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1.1  Introduction

1    Common Test User's Guide

1.1  Introduction
1.1.1  Scope
Common Test is a portable application for automated testing. It is suitable for:

• Black-box testing of target systems of any type (that is, not necessarily implemented in Erlang). This is performed
through standard O&M interfaces (such as SNMP, HTTP, CORBA, and Telnet) and, if necessary, through user-
specific interfaces (often called test ports).

• White-box testing of Erlang/OTP programs. This is easily done by calling the target API functions directly from
the test case functions.

Common Test also integrates use of the OTP cover tool in application Tools for code coverage analysis of Erlang/
OTP programs.

Common Test executes test suite programs automatically, without operator interaction. Test progress and results are
printed to logs in HTML format, easily browsed with a standard web browser. Common Test also sends notifications
about progress and results through an OTP event manager to event handlers plugged in to the system. This way, users
can integrate their own programs for, for example, logging, database storing, or supervision with Common Test.

Common Test provides libraries with useful support functions to fill various testing needs and requirements. There
is, for example, support for flexible test declarations through test specifications. There is also support for central
configuration and control of multiple independent test sessions (to different target systems) running in parallel.

1.1.2  Prerequisites
It is assumed that the reader is familiar with the Erlang programming language.

1.2  Common Test Basics
1.2.1  General
The Common Test framework is a tool that supports implementation and automated execution of test cases to any
types of target systems. Common Test is the main tool being used in all testing- and verification activities that are
part of Erlang/OTP system development and maintenance.

Test cases can be executed individually or in batches. Common Test also features a distributed testing mode with
central control and logging. With this feature, multiple systems can be tested independently in one common session.
This is useful, for example, when running automated large-scale regression tests.

The System Under Test (SUT) can consist of one or more target nodes. Common Test contains a generic test server
that, together with other test utilities, is used to perform test case execution. The tests can be started from a GUI,
from the OS shell, or from an Erlang shell. Test suites are files (Erlang modules) that contain the test cases (Erlang
functions) to be executed. Support modules provide functions that the test cases use to do the tests.

In a black-box testing scenario, Common Test-based test programs connect to the target system(s) through
standard O&M and CLI protocols. Common Test provides implementations of, and wrapper interfaces to, some
of these protocols (most of which exist as standalone components and applications in OTP). The wrappers simplify
configuration and add verbosity for logging purposes. Common Test is continously extended with useful support
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modules. However, notice that it is a straightforward task to use any Erlang/OTP component for testing purposes with
Common Test, without needing a Common Test wrapper for it. It is as simple as calling Erlang functions. A
number of target-independent interfaces are supported in Common Test, such as Generic Telnet and FTP. These can
be specialized or used directly for controlling instruments, traffic load generators, and so on.

Common Test is also a very useful tool for white-box testing Erlang code (for example, module testing), as the test
programs can call exported Erlang functions directly. There is very little overhead required for implementing basic test
suites and executing simple tests. For black-box testing Erlang software, Erlang RPC and standard O&M interfaces
can be used for example.

A test case can handle several connections to one or more target systems, instruments, and traffic generators in parallel
to perform the necessary actions for a test. The handling of many connections in parallel is one of the major strengths
of Common Test, thanks to the efficient support for concurrency in the Erlang runtime system, which Common
Test users can take great advantage of.

1.2.2  Test Suite Organisation
Test suites are organized in test directories and each test suite can have a separate data directory. Typically, these files
and directories are version-controlled similar to other forms of source code (possibly by a version control system like
GIT or Subversion). However, Common Test does not itself put any requirements on (or has any awareness of)
possible file and directory versions.

1.2.3  Support Libraries
Support libraries contain functions that are useful for all test suites, or for test suites in a specific functional area or
subsystem. In addition to the general support libraries provided by the Common Test framework, and the various
libraries and applications provided by Erlang/OTP, there can also be a need for customized (user specific) support
libraries.

1.2.4  Suites and Test Cases
Testing is performed by running test suites (sets of test cases) or individual test cases. A test suite is implemented as an
Erlang module named <suite_name>_SUITE.erl which contains a number of test cases. A test case is an Erlang
function that tests one or more things. The test case is the smallest unit that the Common Test test server deals with.

Sets of test cases, called test case groups, can also be defined. A test case group can have execution properties associated
with it. Execution properties specify if the test cases in the group are to be executed in random order, in parallel, or
in sequence, and if the execution of the group is to be repeated. Test case groups can also be nested (that is, a group
can, besides test cases, contain subgroups).

Besides test cases and groups, the test suite can also contain configuration functions. These functions are meant to
be used for setting up (and verifying) environment and state in the SUT (and/or the Common Test host node),
required for the tests to execute correctly. Examples of operations are: Opening a connection to the SUT, initializing
a database, running an installation script, and so on. Configuration can be performed per suite, per test case group,
and per individual test case.

The test suite module must conform to a callback interface specified by the Common Test test server. For details,
see section Writing Test Suites.

A test case is considered successful if it returns to the caller, no matter what the returned value is. However, a few
return values have special meaning as follows:

• {skip,Reason} indicates that the test case is skipped.

• {comment,Comment} prints a comment in the log for the test case.

• {save_config,Config} makes the Common Test test server pass Config to the next test case.
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A test case failure is specified as a runtime error (a crash), no matter what the reason for termination is. If you use
Erlang pattern matching effectively, you can take advantage of this property. The result is concise and readable test
case functions that look much more like scripts than actual programs. A simple example:

 session(_Config) ->
     {started,ServerId} = my_server:start(),
     {clients,[]} = my_server:get_clients(ServerId),
     MyId = self(),
     connected = my_server:connect(ServerId, MyId),
     {clients,[MyId]} = my_server:get_clients(ServerId),
     disconnected = my_server:disconnect(ServerId, MyId),
     {clients,[]} = my_server:get_clients(ServerId),
     stopped = my_server:stop(ServerId).

As a test suite runs, all information (including output to stdout) is recorded in many different log files. A minimum
of information is displayed in the user console (only start and stop information, plus a note for each failed test case).

The result from each test case is recorded in a dedicated HTML log file, created for the particular test run. An overview
page displays each test case represented by a table row showing total execution time, if the case was successful, failed,
or skipped, plus an optional user comment. For a failed test case, the reason for termination is also printed in the
comment field. The overview page has a link to each test case log file, providing simple navigation with any standard
HTML browser.

1.2.5  External Interfaces
The Common Test test server requires that the test suite defines and exports the following mandatory or optional
callback functions:

all()

Returns a list of all test cases and groups in the suite. (Mandatory)

suite()

Information function used to return properties for the suite. (Optional)

groups()

For declaring test case groups. (Optional)

init_per_suite(Config)

Suite level configuration function, executed before the first test case. (Optional)

end_per_suite(Config)

Suite level configuration function, executed after the last test case. (Optional)

group(GroupName)

Information function used to return properties for a test case group. (Optional)

init_per_group(GroupName, Config)

Configuration function for a group, executed before the first test case. (Optional)

end_per_group(GroupName, Config)

Configuration function for a group, executed after the last test case. (Optional)

init_per_testcase(TestCase, Config)

Configuration function for a testcase, executed before each test case. (Optional)
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end_per_testcase(TestCase, Config)

Configuration function for a testcase, executed after each test case. (Optional)

For each test case, the Common Test test server expects the following functions:

Testcasename()

Information function that returns a list of test case properties. (Optional)

Testcasename(Config)

The test case function.

1.3  Getting Started
1.3.1  Introduction for Newcomers
The purpose of this section is to let the newcomer get started in quickly writing and executing some first simple tests
with a "learning by example" approach. Most explanations are left for later sections. If you are not much into "learning
by example" and prefer more technical details, go ahead and skip to the next section.

This section demonstrates how simple it is to write a basic (yet for many module testing purposes, often sufficiently
complex) test suite and execute its test cases. This is not necessarily obvious when you read the remaining sections
in this User's Guide.

Note:

To understand what is discussed and examplified here, we recommended you to first read section Common Test
Basics.

1.3.2  Test Case Execution
Execution of test cases is handled as follows:
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Figure 3.1:   Successful and Unsuccessful Test Case Execution

For each test case that Common Test is ordered to execute, it spawns a dedicated process on which the test case
function starts running. (In parallel to the test case process, an idle waiting timer process is started, which is linked
to the test case process. If the timer process runs out of waiting time, it sends an exit signal to terminate the test case
process. This is called a timetrap).

In scenario 1, the test case process terminates normally after case A has finished executing its test code without
detecting any errors. The test case function returns a value and Common Test logs the test case as successful.

In scenario 2, an error is detected during test case B execution. This causes the test case B function to generate
an exception and, as a result, the test case process exits with reason other than normal. Common Test logs this as
an unsuccessful (Failed) test case.

