ERLANG

Parse Tools

Copyright © 1997-2020 Ericsson AB. All Rights Reserved.
Parse Tools 2.2

September 22, 2020

Copyright © 1997-2020 Ericsson AB. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance
with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless
required by applicable law or agreed to in writing, software distributed under the License is distributed on an
"AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See

the License for the specific language governing permissions and limitations under the License. Ericsson AB. All
Rights Reserved..

September 22, 2020

1 Reference Manual

The Par setools application contains utilitiesfor parsing and scanning. Y eccisan LALR-1 parser generator for Erlang,
similar to yacc. Y ecc takes a BNF grammar definition as input, and produces Erlang code for a parser as output. Leex
isaregular expression based lexical analyzer generator for Erlang, similar to lex or flex.

Ericsson AB. All Rights Reserved.: Parse Tools | 1

yecc

yecc

Erlang module

An LALR-1 parser generator for Erlang, similar to yacc. Takes a BNF grammar definition as input, and produces
Erlang code for a parser.

To understand this text, you also have to look at the yacc documentation in the UNIX(TM) manual. This is most
probably necessary in order to understand the idea of a parser generator, and the principle and problems of LALR
parsing with finite |ook-ahead.

Exports

file(Grammarfile [, Options]) -> YeccRet
Types:

Gamarfile = fil enane()

Options = Option | [Option]

Option = - see bel ow -

YeccRet = {ok, Parserfile} | {ok, Parserfile, Warnings} | error | {error,
Errors, Warnings}

Parserfile = fil enane()

Warnings = Errors = [{filenane(), [Errorlnfo]}]
Errorinfo = {ErrorLine, nodule(), Reason}
ErrorLine = integer()

Reason = - formatable by format_error/1 -

Gramar fi | e isthefile of declarations and grammar rules. Returns ok upon success, or er r or if there are errors.
An Erlang file containing the parser is created if there are no errors. The options are:

{parserfile, Parserfile}.
Par ser fi | e isthe name of the file that will contain the Erlang parser code that is generated. The default
("")istoadd theextension . er | to Granmar fi | e stripped of the. yr| extension.

{includefile, Includefile}.
Indicates a customized prologue file which the user may want to use instead of the default filel i b/
par set ool s/ i ncl ude/ yeccpre. hrl which isotherwise included at the beginning of the resulting
parser file. N.B. Thel ncl udef i | e isincluded 'asis' in the parser file, so it must not have amodule
declaration of its own, and it should not be compiled. It must, however, contain the necessary export
declarations. The default isindicated by " " .

{report _errors, bool ()}.
Causes errors to be printed as they occur. Defaultist r ue.

{report_warni ngs, bool ()}.
Causes warnings to be printed as they occur. Default ist r ue.

{report, bool()}.
Thisisashort form for bothr eport _errors andr eport _war ni ngs.

war ni ngs_as_errors

Causes warnings to be treated as errors.

{return_errors, bool ()}.
If thisflagisset,{error, Errors, Warnings} isreturned whenthere are errors. Defaultisf al se.

2 | Ericsson AB. All Rights Reserved.: Parse Tools

yecc

{return_warni ngs, bool ()}.
If thisflag is set, an extrafield containing Var ni ngs is added to the tuple returned upon success. Default is
fal se.

{return, bool ()}.
Thisisashort form for bothr et urn_errors andr et ur n_war ni ngs.

{verbose, bool ()}.
Determines whether the parser generator should give full information about resolved and unresolved parse
action conflicts (t r ue), or only about those conflicts that prevent a parser from being generated from the input
grammar (f al se, the default).

Any of the Boolean optionscan besettot r ue by stating the name of the option. For example, ver bose isequivalent
to{verbose, true}.

The value of the Par serfi | e option stripped of the . er | extension is used by Y ecc as the module name of the
generated parser file.

Yecc will add the extension . yr| tothe Gramar fi | e name, the extension . hr| tothel ncl udefi | e name,
and theextension . er | tothePar ser fi | e name, unless the extension is already there.

format _error(Reason) -> Chars

Types.
Reason = - as returned by yecc:file/l,2 -
Chars = [char() | Chars]

Returns a descriptive string in English of an error tuple returned by yecc: fi |l e/ 1, 2. Thisfunction is mainly used
by the compiler invoking Y ecc.

