivering the body, is that the whole body is gathered and converted to a string. But if the httpd config parameter
max_client_body_chunk is set, the body will be delivered asbinary chunksinstead. The maximum size of the chunksis
either max_client_body_chunk or decide by the client if it uses HT TP chunked encoding to send the body. When using
the chunking mechanism this callback must return { continue, State::term()} for all calswhere |l nput is{first,
Data::binary()} or{continue, Data::binary(), State::term()}.Whenlnput is{l ast,
Data::binary(), State::tern()} thereturnvauewill beignored.

Notethat if the body issmall al data may be delivered in only one chunk and then the callback will be called with
{last, Data::binary(), undefined} without getting called with{fi rst, Data::binary()}.

The input St at e isthe last returned St at e, in it the callback can include any data that it needs to keep track of
when handling the chunks.

Ericsson AB. All Rights Reserved.: inets | 53

mod_esi

Module:Function(Env, Input)-> Response
Types.

Env = env()

I nput = string()

Response = string()

This callback format consumes much memory, as the whole response must be generated before it is sent to the user.
This callback format is deprecated. For new development, use Modul e: Functi on/ 3.

54 | Ericsson AB. All Rights Reserved.: inets

mod_security

mod_security

Erlang module

Security Audit and Trailing Functionality

Exports

block user(User, Port, Dir, Seconds) -> true | {error, Reason}
block user(User, Address, Port, Dir, Seconds) -> true | {error, Reason}

Types:
User = string()
Port = integer()

Address = {A,B,C,D} | string() | undefined
Dir = string()
Seconds = integer() | infinity
Reason = no_such_directory
bl ock_user/ 4 andbl ock_user/ 5 eachblockstheuser User fromdirectory Di r for aspecified amount of time.

list auth users(Port) -> Users | []
list auth users(Address, Port) -> Users | []
list auth users(Port, Dir) -> Users | []
list auth users(Address, Port, Dir) -> Users | []
Types:
Port = integer()
Address = {A/B,C,D} | string() | undefined
Dir = string()
Users = list() = [string()]
list auth users/1,list_auth_users/2,andlist_auth_users/3eachreturnsalist of usersthat are
currently authenticated. Authentications are stored for Secur i t yAut hTi meout seconds, and then discarded.

list blocked users(Port) -> Users | []
list blocked users(Address, Port) -> Users | []
list blocked users(Port, Dir) -> Users | []
list blocked users(Address, Port, Dir) -> Users | []
Types.
Port = integer()
Address = {A,B,C,D} | string() | undefined
Dir = string()
Users = list() = [string()]
list blocked users/1,list_blocked users/2,andlist bl ocked users/ 3 eachreturnsalist of
users that are currently blocked from access.

Ericsson AB. All Rights Reserved.: inets | 55

mod_security

unblock user(User, Port) -> true | {error, Reason}

unblock user(User, Address, Port) -> true | {error, Reason}
unblock user(User, Port, Dir) -> true | {error, Reason}

unblock user(User, Address, Port, Dir) -> true | {error, Reason}

Types:
User = string()
Port = integer()

Address = {A,B,C,D} | string() | undefined
Dir = string()
Reason = term()

unbl ock_user/ 2, unbl ock_user/ 3, and unbl ock_user/ 4 each removes the user User from the list of
blocked usersfor Port (and Di r).

The SecurityCal | backModul e is a user-written module that can receive events from the mod_security
Erlang web server APl module. This module only exports the functions event/[4,5] which are described here.

Exports

Module:event(What, Port, Dir, Data) -> ignored
Module:event(What, Address, Port, Dir, Data) -> ignored

Types:
What = atom()
Port = integer()

Address = {A B, C, D} | string()
Dir = string()
Dat a [1nfo]
Info = {Nane, Val ue}
event/ 4 orevent /5 iscalled whenever an event occursinthenod_securi t y Erlang web server APl module.

(event/ 4 iscalledif Addr ess isundefined, otherwiseevent / 5. Argument What specifies the type of event that
has occurred and is one of the following reasons:

auth_fail
A failed user authentication.
user _bl ock
A user is being blocked from access.
user _unbl ock
A user is being removed from the block list.

The event user _unbl ock is not triggered when a user is removed from the block list explicitly using the
unbl ock_user function.

56 | Ericsson AB. All Rights Reserved.: inets

http_uri

http_uri

Erlang module

Thismodule is deprecated since OTP 23. Use the module uri_string to properly handle URIs, thisisthe recommended
module since OTP 21.

DATA TYPES

Type definitions that are used more than once in this module:
boolean() = true | false
string() =list of ASCII characters

URI DATA TYPES
Type definitions that are related to URI:
uri() = string() | binary()
Syntax according to the URI definition in RFC 3986, for example, "http://www.erlang.org/"
user _info() = string() | binary()

schene() = atom)
Example: http, https
host() = string() | binary()

port () i net:port_nunber ()

pat h()
Represents afile path or directory path

query() = string() | binary()

string() | binary()

fragnment() = string() | binary()

For more information about URI, see RFC 3986.