As you can understand from the illustration, Common Test requires a test case to generate a runtime error to
indicate failure (for example, by causing a bad match error or by calling exit/1, preferably through the help function
ct:fail/1,2). A successful execution is indicated by a normal return from the test case function.

1.3.3  A Simple Test Suite
As shown in section Common Test Basics, the test suite module implements callback functions (mandatory or optional)
for various purposes, for example:

• Init/end configuration function for the test suite

• Init/end configuration function for a test case

• Init/end configuration function for a test case group

• Test cases

Ericsson AB. All Rights Reserved.: Common Test | 5



1.3  Getting Started

The configuration functions are optional. The following example is a test suite without configuration functions,
including one simple test case, to check that module mymod exists (that is, can be successfully loaded by the code
server):

 -module(my1st_SUITE).
 -compile(export_all).

 all() ->
     [mod_exists].

 mod_exists(_) ->
     {module,mymod} = code:load_file(mymod).

If the operation fails, a bad match error occurs that terminates the test case.

1.3.4  A Test Suite with Configuration Functions
If you need to perform configuration operations to run your test, you can implement configuration functions in your
suite. The result from a configuration function is configuration data, or Config. This is a list of key-value tuples
that get passed from the configuration function to the test cases (possibly through configuration functions on "lower
level"). The data flow looks as follows:
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Figure 3.2:   Configuration Data Flow in a Suite

The following example shows a test suite that uses configuration functions to open and close a log file for the test
cases (an operation that is unnecessary and irrelevant to perform by each test case):
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 -module(check_log_SUITE).
 -export([all/0, init_per_suite/1, end_per_suite/1]).
 -export([check_restart_result/1, check_no_errors/1]).

 -define(value(Key,Config), proplists:get_value(Key,Config)).

 all() -> [check_restart_result, check_no_errors].

 init_per_suite(InitConfigData) ->
     [{logref,open_log()} | InitConfigData].

 end_per_suite(ConfigData) ->
     close_log(?value(logref, ConfigData)).

 check_restart_result(ConfigData) ->
     TestData = read_log(restart, ?value(logref, ConfigData)),
     {match,_Line} = search_for("restart successful", TestData).

 check_no_errors(ConfigData) ->
     TestData = read_log(all, ?value(logref, ConfigData)),
     case search_for("error", TestData) of
  {match,Line} -> ct:fail({error_found_in_log,Line});
  nomatch -> ok
     end.

The test cases verify, by parsing a log file, that our SUT has performed a successful restart and that no unexpected
errors are printed.

To execute the test cases in the recent test suite, type the following on the UNIX/Linux command line (assuming that
the suite module is in the current working directory):

 $ ct_run -dir .

or:

 $ ct_run -suite check_log_SUITE

To use the Erlang shell to run our test, you can evaluate the following call:

 1> ct:run_test([{dir, "."}]).

or:

 1> ct:run_test([{suite, "check_log_SUITE"}]).

The result from running the test is printed in log files in HTML format (stored in unique log directories on a different
level). The following illustration shows the log file structure:
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Figure 3.3:   HTML Log File Structure

1.3.5  Questions and Answers
Here follows some questions that you might have after reading this section with corresponding tips and links to the
answers:

• Question: "How and where can I specify variable data for my tests that must not be hard-coded in the test suites
(such as hostnames, addresses, and user login data)?"

Answer: See section External Configuration Data.

• Question: "Is there a way to declare different tests and run them in one session without having to write my own
scripts? Also, can such declarations be used for regression testing?"

Answer: See section Test Specifications in section Running Tests and Analyzing Results.

• Question: "Can test cases and/or test runs be automatically repeated?"

Answer: Learn more about Test Case Groups and read about start flags/options in section Running Tests and in
the Reference Manual.

• Question: "Does Common Test execute my test cases in sequence or in parallel?"

Answer: See Test Case Groups in section Writing Test Suites.

• Question: "What is the syntax for timetraps (mentioned earlier), and how do I set them?"

Answer: This is explained in the Timetrap Time-Outs part of section Writing Test Suites.

• Question: "What functions are available for logging and printing?"

Answer: See Logging in section Writing Test Suites.

• Question: "I need data files for my tests. Where do I store them preferably?"

Answer: See Data and Private Directories.

• Question: "Can I start with a test suite example, please?"

Answer: Welcome!
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You probably want to get started on your own first test suites now, while at the same time digging deeper into the
Common Test User's Guide and Reference Manual. There are much more to learn about the things that have been
introduced in this section. There are also many other useful features to learn, so please continue to the other sections
and have fun.

1.4  Installation
1.4.1  General Information
The two main interfaces for running tests with Common Test are an executable program named ct_run and the
Erlang module ct. ct_run is compiled for the underlying operating system (for example, Unix/Linux or Windows)
during the build of the Erlang/OTP system, and is installed automatically with other executable programs in the top
level bin directory of Erlang/OTP. The ct interface functions can be called from the Erlang shell, or from any Erlang
function, on any supported platform.

The Common Test application is installed with the Erlang/OTP system. No extra installation step is required to start
using Common Test through the ct_run executable program, and/or the interface functions in the ct module.

1.5  Writing Test Suites
1.5.1  Support for Test Suite Authors
The ct module provides the main interface for writing test cases. This includes for example, the following:

• Functions for printing and logging

• Functions for reading configuration data

• Function for terminating a test case with error reason

• Function for adding comments to the HTML overview page

For details about these functions, see module ct.

The Common Test application also includes other modules named ct_<component>, which provide various
support, mainly simplified use of communication protocols such as RPC, SNMP, FTP, Telnet, and others.

1.5.2  Test Suites
A test suite is an ordinary Erlang module that contains test cases. It is recommended that the module has a name on
the form *_SUITE.erl. Otherwise, the directory and auto compilation function in Common Test cannot locate
it (at least not by default).

It is also recommended that the ct.hrl header file is included in all test suite modules.

Each test suite module must export function all/0, which returns the list of all test case groups and test cases to
be executed in that module.

The callback functions to be implemented by the test suite are all listed in module common_test . They are also
described in more detail later in this User's Guide.

1.5.3  Init and End per Suite
Each test suite module can contain the optional configuration functions init_per_suite/1 and
end_per_suite/1. If the init function is defined, so must the end function be.

If init_per_suite exists, it is called initially before the test cases are executed. It typically contains initializations
common for all test cases in the suite, which are only to be performed once. init_per_suite is recommended for
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setting up and verifying state and environment on the System Under Test (SUT) or the Common Test host node, or
both, so that the test cases in the suite executes correctly. The following are examples of initial configuration operations:

• Opening a connection to the SUT

• Initializing a database

• Running an installation script

end_per_suite is called as the final stage of the test suite execution (after the last test case has finished). The
function is meant to be used for cleaning up after init_per_suite.

init_per_suite and end_per_suite execute on dedicated Erlang processes, just like the test cases do. The
result of these functions is however not included in the test run statistics of successful, failed, and skipped cases.

The argument to init_per_suite is Config, that is, the same key-value list of runtime configuration data that
each test case takes as input argument. init_per_suite can modify this parameter with information that the test
cases need. The possibly modified Config list is the return value of the function.

If init_per_suite fails, all test cases in the test suite are skipped automatically (so called auto skipped), including
end_per_suite.

Notice that if init_per_suite and end_per_suite do not exist in the suite, Common Test calls dummy
functions (with the same names) instead, so that output generated by hook functions can be saved to the log files for
these dummies. For details, see Common Test Hooks.

1.5.4  Init and End per Test Case
Each test suite module can contain the optional configuration functions init_per_testcase/2 and
end_per_testcase/2. If the init function is defined, so must the end function be.

If init_per_testcase exists, it is called before each test case in the suite. It typically contains initialization that
must be done for each test case (analog to init_per_suite for the suite).

end_per_testcase/2 is called after each test case has finished, enabling cleanup after init_per_testcase.

The first argument to these functions is the name of the test case. This value can be used with pattern matching in
function clauses or conditional expressions to choose different initialization and cleanup routines for different test
cases, or perform the same routine for many, or all, test cases.

The second argument is the Config key-value list of runtime configuration data, which has the same value as the
list returned by init_per_suite. init_per_testcase/2 can modify this parameter or return it "as is". The
return value of init_per_testcase/2 is passed as parameter Config to the test case itself.

The return value of end_per_testcase/2 is ignored by the test server, with exception of the save_config
and fail tuple.

end_per_testcase can check if the test case was successful. (which in turn can determine how cleanup is to
be performed). This is done by reading the value tagged with tc_status from Config. The value is one of the
following:

• ok

• {failed,Reason}

where Reason is timetrap_timeout, information from exit/1, or details of a runtime error

• {skipped,Reason}

where Reason is a user-specific term

Function end_per_testcase/2 is even called if a test case terminates because of a call to
ct:abort_current_testcase/1, or after a timetrap time-out. However, end_per_testcase then executes
on a different process than the test case function. In this situation, end_per_testcase cannot change the reason
for test case termination by returning {fail,Reason} or save data with {save_config,Data}.
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The test case is skipped in the following two cases:

• If init_per_testcase crashes (called auto skipped).