Pre-Processing

A scanner to pre-process the text (program, etc.) to be parsed is not provided in the yecc module. The scanner
servesasakind of lexicon look-up routine. It is possible to write agrammar that uses only character tokens asterminal
symbols, thereby eliminating the need for a scanner, but this would make the parser larger and slower.

The user should implement a scanner that segments the input text, and turns it into one or more lists of tokens. Each
token should be a tuple containing information about syntactic category, position in the text (e.g. line number), and
the actual terminal symbol found in the text: { Cat egory, Li neNunber, Synbol}.

If aterminal symbol is the only member of a category, and the symbol name is identical to the category name, the
token format may be{ Synbol , Li neNunber}.

A list of tokens produced by the scanner should end with aspecial end_of _i nput tuple which the parser islooking
for. The format of this tuple should be { Endsynbol , Last Li neNunber }, where Endsynbol isan identifier
that is distinguished from all the terminal and non-terminal categories of the syntax rules. The Endsynbol may be
declared in the grammar file (see below).

The simplest case isto segment the input string into alist of identifiers (atoms) and use those atoms both as categories
and values of the tokens. For example, theinput stringaaa bbb 777, Xmay be scanned (tokenized) as:

[{aaa, 1}, {bbb, 1}, {777, 1}, {',' , 1}, {'X', 1},
{'$end', 1}].

Thisassumesthat thisisthefirst line of theinput text, andthat* $end' isthedistinguishedend_of _i nput symbol.

The Erlang scanner in the i 0 module can be used as a starting point when writing a new scanner. Study
yeccscan. er| inorder to see how afilter can be added ontop of i 0: scan_er| _f or nf 3 to provide a scanner
for Y ecc that tokenizes grammar files before parsing them with the Y ecc parser. A more general approach to scanner
implementation is to use a scanner generator. A scanner generator in Erlang called | eex isunder development.

Ericsson AB. All Rights Reserved.: Parse Tools | 3

yecc

Grammar Definition Format
Erlang stylecomment s, startingwitha' % , are allowed in grammar files.
Eachdecl arati on orrul e endswith adot (the character ' . ').

The grammar starts with an optional header section. The header is put first in the generated file, before the module
declaration. The purpose of the header isto provide ameansto make the documentation generated by EDoc |ook nicer.
Each header line should be enclosed in double quotes, and newlines will be inserted between the lines. For example:

Header "%% Copyright (C)"
% @private"
% @Author John".

Next comes adeclaration of thenont er mi nal cat egori es tobeused in therules. For example:

Nonterminals sentence nounphrase verbphrase.

A non-terminal category can be used at the left hand side (= | hs, or head) of a grammar rule. It can also appear
at the right hand side of rules.

Next comes a declaration of thet er mi nal cat egori es, which are the categories of tokens produced by the
scanner. For example:

Terminals article adjective noun verb.

Terminal categories may only appear in the right hand sides (= r hs) of grammar rules.
Next comes adeclaration of ther oot synbol , or start category of the grammar. For example:

Rootsymbol sentence.

This symbol should appear in the |hs of at least one grammar rule. Thisis the most general syntactic category which
the parser ultimately will parse every input string into.

After the rootsymbol declaration comes an optional declaration of theend_of _i nput symbol that your scanner is
expected to use. For example:

Endsymbol '$end'.

Next comes one or more declarations of oper at or pr ecedences, if needed. These are used to resolve shift/
reduce conflicts (see yacc documentation).

Examples of operator declarations:

Right 100 '='.
Nonassoc 200 '==' '=/="'.
Left 300 '+'.
Left 400 '*'.
Unary 500 '-'.

These declarationsmeanthat ' =' isdefined asari ght associ ati ve bi nary operator with precedence 100,
'=='" and' =/ =' areoperatorswithno associativity,'+" and'*' arel eft associative binary
operators, where' *' takesprecedenceover' +' (thenormal case),and’ -' isaunary operator of higher precedence
than ' *' . The fact that '==" has no associativity means that an expression likea == b == c isconsidered a

syntax error.