Exports

decode(HexEncodedURI) -> URI

Types:
HexEncodedURI = string() | binary() - A possibly hexadeci mal encoded UR
URI = uri ()

Decodes a possibly hexadecimal encoded URI.

encode (URI) -> HexEncodedURI
Types.
URI = uri()
HexEncodedURI = string() | binary() - Hexadecimal encoded URI

Ericsson AB. All Rights Reserved.: inets | 57

href

http_uri

Encodes a hexadecimal encoded URI.

parse(URI) -> {ok, Result} | {error, Reason}
parse(URI, Options) -> {ok, Result} | {error, Reason}
Types.
URI = uri()
Options = [Option]
Option = {ipv6e_host_wi th_brackets, boolean()} | {schene_defaults,
schenme_defaults()} | {fragment, boolean()} | {schene_validation_fun,

fun()}
Result = {Schenme, Userlnfo, Host, Port, Path, Query} | {Schene, Userl nfo,
Host, Port, Path, Query, Fragnent}

Schene = schene()
Userinfo = user_info()
Host host ()

Por t i net: port_nunber ()
Path = path()

Query = query()

Fragnment = fragment ()
Reason = term()

Parses a URI. If no scheme defaults are provided, the value of the scheme_defaults function is used.

When parsing a URI with an unknown scheme (that is, a scheme not found in the scheme defaults), a port number
must be provided, otherwise the parsing fails.

If the fragment optionist r ue, the URI fragment is returned as part of the parsing result, otherwise it isignored.

Scheme validation fun is to be defined as follows:

fun(SchemeStr :: string() | binary()) ->
valid | {error, Reason :: term()}.

It is called before scheme string gets converted into scheme atom and thus possible atom leak could be prevented

The scheme portion of the URI gets converted into atom, meaning that atom leak may occur. Specifying a scheme
validation fun is recommended unless the URI is already sanitized.

scheme defaults() -> SchemeDefaults

Types.
SchenmeDefaults = [{schenme(), default_scheme_port_nunber()}]
defaul t _schene_port_nunber () = inet:port_nunber()

Provides alist of the scheme and their default port numbers supported (by default) by this utility.

58 | Ericsson AB. All Rights Reserved.: inets

	inets
	Inets User's Guide
	Introduction
	Purpose
	Prerequisites

	Inets
	Service Concept

	HTTP Client
	Configuration
	Getting Started

	HTTP server
	Configuration
	Getting Started
	Dynamic Web Pages
	CGI Version 1.1, RFC 3875
	ESI
	ERL Scheme

	Logging
	Erlang Web Server API
	API Description

	Inets Web Server Modules
	mod_action - Filetype/Method-Based Script Execution
	mod_alias - URL Aliasing
	mod_auth - User Authentication
	Mnesia As Authentication Database

	mod_cgi - CGI Scripts
	mod_dir - Directories
	mod_disk_log - Logging Using Disk_Log.
	mod_esi - Erlang Server Interface
	mod_get - Regular GET Requests
	mod_head - Regular HEAD Requests
	mod_log - Logging Using Text Files.
	mod_range - Requests with Range Headers
	mod_response_control - Requests with If* Headers
	mod_security - Security Filter
	mod_trace - TRACE Request

	Reference Manual
	inets
	services/0
	services_info/0
	service_names/0
	start/0
	start/1
	start/2
	start/3
	stop/0
	stop/2

	httpc
	cancel_request/1
	cancel_request/2
	cookie_header/1
	cookie_header/2
	cookie_header/3
	get_options/1
	get_options/2
	info/0
	info/1
	reset_cookies/0
	reset_cookies/1
	request/1
	request/2
	request/4
	request/5
	set_options/1
	set_options/2
	store_cookies/2
	store_cookies/3
	stream_next/1
	which_cookies/0
	which_cookies/1
	which_sessions/0
	which_sessions/1

	httpd
	info/1
	info/2
	info/2
	info/3
	info/4
	info/3
	reload_config/2
	Module:do/1
	Module:remove/1
	Module:store/2
	parse_query/1

	httpd_custom_api
	response_default_headers/0
	response_header/1
	request_header/1

	httpd_socket
	deliver/3
	peername/2
	resolve/0

	httpd_util
	convert_request_date/1
	create_etag/1
	day/1
	decode_hex/1
	flatlength/1
	hexlist_to_integer/1
	integer_to_hexlist/1
	lookup/2
	lookup/3
	lookup_mime/2
	lookup_mime/3
	lookup_mime_default/2
	lookup_mime_default/3
	message/3
	month/1
	multi_lookup/2
	reason_phrase/1
	rfc1123_date/0
	rfc1123_date/1
	split/3
	split_script_path/1
	split_path/1
	strip/1
	suffix/1

	mod_alias
	default_index/2
	path/3
	real_name/3
	real_script_name/3

	mod_auth
	add_group_member/3
	add_group_member/4
	add_group_member/5
	add_user/2
	add_user/5
	add_user/6
	delete_group/2
	delete_group/4
	delete_group_member/3
	delete_group_member/4
	delete_group_member/5
	delete_user/2
	delete_user/3
	delete_user/4
	get_user/2
	get_user/3
	get_user/4
	list_groups/1
	list_groups/2
	list_groups/3
	list_group_members/2
	list_group_members/3
	list_group_members/4
	list_users/1
	list_users/2
	list_users/3
	update_password/5
	update_password/6

	mod_esi
	deliver/2
	Module:Function/3
	Module:Function/2

	mod_security
	block_user/4
	block_user/5
	list_auth_users/1
	list_auth_users/2
	list_auth_users/2
	list_auth_users/3
	list_blocked_users/1
	list_blocked_users/2
	list_blocked_users/2
	list_blocked_users/3
	unblock_user/2
	unblock_user/3
	unblock_user/3
	unblock_user/4
	Module:event/4
	Module:event/5

	http_uri
	decode/1
	encode/1
	parse/1
	parse/2
	scheme_defaults/0