• If init_per_testcase returns a tuple {skip,Reason} (called user skipped).

The test case can also be marked as failed without executing it by returning a tuple {fail,Reason} from
init_per_testcase.

Note:

If init_per_testcase crashes, or returns {skip,Reason} or {fail,Reason}, function
end_per_testcase is not called.

If it is determined during execution of end_per_testcase that the status of a successful test case is to be changed
to failed, end_per_testcase can return the tuple {fail,Reason} (where Reason describes why the test case
fails).

As init_per_testcase and end_per_testcase execute on the same Erlang process as the test case, printouts
from these configuration functions are included in the test case log file.

1.5.5  Test Cases
The smallest unit that the test server is concerned with is a test case. Each test case can test many things, for example,
make several calls to the same interface function with different parameters.

The author can choose to put many or few tests into each test case. Some things to keep in mind follows:

• Many small test cases tend to result in extra, and possibly duplicated code, as well as slow test execution because
of large overhead for initializations and cleanups. Avoid duplicated code, for example, by using common help
functions. Otherwise, the resulting suite becomes difficult to read and understand, and expensive to maintain.

• Larger test cases make it harder to tell what went wrong if it fails. Also, large portions of test code risk being
skipped when errors occur.

• Readability and maintainability suffer when test cases become too large and extensive. It is not certain that the
resulting log files reflect very well the number of tests performed.

The test case function takes one argument, Config, which contains configuration information such as data_dir
and priv_dir. (For details about these, see section Data and Private Directories. The value of Config at the time
of the call, is the same as the return value from init_per_testcase, mentioned earlier.

Note:

The test case function argument Config is not to be confused with the information that can be retrieved from the
configuration files (using  ct:get_config/1/2). The test case argument Config is to be used for runtime
configuration of the test suite and the test cases, while configuration files are to contain data related to the SUT.
These two types of configuration data are handled differently.

As parameter Config is a list of key-value tuples, that is, a data type called a property list, it can be
handled by the proplists module. A value can, for example, be searched for and returned with function
proplists:get_value/2. Also, or alternatively, the general lists module contains useful functions.
Normally, the only operations performed on Config is insert (adding a tuple to the head of the list) and lookup.
Common Test provides a simple macro named ?config, which returns a value of an item in Config given the
key (exactly like proplists:get_value). Example: PrivDir = ?config(priv_dir, Config).

If the test case function crashes or exits purposely, it is considered failed. If it returns a value (no matter what value),
it is considered successful. An exception to this rule is the return value {skip,Reason}. If this tuple is returned,
the test case is considered skipped and is logged as such.
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If the test case returns the tuple {comment,Comment}, the case is considered successful and Comment is printed
in the overview log file. This is equal to calling ct:comment(Comment).

1.5.6  Test Case Information Function
For each test case function there can be an extra function with the same name but without arguments. This is the test
case information function. It is expected to return a list of tagged tuples that specifies various properties regarding
the test case.

The following tags have special meaning:

timetrap

Sets the maximum time the test case is allowed to execute. If this time is exceeded, the test case fails with reason
timetrap_timeout. Notice that init_per_testcase and end_per_testcase are included in the
timetrap time. For details, see section Timetrap Time-Outs.

userdata

Specifies any data related to the test case. This data can be retrieved at any time using the ct:userdata/3
utility function.

silent_connections

For details, see section Silent Connections.

require

Specifies configuration variables required by the test case. If the required configuration variables are not found
in any of the test system configuration files, the test case is skipped.

A required variable can also be given a default value to be used if the variable is not found in any configuration file.
To specify a default value, add a tuple on the form {default_config,ConfigVariableName,Value}
to the test case information list (the position in the list is irrelevant).

Examples:

 testcase1() -> 
     [{require, ftp},
      {default_config, ftp, [{ftp, "my_ftp_host"},
                             {username, "aladdin"},
                             {password, "sesame"}]}}].

 testcase2() -> 
     [{require, unix_telnet, unix},
      {require, {unix, [telnet, username, password]}},
      {default_config, unix, [{telnet, "my_telnet_host"},
                              {username, "aladdin"},
                              {password, "sesame"}]}}].

For more information about require, see section Requiring and Reading Configuration Data in section External
Configuration Data and function ct:require/1/2.

Note:

Specifying a default value for a required variable can result in a test case always getting executed. This might not
be a desired behavior.

If timetrap or require, or both, is not set specifically for a particular test case, default values specified by function
suite/0 are used.
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Tags other than the earlier mentioned are ignored by the test server.

An example of a test case information function follows:

 reboot_node() ->
     [
      {timetrap,{seconds,60}},
      {require,interfaces},
      {userdata,
          [{description,"System Upgrade: RpuAddition Normal RebootNode"},
           {fts,"http://someserver.ericsson.se/test_doc4711.pdf"}]}                  
     ].

1.5.7  Test Suite Information Function
Function suite/0 can, for example, be used in a test suite module to set a default timetrap value and to require
external configuration data. If a test case, or a group information function also specifies any of the information tags, it
overrides the default values set by suite/0. For details, see Test Case Information Function and Test Case Groups.

The following options can also be specified with the suite information list:

• stylesheet, see HTML Style Sheets

• userdata, see Test Case Information Function

• silent_connections, see Silent Connections

An example of the suite information function follows:

 suite() ->
     [
      {timetrap,{minutes,10}},
      {require,global_names},
      {userdata,[{info,"This suite tests database transactions."}]},
      {silent_connections,[telnet]},
      {stylesheet,"db_testing.css"}
     ].

1.5.8  Test Case Groups
A test case group is a set of test cases sharing configuration functions and execution properties. Test case groups are
defined by function groups/0 according to the following syntax:

 groups() -> GroupDefs

 Types:

 GroupDefs = [GroupDef]
 GroupDef = {GroupName,Properties,GroupsAndTestCases}
 GroupName = atom()
 GroupsAndTestCases = [GroupDef | {group,GroupName} | TestCase |
                      {testcase,TestCase,TCRepeatProps}]
 TestCase = atom()
 TCRepeatProps = [{repeat,N} | {repeat_until_ok,N} | {repeat_until_fail,N}]

GroupName is the name of the group and must be unique within the test suite module. Groups can be nested, by
including a group definition within the GroupsAndTestCases list of another group. Properties is the list of
execution properties for the group. The possible values are as follows:
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 Properties = [parallel | sequence | Shuffle | {GroupRepeatType,N}]
 Shuffle = shuffle | {shuffle,Seed}
 Seed = {integer(),integer(),integer()}
 GroupRepeatType = repeat | repeat_until_all_ok | repeat_until_all_fail |
                   repeat_until_any_ok | repeat_until_any_fail
 N = integer() | forever

Explanations:

parallel

Common Test executes all test cases in the group in parallel.

sequence

The cases are executed in a sequence as described in section Sequences in section Dependencies Between Test
Cases and Suites.

shuffle

The cases in the group are executed in random order.

repeat, repeat_until_*

Orders Common Test to repeat execution of all the cases in the group a given number of times, or until any,
or all, cases fail or succeed.

Example:

 groups() -> [{group1, [parallel], [test1a,test1b]},
              {group2, [shuffle,sequence], [test2a,test2b,test2c]}].

To specify in which order groups are to be executed (also with respect to test cases that are not part of any group), add
tuples on the form {group,GroupName} to the all/0 list.

Example:

 all() -> [testcase1, {group,group1}, {testcase,testcase2,[{repeat,10}]}, {group,group2}].

Execution properties with a group tuple in all/0: {group,GroupName,Properties} can also be specified.
These properties override those specified in the group definition (see groups/0 earlier). This way, the same set of
tests can be run, but with different properties, without having to make copies of the group definition in question.

If a group contains subgroups, the execution properties for these can also be specified in the
group tuple: {group,GroupName,Properties,SubGroups} Where, SubGroups is a list of tuples,
{GroupName,Properties} or {GroupName,Properties,SubGroups} representing the subgroups. Any
subgroups defined in group/0 for a group, that are not specified in the SubGroups list, executes with their
predefined properties.

Example:

 groups() -> {tests1, [], [{tests2, [], [t2a,t2b]},
                           {tests3, [], [t31,t3b]}]}.

To execute group tests1 twice with different properties for tests2 each time:

 all() ->
    [{group, tests1, default, [{tests2, [parallel]}]},
     {group, tests1, default, [{tests2, [shuffle,{repeat,10}]}]}].
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This is equivalent to the following specification:

 all() ->
    [{group, tests1, default, [{tests2, [parallel]},
                               {tests3, default}]},
     {group, tests1, default, [{tests2, [shuffle,{repeat,10}]},
                               {tests3, default}]}].