Certain rules are assigned precedence: each rule gets its precedence from the last terminal symbol mentioned in the
right hand side of therule. It is also possible to declare precedence for non-terminals, "one level up”. Thisis practical
when an operator is overloaded (see also example 3 below).

Next comethegr amrar rul es. Each rule has the general form

4 | Ericsson AB. All Rights Reserved.: Parse Tools

yecc

Left hand side -> Right hand side : Associated code.

Theleft hand sideisanon-terminal category. Theright hand sideis asequence of one or more non-terminal or terminal
symbols with spaces between. The associated code is a sequence of zero or more Erlang expressions (with commas

, ' as separators). If the associated code is empty, the separating colon ' : ' is also omitted. A final dot marks the
end of therule.

Symbolssuchas' {',"'.", etc., haveto be enclosed in single quotes when used as terminal or non-terminal symbols
in grammar rules. The use of the symbols' $enpty' ,' $end' , and’ $undefi ned' should be avoided.

The last part of the grammar fileis an optional section with Erlang code (= function definitions) which isincluded ‘as
is in the resulting parser file. This section must start with the pseudo declaration, or key words

Erlang code.

No syntax rule definitions or other declarations may follow this section. To avoid conflicts with internal variables, do
not use variable names beginning with two underscore characters (*__") in the Erlang code in this section, or in the
code associated with the individual syntax rules.

The optional expect declaration can be placed anywhere before the last optional section with Erlang code. It isused
for suppressing the warning about conflicts that is ordinarily given if the grammar is ambiguous. An example:

Expect 2.

Thewarning is given if the number of shift/reduce conflicts differsfrom 2, or if there are reduce/reduce conflicts.

Examples
A grammar to parse list expressions (with empty associated code):

Nonterminals list elements element.
Terminals atom '(' ')'.

Rootsymbol list.

list -> '(' ')"'.

list -> '(' elements ')"'.

elements -> element.

elements -> element elements.
element -> atom.

element -> list.

This grammar can be used to generate a parser which parses list expressions, such as (), (a), (peter
charles), (a (b c) d (())), ... providedthat your scanner tokenizes, for example, theinput (pet er
charl es) asfollows:

[({'c", 1y , {atom, 1, peter}, {atom, 1, charles}, {')', 1},
{'$end', 1}]

When a grammar rule is used by the parser to parse (part of) the input string as a grammatical phrase, the associated
codeisevaluated, and the value of the last expression becomes the value of the parsed phrase. Thisvalue may be used
by the parser later to build structures that are values of higher phrases of which the current phraseisapart. The values
initially associated with terminal category phrases, i.e. input tokens, are the token tuples themselves.

Below is an example of the grammar above with structure building code added:

list -> '(' '")' : nil.

list -> '(' elements ')' : '$2°'.

elements -> element : {cons, '$1', nil}.

elements -> element elements : {cons, '$1', '$2'}.
element -> atom : '$1'.

element -> list : '$1'.

Ericsson AB. All Rights Reserved.: Parse Tools | 5

yecc

With this code added to the grammar rules, the parser produces the following value (structure) when parsing the input
string(a b c¢). . Thisstill assumesthat thiswas the first input line that the scanner tokenized:

{cons, {atom, 1, a,} {cons, {atom, 1, b},
{cons, {atom, 1, c}, nil}}}

The associated code contains pseudo vari ables ' $1',' $2',' $3', etc. which refer to (are bound to) the
values associated previously by the parser with the symbols of the right hand side of the rule. When these symbolsare
terminal categories, the values are token tuples of the input string (see above).

The associated code may not only be used to build structures associated with phrases, but may al so be used for syntactic
and semantic tests, printout actions (for example for tracing), etc. during the parsing process. Since tokens contain
positional (line number) information, it is possible to produce error messages which contain line numbers. If thereis
no associated code after the right hand side of therule, the value' $undefi ned' isassociated with the phrase.

The right hand side of a grammar rule may be empty. This is indicated by using the special symbol * $enmpty' as
rhs. Then the list grammar above may be simplified to:

list -> '(' elements ')' : '$2°'.

elements -> element elements : {cons, '$1', '$2'}.
elements -> '$empty' : nil.

element -> atom : '$1'.

element -> list : '$1'.