Value default states that the predefined properties are to be used.

The following example shows how to override properties in a scenario with deeply nested groups:

 groups() ->
    [{tests1, [], [{group, tests2}]},
     {tests2, [], [{group, tests3}]},
     {tests3, [{repeat,2}], [t3a,t3b,t3c]}].

 all() ->
    [{group, tests1, default, 
      [{tests2, default,
        [{tests3, [parallel,{repeat,100}]}]}]}].

The described syntax can also be used in test specifications to change group properties at the time of execution,
without having to edit the test suite. For more information, see section Test Specifications in section Running Tests
and Analyzing Results.

As illustrated, properties can be combined. If, for example, shuffle, repeat_until_any_fail, and
sequence are all specified, the test cases in the group are executed repeatedly, and in random order, until a test case
fails. Then execution is immediately stopped and the remaining cases are skipped.

Before execution of a group begins, the configuration function init_per_group(GroupName, Config) is
called. The list of tuples returned from this function is passed to the test cases in the usual manner by argument Config.
init_per_group/2 is meant to be used for initializations common for the test cases in the group. After execution
of the group is finished, function end_per_group(GroupName, Config) is called. This function is meant to
be used for cleaning up after init_per_group/2. If the init function is defined, so must the end function be.

Whenever a group is executed, if init_per_group and end_per_group do not exist in the suite, Common
Test calls dummy functions (with the same names) instead. Output generated by hook functions are saved to the log
files for these dummies. For more information, see section Manipulating Tests in section Common Test Hooks.

Note:

init_per_testcase/2 and end_per_testcase/2 are always called for each individual test case, no
matter if the case belongs to a group or not.

The properties for a group are always printed in the top of the HTML log for init_per_group/2. The total
execution time for a group is included at the bottom of the log for end_per_group/2.

Test case groups can be nested so sets of groups can be configured with the same init_per_group/2 and
end_per_group/2 functions. Nested groups can be defined by including a group definition, or a group name
reference, in the test case list of another group.

Example:
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 groups() -> [{group1, [shuffle], [test1a,
                                   {group2, [], [test2a,test2b]},
                                   test1b]},
              {group3, [], [{group,group4},
                            {group,group5}]},
              {group4, [parallel], [test4a,test4b]},
              {group5, [sequence], [test5a,test5b,test5c]}].

In the previous example, if all/0 returns group name references in the order [{group,group1},
{group,group3}], the order of the configuration functions and test cases becomes the following (notice that
init_per_testcase/2 and end_per_testcase/2: are also always called, but not included in this example
for simplification):

 init_per_group(group1, Config) -> Config1  (*)
      test1a(Config1)
      init_per_group(group2, Config1) -> Config2
           test2a(Config2), test2b(Config2)
      end_per_group(group2, Config2)
      test1b(Config1)
 end_per_group(group1, Config1) 
 init_per_group(group3, Config) -> Config3
      init_per_group(group4, Config3) -> Config4
           test4a(Config4), test4b(Config4)  (**)
      end_per_group(group4, Config4)
      init_per_group(group5, Config3) -> Config5
           test5a(Config5), test5b(Config5), test5c(Config5)
      end_per_group(group5, Config5)
 end_per_group(group3, Config3)

(*) The order of test case test1a, test1b, and group2 is undefined, as group1 has a shuffle property.

(**) These cases are not executed in order, but in parallel.

Properties are not inherited from top-level groups to nested subgroups. For instance, in the previous example, the test
cases in group2 are not executed in random order (which is the property of group1).

1.5.9  Parallel Property and Nested Groups
If a group has a parallel property, its test cases are spawned simultaneously and get executed in parallel. However,
a test case is not allowed to execute in parallel with end_per_group/2, which means that the time to execute a
parallel group is equal to the execution time of the slowest test case in the group. A negative side effect of running
test cases in parallel is that the HTML summary pages are not updated with links to the individual test case logs until
function end_per_group/2 for the group has finished.

A group nested under a parallel group starts executing in parallel with previous (parallel) test cases (no matter what
properties the nested group has). However, as test cases are never executed in parallel with init_per_group/2
or end_per_group/2 of the same group, it is only after a nested group has finished that remaining parallel cases
in the previous group become spawned.

1.5.10  Parallel Test Cases and I/O
A parallel test case has a private I/O server as its group leader. (For a description of the group leader concept, see
ERTS). The central I/O server process, which handles the output from regular test cases and configuration functions,
does not respond to I/O messages during execution of parallel groups. This is important to understand to avoid certain
traps, like the following:

If a process, P, is spawned during execution of, for example, init_per_suite/1, it inherits the group leader of
the init_per_suite process. This group leader is the central I/O server process mentioned earlier. If, at a later
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time, during parallel test case execution, some event triggers process P to call io:format/1/2, that call never
returns (as the group leader is in a non-responsive state) and causes P to hang.

1.5.11  Repeated Groups
A test case group can be repeated a certain number of times (specified by an integer) or indefinitely (specified
by forever). The repetition can also be stopped too early if any or all cases fail or succeed, that is, if any
of the properties repeat_until_any_fail, repeat_until_any_ok, repeat_until_all_fail, or
repeat_until_all_ok is used. If the basic repeat property is used, status of test cases is irrelevant for the
repeat operation.

The status of a subgroup can be returned (ok or failed), to affect the execution of the group on the level above. This
is accomplished by, in end_per_group/2, looking up the value of tc_group_properties in the Config
list and checking the result of the test cases in the group. If status failed is to be returned from the group as a result,
end_per_group/2 is to return the value {return_group_result,failed}. The status of a subgroup is
taken into account by Common Test when evaluating if execution of a group is to be repeated or not (unless the
basic repeat property is used).

The value of tc_group_properties is a list of status tuples, each with the key ok, skipped, and failed. The
value of a status tuple is a list with names of test cases that have been executed with the corresponding status as result.

The following is an example of how to return the status from a group:

 end_per_group(_Group, Config) ->
     Status = ?config(tc_group_result, Config),
     case proplists:get_value(failed, Status) of
         [] ->                                   % no failed cases 
             {return_group_result,ok};
         _Failed ->                              % one or more failed
             {return_group_result,failed}
     end.

It is also possible, in end_per_group/2, to check the status of a subgroup (maybe to determine what status the
current group is to return). This is as simple as illustrated in the previous example, only the group name is stored in a
tuple {group_result,GroupName}, which can be searched for in the status lists.

Example:

 end_per_group(group1, Config) ->
     Status = ?config(tc_group_result, Config),
     Failed = proplists:get_value(failed, Status),
     case lists:member({group_result,group2}, Failed) of
           true ->
               {return_group_result,failed};
           false ->                                                    
               {return_group_result,ok}
     end; 
 ...

Note:

When a test case group is repeated, the configuration functions init_per_group/2 and end_per_group/2
are also always called with each repetition.
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1.5.12  Shuffled Test Case Order
The order in which test cases in a group are executed is under normal circumstances the same as the order specified
in the test case list in the group definition. With property shuffle set, however, Common Test instead executes
the test cases in random order.

You can provide a seed value (a tuple of three integers) with the shuffle property {shuffle,Seed}. This way, the
same shuffling order can be created every time the group is executed. If no seed value is specified, Common Test
creates a "random" seed for the shuffling operation (using the return value of erlang:timestamp/0). The seed
value is always printed to the init_per_group/2 log file so that it can be used to recreate the same execution
order in a subsequent test run.

Note:

If a shuffled test case group is repeated, the seed is not reset between turns.

If a subgroup is specified in a group with a shuffle property, the execution order of this subgroup in relation to the
test cases (and other subgroups) in the group, is random. The order of the test cases in the subgroup is however not
random (unless the subgroup has a shuffle property).

1.5.13  Group Information Function
The test case group information function, group(GroupName), serves the same purpose as the suite- and test case
information functions previously described. However, the scope for the group information function, is all test cases
and subgroups in the group in question (GroupName).

Example:

 group(connection_tests) ->
    [{require,login_data},
     {timetrap,1000}].

The group information properties override those set with the suite information function, and can in turn be overridden
by test case information properties. For a list of valid information properties and more general information, see the
Test Case Information Function.

1.5.14  Information Functions for Init- and End-Configuration
Information functions can also be used for functions init_per_suite, end_per_suite, init_per_group,
and end_per_group, and they work the same way as with the Test Case Information Function. This is useful, for
example, for setting timetraps and requiring external configuration data relevant only for the configuration function
in question (without affecting properties set for groups and test cases in the suite).

The information function init/end_per_suite() is called for init/end_per_suite(Config),
and information function init/end_per_group(GroupName) is called for init/
end_per_group(GroupName,Config). However, information functions cannot be used with init/
end_per_testcase(TestCase, Config), as these configuration functions execute on the test case process
and use the same properties as the test case (that is, the properties set by the test case information function,
TestCase()). For a list of valid information properties and more general information, see the Test Case Information
Function.

1.5.15  Data and Private Directories
In the data directory, data_dir, the test module has its own files needed for the testing. The name of data_dir
is the the name of the test suite followed by "_data". For example, "some_path/foo_SUITE.beam" has the

Ericsson AB. All Rights Reserved.: Common Test | 19



1.5  Writing Test Suites

data directory "some_path/foo_SUITE_data/". Use this directory for portability, that is, to avoid hardcoding
directory names in your suite. As the data directory is stored in the same directory as your test suite, you can rely on
its existence at runtime, even if the path to your test suite directory has changed between test suite implementation
and execution.

priv_dir is the private directory for the test cases. This directory can be used whenever a test case (or configuration
function) needs to write something to file. The name of the private directory is generated by Common Test, which
also creates the directory.

By default, Common Test creates one central private directory per test run, shared by all test cases. This is not always
suitable. Especially if the same test cases are executed multiple times during a test run (that is, if they belong to a test
case group with property repeat) and there is a risk that files in the private directory get overwritten. Under these
circumstances, Common Test can be configured to create one dedicated private directory per test case and execution
instead. This is accomplished with the flag/option create_priv_dir (to be used with the ct_run program, the
ct:run_test/1 function, or as test specification term). There are three possible values for this option as follows:

• auto_per_run

• auto_per_tc

• manual_per_tc

The first value indicates the default priv_dir behavior, that is, one private directory created per test run. The two
latter values tell Common Test to generate a unique test directory name per test case and execution. If the auto
version is used, all private directories are created automatically. This can become very inefficient for test runs with
many test cases or repetitions, or both. Therefore, if the manual version is used instead, the test case must tell Common
Test to create priv_dir when it needs it. It does this by calling the function ct:make_priv_dir/0.

Note:

Do not depend on the current working directory for reading and writing data files, as this is not portable. All scratch
files are to be written in the priv_dir and all data files are to be located in data_dir. Also, the Common
Test server sets the current working directory to the test case log directory at the start of every case.

1.5.16  Execution Environment
Each test case is executed by a dedicated Erlang process. The process is spawned when the test case
starts, and terminated when the test case is finished. The configuration functions init_per_testcase and
end_per_testcase execute on the same process as the test case.

The configuration functions init_per_suite and end_per_suite execute, like test cases, on dedicated Erlang
processes.

1.5.17  Timetrap Time-Outs
The default time limit for a test case is 30 minutes, unless a timetrap is specified either by the suite-, group-,
or test case information function. The timetrap time-out value defined by suite/0 is the value that is used
for each test case in the suite (and for the configuration functions init_per_suite/1, end_per_suite/1,
init_per_group/2, and end_per_group/2). A timetrap value defined by group(GroupName) overrides
one defined by suite() and is used for each test case in group GroupName, and any of its subgroups. If a timetrap
value is defined by group/1 for a subgroup, it overrides that of its higher level groups. Timetrap values set by
individual test cases (by the test case information function) override both group- and suite- level timetraps.

A timetrap can also be set or reset dynamically during the execution of a test case, or configuration function. This is
done by calling ct:timetrap/1. This function cancels the current timetrap and starts a new one (that stays active
until time-out, or end of the current function).
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Timetrap values can be extended with a multiplier value specified at startup with option multiply_timetraps.
It is also possible to let the test server decide to scale up timetrap time-out values automatically. That is, if tools such
as cover or trace are running during the test. This feature is disabled by default and can be enabled with start
option scale_timetraps.

If a test case needs to suspend itself for a time that also gets multipled by multiply_timetraps (and possibly
also scaled up if scale_timetraps is enabled), the function ct:sleep/1 can be used (instead of, for example,
timer:sleep/1).

A function (fun/0 or {Mod,Func,Args} (MFA) tuple) can be specified as timetrap value in the suite-, group-
and test case information function, and as argument to function ct:timetrap/1.

Examples:

{timetrap,{my_test_utils,timetrap,[?MODULE,system_start]}}

ct:timetrap(fun() -> my_timetrap(TestCaseName, Config) end)

The user timetrap function can be used for two things as follows:

• To act as a timetrap. The time-out is triggered when the function returns.

• To return a timetrap time value (other than a function).

Before execution of the timetrap function (which is performed on a parallel, dedicated timetrap process), Common
Test cancels any previously set timer for the test case or configuration function. When the timetrap function
returns, the time-out is triggered, unless the return value is a valid timetrap time, such as an integer, or a
{SecMinOrHourTag,Time} tuple (for details, see module common_test). If a time value is returned, a new
timetrap is started to generate a time-out after the specified time.

The user timetrap function can return a time value after a delay. The effective timetrap time is then the delay time
plus the returned time.

1.5.18  Logging - Categories and Verbosity Levels
Common Test provides the following three main functions for printing strings:

• ct:log(Category, Importance, Format, FormatArgs, Opts)

• ct:print(Category, Importance, Format, FormatArgs)

• ct:pal(Category, Importance, Format, FormatArgs)

The log/1,2,3,4,5 function prints a string to the test case log file. The print/1,2,3,4 function prints the
string to screen. The pal/1,2,3,4 function prints the same string both to file and screen. The functions are described
in module ct.

The optional Category argument can be used to categorize the log printout. Categories can be used for two things
as follows:

• To compare the importance of the printout to a specific verbosity level.

• To format the printout according to a user-specific HTML Style Sheet (CSS).

Argument Importance specifies a level of importance that, compared to a verbosity level (general and/or set per
category), determines if the printout is to be visible. Importance is any integer in the range 0..99. Predefined
constants exist in the ct.hrl header file. The default importance level, ?STD_IMPORTANCE (used if argument
Importance is not provided), is 50. This is also the importance used for standard I/O, for example, from printouts
made with io:format/2, io:put_chars/1, and so on.

Importance is compared to a verbosity level set by the verbosity start flag/option. The level can be set per
category or generally, or both. If verbosity is not set by the user, a level of 100 (?MAX_VERBOSITY = all printouts
visible) is used as default value. Common Test performs the following test:
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Importance >= (100-VerbosityLevel)

The constant ?STD_VERBOSITY has value 50 (see ct.hrl). At this level, all standard I/O gets printed. If a lower
verbosity level is set, standard I/O printouts are ignored. Verbosity level 0 effectively turns all logging off (except
from printouts made by Common Test itself).

The general verbosity level is not associated with any particular category. This level sets the threshold for the standard
I/O printouts, uncategorized ct:log/print/pal printouts, and printouts for categories with undefined verbosity
level.

Examples:

Some printouts during test case execution:

 io:format("1. Standard IO, importance = ~w~n", [?STD_IMPORTANCE]),
 ct:log("2. Uncategorized, importance = ~w", [?STD_IMPORTANCE]),
 ct:log(info, "3. Categorized info, importance = ~w", [?STD_IMPORTANCE]),
 ct:log(info, ?LOW_IMPORTANCE, "4. Categorized info, importance = ~w", [?LOW_IMPORTANCE]),
 ct:log(error, ?HI_IMPORTANCE, "5. Categorized error, importance = ~w", [?HI_IMPORTANCE]),
 ct:log(error, ?MAX_IMPORTANCE, "6. Categorized error, importance = ~w", [?MAX_IMPORTANCE]),

If starting the test with a general verbosity level of 50 (?STD_VERBOSITY):

 $ ct_run -verbosity 50

the following is printed:

 1. Standard IO, importance = 50
 2. Uncategorized, importance = 50
 3. Categorized info, importance = 50
 5. Categorized error, importance = 75
 6. Categorized error, importance = 99

If starting the test with:

 $ ct_run -verbosity 1 and info 75

the following is printed:

 3. Categorized info, importance = 50
 4. Categorized info, importance = 25
 6. Categorized error, importance = 99

Note that the category argument is not required in order to only specify the importance of a printout. Example:

ct:pal(?LOW_IMPORTANCE, "Info report: ~p", [Info])

Or perhaps in combination with constants:

-define(INFO, ?LOW_IMPORTANCE).
-define(ERROR, ?HI_IMPORTANCE).

ct:log(?INFO, "Info report: ~p", [Info])
ct:pal(?ERROR, "Error report: ~p", [Error])
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The functions ct:set_verbosity/2 and ct:get_verbosity/1 may be used to modify and read verbosity
levels during test execution.

The arguments Format and FormatArgs in ct:log/print/pal are always passed on to the STDLIB function
io:format/3 (For details, see the io manual page).

ct:pal/4 and ct:log/5 add headers to strings being printed to the log file. The strings are also wrapped in div
tags with a CSS class attribute, so that stylesheet formatting can be applied. To disable this feature for a printout (i.e.
to get a result similar to using io:format/2), call ct:log/5 with the no_css option.