Generating a Parser

To call the parser generator, use the following command:
yecc:file(Grammarfile).

An error message from Yecc will be shown if the grammar is not of the LALR type (for example too ambiguous).
Shift/reduce conflicts are resolved in favor of shifting if there are no operator precedence declarations. Refer to the
yacc documentation on the use of operator precedence.

The output file contains Erlang source code for a parser module with module name equal to the Par serfil e

parameter. After compilation, the parser can be called as follows (the module name is assumed to be nypar ser):
myparser:parse(myscanner:scan(Inport))

The call format may be different if a customized prologue file has been included when generating the parser instead

of the default filel i b/ par set ool s/ i ncl ude/ yeccpre. hrl.

With the standard prologue, this call will return either { ok, Resul t } ,where Resul t isastructure that the Erlang
code of the grammar file hasbuilt, or { error, {Li ne_nunber, Mdul e, Message}} if therewasasyntax
error in the input.

Message is something which may be converted into a string by calling Modul e: f or mat _err or (Message)
and printed withi o: f or mat / 3.

By default, the parser that was generated will not print out error messages to the screen. The user will have to do
this either by printing the returned error messages, or by inserting tests and print instructions in the Erlang code
associated with the syntax rules of the grammar file.

It is also possible to make the parser ask for more input tokens when needed if the following call format is used:

6 | Ericsson AB. All Rights Reserved.: Parse Tools

yecc

myparser:parse_and scan({Function, Args})
myparser:parse_and scan({Mod, Tokenizer, Args})

Thetokenizer Funct i on iseither afun or atuple{ Mod, Tokeni zer}.Thecal appl y(Functi on, Args)
orappl y({Mdd, Tokenizer}, Args) isexecuted whenever anew tokenisneeded. This, for example, makes
it possible to parse from afile, token by token.

The tokenizer used above has to be implemented so as to return one of the following:

{ok, Tokens, Endline}
{eof, Endline}
{error, Error description, Endline}

This conforms to the format used by the scanner in the Erlang i o library module.

If {eof, Endline} isreturnedimmediately, thecall to par se_and_scan/ 1 returns{ ok, eof}.If{eof,
Endl i ne} isreturned before the parser expects end of input, par se_and_scan/ 1 will, of course, return an error
message (see above). Otherwise{ ok, Resul t} isreturned.

More Examples
1. A grammar for parsing infix arithmetic expressions into prefix notation, without operator precedence:
Nonterminals E T F.

Terminals '+' '*' '(' '")' number.
Rootsymbol E.

E ->E '"+'" T: {'$2', '$1', '$3'}.
E ->T: "$1'.

T ->T "*" F: {'$2', '$1', '$3'}.
T->F : '$1'.

F->'("E ") : '$2".

F -> number : '$1°'.

2. The same with operator precedence becomes simpler:

Nonterminals E.

Terminals '+' '"*' '(' ')' number.
Rootsymbol E.

Left 100 '+'.

Left 200 '*',

E->E '+' E : {'$2', '$1', '$3'}.
E ->E '"*' E: {'$2', '$1', '$3'}.
E->'("E ") : '$2"'.

E -> number : '$1'.

3. An overloaded minus operator:

Nonterminals E uminus.
Terminals '*' '-' number.
Rootsymbol E.

Left 100 '-'.
Left 200 '*'.
Unary 300 uminus.

E->E '-'E.
E ->E '*' E.
E -> uminus.
E -> number.

uminus -> '-' E.

Ericsson AB. All Rights Reserved.: Parse Tools | 7

yecc

4. The Y ecc grammar that is used for parsing grammar files, including itself:

Nonterminals

grammar declaration rule head symbol symbols attached code

token tokens.

Terminals

atom float integer reserved symbol reserved word string char var
'->' ':' dot.

Rootsymbol grammar.