How categories can be mapped to CSS tags is documented in section HTML Style Sheets in section Running Tests
and Analyzing Results.

Common Test will escape special HTML characters (<, > and &) in printouts to the log file made with ct:pal/4 and
io:format/2. In order to print strings with HTML tags to the log, use the ct:log/3,4,5 function. The character
escaping feature is per default disabled for ct:log/3,4,5 but can be enabled with the esc_chars option in the
Opts list, see ct:log/3,4,5.

If the character escaping feature needs to be disabled (typically for backwards compatibility reasons), use the ct_run
start flag -no_esc_chars, or the ct:run_test/1 start option {esc_chars,Bool} (this start option is also
supported in test specifications).

For more information about log files, see section Log Files in section Running Tests and Analyzing Results.

1.5.19  Illegal Dependencies
Even though it is highly efficient to write test suites with the Common Test framework, mistakes can be made,
mainly because of illegal dependencies. Some of the more frequent mistakes from our own experience with running
the Erlang/OTP test suites follows:

• Depending on current directory, and writing there:

This is a common error in test suites. It is assumed that the current directory is the same as the author used as
current directory when the test case was developed. Many test cases even try to write scratch files to this directory.
Instead data_dir and priv_dir are to be used to locate data and for writing scratch files.

• Depending on execution order:

During development of test suites, make no assumptions on the execution order of the test cases or suites. For
example, a test case must not assume that a server it depends on is already started by a previous test case. Reasons
for this follows:

• The user/operator can specify the order at will, and maybe a different execution order is sometimes more
relevant or efficient.

• If the user specifies a whole directory of test suites for the test, the execution order of the suites depends on
how the files are listed by the operating system, which varies between systems.

• If a user wants to run only a subset of a test suite, there is no way one test case could successfully depend
on another.

• Depending on Unix:

Running Unix commands through os:cmd are likely not to work on non-Unix platforms.

• Nested test cases:

Starting a test case from another not only tests the same thing twice, but also makes it harder to follow what is
being tested. Also, if the called test case fails for some reason, so do the caller. This way, one error gives cause
to several error reports, which is to be avoided.

Functionality common for many test case functions can be implemented in common help functions. If these
functions are useful for test cases across suites, put the help functions into common help modules.

• Failure to crash or exit when things go wrong:
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Making requests without checking that the return value indicates success can be OK if the test case fails later, but
it is never acceptable just to print an error message (into the log file) and return successfully. Such test cases do
harm, as they create a false sense of security when overviewing the test results.

• Messing up for subsequent test cases:

Test cases are to restore as much of the execution environment as possible, so that subsequent test cases do not
crash because of their execution order. The function end_per_testcase is suitable for this.

1.6  Test Structure
1.6.1  General
A test is performed by running one or more test suites. A test suite consists of test cases, configuration functions, and
information functions. Test cases can be grouped in so called test case groups. A test suite is an Erlang module and
test cases are implemented as Erlang functions. Test suites are stored in test directories.

1.6.2  Skipping Test Cases
Certain test cases can be skipped, for example, if you know beforehand that a specific test case fails. The reason can
be functionality that is not yet implemented, a bug that is known but not yet fixed, or some functionality that does not
work or is not applicable on a specific platform.

Test cases can be skipped in the following ways:

• Using skip_suites and skip_cases terms in test specifications.

• Returning {skip,Reason} from function init_per_testcase/2 or init_per_suite/1.

• Returning {skip,Reason} from the execution clause of the test case. The execution clause is called, so the
author must ensure that the test case does not run.

When a test case is skipped, it is noted as SKIPPED in the HTML log.

1.6.3  Definition of Terms
Auto-skipped test case

When a configuration function fails (that is, terminates unexpectedly), the test cases depending on the
configuration function are skipped automatically by Common Test. The status of the test cases is then "auto-
skipped". Test cases are also "auto-skipped" by Common Test if the required configuration data is unavailable
at runtime.

Configuration function

A function in a test suite that is meant to be used for setting up, cleaning up, and/or verifying the state and
environment on the System Under Test (SUT) and/or the Common Test host node, so that a test case (or a set
of test cases) can execute correctly.

Configuration file

A file containing data related to a test and/or an SUT, for example, protocol server addresses, client login details,
and hardware interface addresses. That is, any data that is to be handled as variable in the suite and not be hard-
coded.

Configuration variable

A name (an Erlang atom) associated with a data value read from a configuration file.
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data_dir

Data directory for a test suite. This directory contains any files used by the test suite, for example, extra Erlang
modules, binaries, or data files.

Information function

A function in a test suite that returns a list of properties (read by the Common Test server) that describes the
conditions for executing the test cases in the suite.

Major log file

An overview and summary log file for one or more test suites.

Minor log file

A log file for one particular test case. Also called the test case log file.

priv_dir

Private directory for a test suite. This directory is to be used when the test suite needs to write to files.

ct_run

The name of an executable program that can be used as an interface for specifying and running tests with Common
Test.

Test case

A single test included in a test suite. A test case is implemented as a function in a test suite module.

Test case group

A set of test cases sharing configuration functions and execution properties. The execution properties specify if
the test cases in the group are to be executed in random order, in parallel, or in sequence, and if the execution
of the group is be repeated. Test case groups can also be nested. That is, a group can, besides test cases, contain
subgroups.

Test suite

An Erlang module containing a collection of test cases for a specific functional area.

Test directory

A directory containing one or more test suite modules, that is, a group of test suites.

Argument Config

A list of key-value tuples (that is, a property list) containing runtime configuration data passed from the
configuration functions to the test cases.

User-skipped test case

The status of a test case explicitly skipped in any of the ways described in section Skipping Test Cases.

1.7  Examples and Templates
1.7.1  Test Suite Example
The following example test suite shows some tests of a database server:

Ericsson AB. All Rights Reserved.: Common Test | 25



1.7  Examples and Templates

 -module(db_data_type_SUITE).

 -include_lib("common_test/include/ct.hrl").

 %% Test server callbacks
 -export([suite/0, all/0, 
   init_per_suite/1, end_per_suite/1,
   init_per_testcase/2, end_per_testcase/2]).

 %% Test cases
 -export([string/1, integer/1]).

 -define(CONNECT_STR, "DSN=sqlserver;UID=alladin;PWD=sesame").

 %%--------------------------------------------------------------------
 %% COMMON TEST CALLBACK FUNCTIONS
 %%--------------------------------------------------------------------

 %%--------------------------------------------------------------------
 %% Function: suite() -> Info
 %%
 %% Info = [tuple()]
 %%   List of key/value pairs.
 %%
 %% Description: Returns list of tuples to set default properties
 %%              for the suite.
 %%--------------------------------------------------------------------
 suite() -> 
     [{timetrap,{minutes,1}}].  

 %%--------------------------------------------------------------------
 %% Function: init_per_suite(Config0) -> Config1
 %%
 %% Config0 = Config1 = [tuple()]
 %%   A list of key/value pairs, holding the test case configuration.
 %%
 %% Description: Initialization before the suite.
 %%--------------------------------------------------------------------
 init_per_suite(Config) -> 
     {ok, Ref} = db:connect(?CONNECT_STR, []),
     TableName = db_lib:unique_table_name(), 
     [{con_ref, Ref },{table_name, TableName}| Config]. 

 %%--------------------------------------------------------------------
 %% Function: end_per_suite(Config) -> term()
 %%
 %% Config = [tuple()]
 %%   A list of key/value pairs, holding the test case configuration.
 %%
 %% Description: Cleanup after the suite.
 %%--------------------------------------------------------------------
 end_per_suite(Config) ->    
     Ref = ?config(con_ref, Config),
     db:disconnect(Ref),
     ok.
 
 %%--------------------------------------------------------------------
 %% Function: init_per_testcase(TestCase, Config0) -> Config1
 %%
 %% TestCase = atom()
 %%   Name of the test case that is about to run.
 %% Config0 = Config1 = [tuple()]
 %%   A list of key/value pairs, holding the test case configuration.
 %%
 %% Description: Initialization before each test case.
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 %%--------------------------------------------------------------------
 init_per_testcase(Case, Config) ->
     Ref = ?config(con_ref, Config),   
     TableName = ?config(table_name, Config),
     ok = db:create_table(Ref, TableName, table_type(Case)),
     Config.

 %%--------------------------------------------------------------------
 %% Function: end_per_testcase(TestCase, Config) -> term()
 %%
 %% TestCase = atom()
 %%   Name of the test case that is finished.
 %% Config = [tuple()]
 %%   A list of key/value pairs, holding the test case configuration.
 %%
 %% Description: Cleanup after each test case.
 %%--------------------------------------------------------------------
 end_per_testcase(_Case, Config) -> 
     Ref = ?config(con_ref, Config),   
     TableName = ?config(table_name, Config),
     ok = db:delete_table(Ref, TableName),   
     ok. 