Endsymbol '$end'.

grammar -> declaration : '$1°'.

grammar -> rule : '$1°'.

declaration -> symbol symbols dot: {'$1', '$2'}.

rule -> head '->' symbols attached code dot: {rule, ['$1' | '$3'],
"$4'}.

head -> symbol : '$1'.
symbols -> symbol : ['$1'].

symbols -> symbol symbols : ['$1' | '$2'].
attached code -> ':' tokens : {erlang code, '$2'}.
attached code -> '$empty' : {erlang code,

[{atom, O, '$undefined'}]}.

tokens -> token : ['$1'].
tokens -> token tokens : ['$1' | '$2'].
symbol -> var : value of('$1l').
symbol -> atom : value of('$1').
symbol -> integer : value of('$1').
symbol -> reserved word : value of('$1').
token -> var : '$1°'.
token -> atom : '$1°'.
token -> float : '$1'.
token -> integer : '$1'.
token -> string : '$1°'.
token -> char : '$1'.
token -> reserved symbol : {value of('$1l'), line of('$1')}.
token -> reserved word : {value of('$1'), line of('$1')}.
token -> '->' : {'->', line of('$1')}.
token -> ':' : {':', line of('$1')}.
Erlang code.
value of(Token) ->

element (3, Token).
line of(Token) ->

element (2, Token).

Thesymbols' - >' ,and' : ' haveto betreated in aspecial way, asthey are meta symbols of the grammar notation,
aswell astermina symbols of the Y ecc grammar.

5. Thefileer| _parse. yrl intheli b/ stdli b/ src directory contains the grammar for Erlang.

Syntactic tests are used in the code associated with some rules, and an error is thrown (and caught by the
generated parser to produce an error message) when a test fails. The same effect can be achieved with a call
toreturn_error(Error_line, Mssage_string), whichisdefinedintheyeccpre. hrl default
header file.

8 | Ericsson AB. All Rights Reserved.: Parse Tools

yecc

Files

lib/parsetools/include/yeccpre.hrl

See Also
Aho & Johnson: ‘LR Parsing’, ACM Computing Surveys, val. 6:2, 1974.

Ericsson AB. All Rights Reserved.: Parse Tools | 9

leex

leex

Erlang module

A regular expression based lexical analyzer generator for Erlang, similar to lex or flex.

| The Leex module should be considered experimental as it will be subject to changes in future releases. |

DATA TYPES

ErrorInfo = {ErrorLine,module(),error descriptor()}
ErrorLine = integer()
Token = tuple()

Exports

file(FileName) -> LeexRet
file(FileName, Options) -> LeexRet
Types:

FileName = fil ename()

Options = Option | [Option]

Option = - see bel ow -

LeexRet = {ok, Scannerfile} | {ok, Scannerfile, Warnings} | error |
{error, Errors, Wrnings}

Scannerfile = fil enane()

Warnings = Errors = [{filename(), [Errorlnfo]}]
Errorinfo = {ErrorLine, nodule(), Reason}
ErrorLine = integer()

Reason = - formatable by format_error/1 -

Generates alexical analyzer from the definition in the input file. The input file hasthe extension . xr | . Thisis added
to the filename if it is not given. The resulting module is the Xrl filename without the. xr | extension.

The current options are:
df a_gr aph

Generatesa. dot file which contains a description of the DFA in aformat which can be viewed with Graphviz,
www. gr aphvi z. com

{includefile,Includefile}

Uses aspecific or customised prologue fileinstead of default | i b/ par set ool s/ i ncl ude/ | eexi nc. hrl
which is otherwise included.

{report _errors, bool ()}

Causes errors to be printed as they occur. Defaultist r ue.
{report _warni ngs, bool ()}

Causes warnings to be printed as they occur. Default ist r ue.

10 | Ericsson AB. All Rights Reserved.: Parse Tools

leex

warni ngs_as_errors
Causes warnings to be treated as errors.
{report, bool ()}
Thisisashort form for bothr eport _errors andr eport _war ni ngs.
{return_errors, bool ()}
If thisflagisset,{error, Errors, Warnings} isreturned when there are errors. Default isf al se.
{return_warni ngs, bool ()}

If this flag is set, an extra field containing WAr ni ngs is added to the tuple returned upon success. Default is
fal se.

{return, bool ()}
Thisisashort form for bothr et urn_errors andr et ur n_war ni ngs.
{scannerfile, Scannerfile}

Scanner f i | e isthe name of the file that will contain the Erlang scanner code that is generated. The default
("")istoadd theextension . er| toFi | eNane stripped of the. xr | extension.

{verbose, bool ()}
Outputs information from parsing the input file and generating the internal tables.

Any of the Boolean optionscan besettot r ue by stating the name of the option. For example, ver bose isequivalent
to{verbose, true}.

Leex will addtheextension. hr | tothel ncl udefi | e nameand theextension. er| totheScanner fi | e name,
unless the extension is already there.

format _error(ErrorInfo) -> Chars
Types:
Chars = [char() | Chars]
Returns a string which describes the error Er r or | nf o returned when thereis an error in aregular expression.

The following functions are exported by the generated scanner.

Exports

Module:string(String) -> StringRet
Module:string(String, StartLine) -> StringRet
Types:

String = string()

StringRet = {0k, Tokens, EndLine} | Errorlnfo

Tokens = [Token]

EndLi ne = StartLine = integer()

Scans St ri ng and returns all the tokensin it, or an error.

| Itisan error if not all of the charactersin St ri ng are consumed. |

Ericsson AB. All Rights Reserved.: Parse Tools | 11

leex

Module:token(Cont, Chars) -> {more,Contl} | {done,TokenRet,RestChars}

Module:token(Cont, Chars, StartLine) -> {more,Contl} |
{done, TokenRet,RestChars}

Types:
Cont =[] | Cont1l
Contl = tuple()

Chars = RestChars = string() | eof

TokenRet = {ok, Token, EndLine} | {eof, EndLine} | Errorlnfo

StartLine = EndLine = integer()
Thisisare-entrant call to try and scan one token from Char s. If there are enough charactersin Char s to either scan
atoken or detect an error then thiswill be returned with { done, . . . } . Otherwise { cont , Cont } will be returned

where Cont isusedinthenext call tot oken() with more charactersto try an scan the token. Thisis continued until
atoken has been scanned. Cont isinitially [] .

It is not designed to be called directly by an application but used through the i/o system where it can typicaly be
called in an application by:

io:request(InFile, {get until,unicode,Prompt,Module,token,[Line]})
-> TokenRet

Module:tokens(Cont, Chars) -> {more,Contl} | {done,TokensRet,RestChars}

Module:tokens(Cont, Chars, StartLine) -> {more,Contl} |
{done, TokensRet,RestChars}

Types.
Cont =[] | Cont1l
Contl = tuple()

Chars = RestChars = string() | eof

TokensRet = {ok, Tokens, EndLine} | {eof, EndLine} | Errorinfo

Tokens = [Token]

StartLine = EndLine = integer()
Thisis are-entrant call to try and scan tokens from Char s. If there are enough characters in Char s to either scan
tokens or detect an error then this will be returned with { done, . . . } . Otherwise { cont , Cont } will be returned

where Cont isused in the next call tot okens() with more characters to try an scan the tokens. Thisis continued
until all tokens have been scanned. Cont isinitialy [] .

This functions differs from token in that it will continue to scan tokens upto and including an
{end_t oken, Token} hasbeen scanned (see next section). It will then return all the tokens. Thisistypically used
for scanning grammarslike Erlangwherethereisan explicit endtoken,' . ' . If noend tokenisfound then thewholefile
will be scanned and returned. If an error occurs then all tokens upto and including the next end token will be skipped.

It is not designed to be called directly by an application but used through the i/o system where it can typically be
called in an application by:

io:request(InFile, {get until,unicode,Prompt,Module,tokens,[Line]})
-> TokensRet

Input File Format

Erlang style comments starting with a %are allowed in scanner files. A definition file has the following format:

12 | Ericsson AB. All Rights Reserved.: Parse Tools

leex

<Header>
Definitions.

<Macro Definitions>
Rules.

<Token Rules>
Erlang code.
<Erlang code>

The "Definitions.", "Rules." and "Erlang code." headings are mandatory and must occur at the beginning of a source
line. The<Header>, <Macro Definitions> and <Erlang code> sections may be empty but there must be at |east onerule.

Macro definitions have the following format:
NAME = VALUE

and there must be spaces around =. Macros can be used in the regular expressions of rules by writing { NAVE} .