 %%--------------------------------------------------------------------
 %% Function: all() -> GroupsAndTestCases
 %%
 %% GroupsAndTestCases = [{group,GroupName} | TestCase]
 %% GroupName = atom()
 %%   Name of a test case group.
 %% TestCase = atom()
 %%   Name of a test case.
 %%
 %% Description: Returns the list of groups and test cases that
 %%              are to be executed.
 %%--------------------------------------------------------------------
 all() ->
     [string, integer]. 

 %%--------------------------------------------------------------------
 %% TEST CASES
 %%--------------------------------------------------------------------

 string(Config) -> 
     insert_and_lookup(dummy_key, "Dummy string", Config).

 integer(Config) -> 
     insert_and_lookup(dummy_key, 42, Config).

 insert_and_lookup(Key, Value, Config) ->
     Ref = ?config(con_ref, Config),   
     TableName = ?config(table_name, Config),
     ok = db:insert(Ref, TableName, Key, Value),
     [Value] = db:lookup(Ref, TableName, Key),
     ok = db:delete(Ref, TableName, Key),
     [] = db:lookup(Ref, TableName, Key),
     ok.

1.7.2  Test Suite Templates
The Erlang mode for the Emacs editor includes two Common Test test suite templates, one with extensive
information in the function headers, and one with minimal information. A test suite template provides a quick start for

Ericsson AB. All Rights Reserved.: Common Test | 27



1.7  Examples and Templates

implementing a suite from scratch and gives a good overview of the available callback functions. The two templates
follows:

Large Common Test Suite
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 %%%-------------------------------------------------------------------
 %%% File    : example_SUITE.erl
 %%% Author  : 
 %%% Description : 
 %%%
 %%% Created : 
 %%%-------------------------------------------------------------------
 -module(example_SUITE).

 %% Note: This directive should only be used in test suites.
 -compile(export_all).

 -include_lib("common_test/include/ct.hrl").

 %%--------------------------------------------------------------------
 %% COMMON TEST CALLBACK FUNCTIONS
 %%--------------------------------------------------------------------

 %%--------------------------------------------------------------------
 %% Function: suite() -> Info
 %%
 %% Info = [tuple()]
 %%   List of key/value pairs.
 %%
 %% Description: Returns list of tuples to set default properties
 %%              for the suite.
 %%
 %% Note: The suite/0 function is only meant to be used to return
 %% default data values, not perform any other operations.
 %%--------------------------------------------------------------------
 suite() ->
     [{timetrap,{minutes,10}}].

 %%--------------------------------------------------------------------
 %% Function: init_per_suite(Config0) ->
 %%               Config1 | {skip,Reason} | {skip_and_save,Reason,Config1}
 %%
 %% Config0 = Config1 = [tuple()]
 %%   A list of key/value pairs, holding the test case configuration.
 %% Reason = term()
 %%   The reason for skipping the suite.
 %%
 %% Description: Initialization before the suite.
 %%
 %% Note: This function is free to add any key/value pairs to the Config
 %% variable, but should NOT alter/remove any existing entries.
 %%--------------------------------------------------------------------
 init_per_suite(Config) ->
     Config.

 %%--------------------------------------------------------------------
 %% Function: end_per_suite(Config0) -> term() | {save_config,Config1}
 %%
 %% Config0 = Config1 = [tuple()]
 %%   A list of key/value pairs, holding the test case configuration.
 %%
 %% Description: Cleanup after the suite.
 %%--------------------------------------------------------------------
 end_per_suite(_Config) ->
     ok.

 %%--------------------------------------------------------------------
 %% Function: init_per_group(GroupName, Config0) ->
 %%               Config1 | {skip,Reason} | {skip_and_save,Reason,Config1}
 %%
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 %% GroupName = atom()
 %%   Name of the test case group that is about to run.
 %% Config0 = Config1 = [tuple()]
 %%   A list of key/value pairs, holding configuration data for the group.
 %% Reason = term()
 %%   The reason for skipping all test cases and subgroups in the group.
 %%
 %% Description: Initialization before each test case group.
 %%--------------------------------------------------------------------
 init_per_group(_GroupName, Config) ->
     Config.

 %%--------------------------------------------------------------------
 %% Function: end_per_group(GroupName, Config0) ->
 %%               term() | {save_config,Config1}
 %%
 %% GroupName = atom()
 %%   Name of the test case group that is finished.
 %% Config0 = Config1 = [tuple()]
 %%   A list of key/value pairs, holding configuration data for the group.
 %%
 %% Description: Cleanup after each test case group.
 %%--------------------------------------------------------------------
 end_per_group(_GroupName, _Config) ->
     ok.

 %%--------------------------------------------------------------------
 %% Function: init_per_testcase(TestCase, Config0) ->
 %%               Config1 | {skip,Reason} | {skip_and_save,Reason,Config1}
 %%
 %% TestCase = atom()
 %%   Name of the test case that is about to run.
 %% Config0 = Config1 = [tuple()]
 %%   A list of key/value pairs, holding the test case configuration.
 %% Reason = term()
 %%   The reason for skipping the test case.
 %%
 %% Description: Initialization before each test case.
 %%
 %% Note: This function is free to add any key/value pairs to the Config
 %% variable, but should NOT alter/remove any existing entries.
 %%--------------------------------------------------------------------
 init_per_testcase(_TestCase, Config) ->
     Config.

 %%--------------------------------------------------------------------
 %% Function: end_per_testcase(TestCase, Config0) ->
 %%               term() | {save_config,Config1} | {fail,Reason}
 %%
 %% TestCase = atom()
 %%   Name of the test case that is finished.
 %% Config0 = Config1 = [tuple()]
 %%   A list of key/value pairs, holding the test case configuration.
 %% Reason = term()
 %%   The reason for failing the test case.
 %%
 %% Description: Cleanup after each test case.
 %%--------------------------------------------------------------------
 end_per_testcase(_TestCase, _Config) ->
     ok.

 %%--------------------------------------------------------------------
 %% Function: groups() -> [Group]
 %%
 %% Group = {GroupName,Properties,GroupsAndTestCases}
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 %% GroupName = atom()
 %%   The name of the group.
 %% Properties = [parallel | sequence | Shuffle | {RepeatType,N}]
 %%   Group properties that may be combined.
 %% GroupsAndTestCases = [Group | {group,GroupName} | TestCase]
 %% TestCase = atom()
 %%   The name of a test case.
 %% Shuffle = shuffle | {shuffle,Seed}
 %%   To get cases executed in random order.
 %% Seed = {integer(),integer(),integer()}
 %% RepeatType = repeat | repeat_until_all_ok | repeat_until_all_fail |
 %%              repeat_until_any_ok | repeat_until_any_fail
 %%   To get execution of cases repeated.
 %% N = integer() | forever
 %%
 %% Description: Returns a list of test case group definitions.
 %%--------------------------------------------------------------------
 groups() ->
     [].

 %%--------------------------------------------------------------------
 %% Function: all() -> GroupsAndTestCases | {skip,Reason}
 %%
 %% GroupsAndTestCases = [{group,GroupName} | TestCase]
 %% GroupName = atom()
 %%   Name of a test case group.
 %% TestCase = atom()
 %%   Name of a test case.
 %% Reason = term()
 %%   The reason for skipping all groups and test cases.
 %%
 %% Description: Returns the list of groups and test cases that
 %%              are to be executed.
 %%--------------------------------------------------------------------
 all() -> 
     [my_test_case].

 %%--------------------------------------------------------------------
 %% TEST CASES
 %%--------------------------------------------------------------------

 %%--------------------------------------------------------------------
 %% Function: TestCase() -> Info
 %%
 %% Info = [tuple()]
 %%   List of key/value pairs.
 %%
 %% Description: Test case info function - returns list of tuples to set
 %%              properties for the test case.
 %%
 %% Note: This function is only meant to be used to return a list of
 %% values, not perform any other operations.
 %%--------------------------------------------------------------------
 my_test_case() -> 
     [].

 %%--------------------------------------------------------------------
 %% Function: TestCase(Config0) ->
 %%               ok | exit() | {skip,Reason} | {comment,Comment} |
 %%               {save_config,Config1} | {skip_and_save,Reason,Config1}
 %%
 %% Config0 = Config1 = [tuple()]
 %%   A list of key/value pairs, holding the test case configuration.
 %% Reason = term()
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 %%   The reason for skipping the test case.
 %% Comment = term()
 %%   A comment about the test case that will be printed in the html log.
 %%
 %% Description: Test case function. (The name of it must be specified in
 %%              the all/0 list or in a test case group for the test case
 %%              to be executed).
 %%--------------------------------------------------------------------
 my_test_case(_Config) -> 
     ok.