When macros are expanded in expressions the macro calls are replaced by the macro value without any form of
guoting or enclosing in parentheses.

Rules have the following format:
<Regexp> : <Erlang code>.

The <Regexp> must occur at the start of a line and not include any blanks; use\t and \ s to include TAB and
SPACE charactersin the regular expression. If <Regexp> matches then the corresponding <Erlang code> is eval uated
to generate a token. With the Erlang code the following predefined variables are available:

TokenChar s

A list of the charactersin the matched token.
TokenLen

The number of characters in the matched token.
TokenLi ne

The line number where the token occurred.
The code must return:
{t oken, Token}

Return Token to the caller.
{end_t oken, Token}

Return Token and islast token in atokens call.
ski p_t oken

Skip this token completely.
{error,ErrString}

An error inthetoken, Er r St r i ng isastring describing the error.

Ericsson AB. All Rights Reserved.: Parse Tools | 13

leex

It isalso possible to push back characters into the input characters with the following returns:
 {token, Token, PushBackLi st}

« {end_token, Token, PushBackLi st}

 {skip_token, PushBackLi st}

These have the same meanings as the normal returns but the charactersin PushBackLi st will be prepended to the
input characters and scanned for the next token. Note that pushing back a newline will mean the line numbering will
no longer be correct.

| Pushing back characters gives you unexpected possibilities to cause the scanner to loop!

The following example would match a simple Erlang integer or float and return a token which could be sent to the
Erlang parser:

D = [0-9]

{D}+ :
{token, {integer,TokenLine,list to integer(TokenChars)}}.

{D}+\.{D}+((E[e) (\+|\-)?{D}+)? :
{token, {float,TokenLine,list to float(TokenChars)}}.
The Erlang code in the "Erlang code." section is written into the output file directly after the module declaration and

predefined exports declaration so it is possible to add extra exports, define imports and other attributes which are then
visiblein the wholefile.

Regular Expressions

The regular expressions allowed here is a subset of the set found in egr ep and in the AWK programming language,
as defined in the book, The AWK Programming Language, by A. V. Aho, B. W. Kernighan, P. J. Weinberger. They
are composed of the following characters:

c
Matches the non-metacharacter c.
\c
Matches the escape sequence or literal character c.
Matches any character.
A
Matches the beginning of a string.
$
Matches the end of a string.
[abc. . .]
Character class, which matches any of the characters abc. . . . Character ranges are specified by a pair of
characters separated by a - .
[~rabe. ..]

Negated character class, which matches any character except abc. . . .

14 | Ericsson AB. All Rights Reserved.: Parse Tools

leex

ri| r2
Alternation. It matcheseitherr 1 orr 2.
rir2
Concatenation. It matchesr 1 and thenr 2.
r+
Matches one or morer s.
r*
Matches zero or morer s.
r?
Matches zero or oner s.
(r)
Grouping. It matchesr .
The escape sequences allowed are the same as for Erlang strings:
\b
Backspace.
\ f
Form feed.
\n
Newline (line feed).
\r
Carriage return.
\ t
Tab.
\e
Escape.
\v
Vertical tab.
\'s
Space.
\d
Delete.
\ ddd
The octal valueddd.
\ xhh
The hexadecimal value hh.
\x{h...}
The hexadecimal valueh. . . .

Ericsson AB. All Rights Reserved.: Parse Tools | 15

leex

\c
Any other character literally, for example\ \ for backslash,\ " for " .
The following examples define smplified versions of afew Erlang data types:
Atoms [a-z][0-9a-zA-Z]*
Variables [A-Z][0-9a-zA-Z 1*

Floats (\+]|-)?[0-91+\.[0-9]+((E|e)(\+|-)?[0-9]+)?

Anchoring aregular expression with” and $ is not implemented in the current version of Leex and just generates
aparse error.

16 | Ericsson AB. All Rights Reserved.: Parse Tools

	Parse Tools
	Reference Manual
	yecc
	file/1
	format_error/1

	leex
	file/1
	file/2
	format_error/1
	Module:string/1
	Module:string/2
	Module:token/2
	Module:token/3
	Module:tokens/2
	Module:tokens/3