Small Common Test Suite
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 %%%-------------------------------------------------------------------
 %%% File    : example_SUITE.erl
 %%% Author  : 
 %%% Description : 
 %%%
 %%% Created : 
 %%%-------------------------------------------------------------------
 -module(example_SUITE).

 -compile(export_all).

 -include_lib("common_test/include/ct.hrl").

 %%--------------------------------------------------------------------
 %% Function: suite() -> Info
 %% Info = [tuple()]
 %%--------------------------------------------------------------------
 suite() ->
     [{timetrap,{seconds,30}}].

 %%--------------------------------------------------------------------
 %% Function: init_per_suite(Config0) ->
 %%               Config1 | {skip,Reason} | {skip_and_save,Reason,Config1}
 %% Config0 = Config1 = [tuple()]
 %% Reason = term()
 %%--------------------------------------------------------------------
 init_per_suite(Config) ->
     Config.

 %%--------------------------------------------------------------------
 %% Function: end_per_suite(Config0) -> term() | {save_config,Config1}
 %% Config0 = Config1 = [tuple()]
 %%--------------------------------------------------------------------
 end_per_suite(_Config) ->
     ok.

 %%--------------------------------------------------------------------
 %% Function: init_per_group(GroupName, Config0) ->
 %%               Config1 | {skip,Reason} | {skip_and_save,Reason,Config1}
 %% GroupName = atom()
 %% Config0 = Config1 = [tuple()]
 %% Reason = term()
 %%--------------------------------------------------------------------
 init_per_group(_GroupName, Config) ->
     Config.

 %%--------------------------------------------------------------------
 %% Function: end_per_group(GroupName, Config0) ->
 %%               term() | {save_config,Config1}
 %% GroupName = atom()
 %% Config0 = Config1 = [tuple()]
 %%--------------------------------------------------------------------
 end_per_group(_GroupName, _Config) ->
     ok.

 %%--------------------------------------------------------------------
 %% Function: init_per_testcase(TestCase, Config0) ->
 %%               Config1 | {skip,Reason} | {skip_and_save,Reason,Config1}
 %% TestCase = atom()
 %% Config0 = Config1 = [tuple()]
 %% Reason = term()
 %%--------------------------------------------------------------------
 init_per_testcase(_TestCase, Config) ->
     Config.
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 %%--------------------------------------------------------------------
 %% Function: end_per_testcase(TestCase, Config0) ->
 %%               term() | {save_config,Config1} | {fail,Reason}
 %% TestCase = atom()
 %% Config0 = Config1 = [tuple()]
 %% Reason = term()
 %%--------------------------------------------------------------------
 end_per_testcase(_TestCase, _Config) ->
     ok.

 %%--------------------------------------------------------------------
 %% Function: groups() -> [Group]
 %% Group = {GroupName,Properties,GroupsAndTestCases}
 %% GroupName = atom()
 %% Properties = [parallel | sequence | Shuffle | {RepeatType,N}]
 %% GroupsAndTestCases = [Group | {group,GroupName} | TestCase]
 %% TestCase = atom()
 %% Shuffle = shuffle | {shuffle,{integer(),integer(),integer()}}
 %% RepeatType = repeat | repeat_until_all_ok | repeat_until_all_fail |
 %%              repeat_until_any_ok | repeat_until_any_fail
 %% N = integer() | forever
 %%--------------------------------------------------------------------
 groups() ->
     [].

 %%--------------------------------------------------------------------
 %% Function: all() -> GroupsAndTestCases | {skip,Reason}
 %% GroupsAndTestCases = [{group,GroupName} | TestCase]
 %% GroupName = atom()
 %% TestCase = atom()
 %% Reason = term()
 %%--------------------------------------------------------------------
 all() -> 
     [my_test_case].

 %%--------------------------------------------------------------------
 %% Function: TestCase() -> Info
 %% Info = [tuple()]
 %%--------------------------------------------------------------------
 my_test_case() -> 
     [].

 %%--------------------------------------------------------------------
 %% Function: TestCase(Config0) ->
 %%               ok | exit() | {skip,Reason} | {comment,Comment} |
 %%               {save_config,Config1} | {skip_and_save,Reason,Config1}
 %% Config0 = Config1 = [tuple()]
 %% Reason = term()
 %% Comment = term()
 %%--------------------------------------------------------------------
 my_test_case(_Config) -> 
     ok.

1.8  Running Tests and Analyzing Results
1.8.1  Using the Common Test Framework
The Common Test framework provides a high-level operator interface for testing, providing the following features:

• Automatic compilation of test suites (and help modules)

• Creation of extra HTML pages for improved overview.

• Single-command interface for running all available tests
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• Handling of configuration files specifying data related to the System Under Test (SUT) (and any other variable
data)

• Mode for running multiple independent test sessions in parallel with central control and configuration

1.8.2  Automatic Compilation of Test Suites and Help Modules
When Common Test starts, it automatically attempts to compile any suites included in the specified tests. If particular
suites are specified, only those suites are compiled. If a particular test object directory is specified (meaning all suites
in this directory are to be part of the test), Common Test runs function make:all/1 in the directory to compile
the suites.

If compilation fails for one or more suites, the compilation errors are printed to tty and the operator is asked if the test
run is to proceed without the missing suites, or be aborted. If the operator chooses to proceed, the tests having missing
suites are noted in the HTML log. If Common Test is unable to prompt the user after compilation failure (if Common
Test does not control stdin), the test run proceeds automatically without the missing suites. This behavior can
however be modified with the ct_run flag -abort_if_missing_suites, or the ct:run_test/1 option
{abort_if_missing_suites,TrueOrFalse}. If abort_if_missing_suites is set to true, the test
run stops immediately if some suites fail to compile.

Any help module (that is, regular Erlang module with name not ending with "_SUITE") that resides in the same test
object directory as a suite, which is part of the test, is also automatically compiled. A help module is not mistaken for
a test suite (unless it has a "_SUITE" name). All help modules in a particular test object directory are compiled, no
matter if all or only particular suites in the directory are part of the test.

If test suites or help modules include header files stored in other locations than the test directory, these include
directories can be specified by using flag -include with ct_run, or option include with ct:run_test/1.
Also, an include path can be specified with an OS environment variable, CT_INCLUDE_PATH.

Example (bash):

$ export CT_INCLUDE_PATH=~testuser/common_suite_files/include:~testuser/
common_lib_files/include

Common Test passes all include directories (specified either with flag/option include, or variable
CT_INCLUDE_PATH , or both, to the compiler.

Include directories can also be specified in test specifications, see Test Specifications.

If the user wants to run all test suites for a test object (or an OTP application) by specifying only the top directory
(for example, with start flag/option dir), Common Test primarily looks for test suite modules in a subdirectory
named test. If this subdirectory does not exist, the specified top directory is assumed to be the test directory, and
test suites are read from there instead.

To disable the automatic compilation feature, use flag -no_auto_compile with ct_run, or option
{auto_compile,false} with ct:run_test/1. With automatic compilation disabled, the user is responsible
for compiling the test suite modules (and any help modules) before the test run. If the modules cannot be loaded from
the local file system during startup of Common Test, the user must preload the modules before starting the test.
Common Test only verifies that the specified test suites exist (that is, that they are, or can be, loaded). This is useful,
for example, if the test suites are transferred and loaded as binaries through RPC from a remote node.

1.8.3  Running Tests from the OS Command Line
The ct_run program can be used for running tests from the OS command line, for example, as follows:

• ct_run -config <configfilenames> -dir <dirs>

• ct_run -config <configfilenames> -suite <suiteswithfullpath>

• ct_run -userconfig <callbackmodulename> <configfilenames> -suite
<suiteswithfullpath>
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• ct_run -config <configfilenames> -suite <suitewithfullpath> -group
<groups> -case <casenames>

Examples:

 $ ct_run -config $CFGS/sys1.cfg $CFGS/sys2.cfg -dir $SYS1_TEST $SYS2_TEST
 $ ct_run -userconfig ct_config_xml $CFGS/sys1.xml $CFGS/sys2.xml -dir $SYS1_TEST $SYS2_TEST
 $ ct_run -suite $SYS1_TEST/setup_SUITE $SYS2_TEST/config_SUITE
 $ ct_run -suite $SYS1_TEST/setup_SUITE -case start stop
 $ ct_run -suite $SYS1_TEST/setup_SUITE -group installation -case start stop

The flags dir, suite, and group/case can be combined. For example, to run x_SUITE and y_SUITE in
directory testdir, as follows:

 $ ct_run -dir ./testdir -suite x_SUITE y_SUITE

This has the same effect as the following:

 $ ct_run -suite ./testdir/x_SUITE ./testdir/y_SUITE

For details, see Test Case Group Execution.

The following flags can also be used with ct_run:

-help

Lists all available start flags.

-logdir <dir>

Specifies where the HTML log files are to be written.

-label <name_of_test_run>

Associates the test run with a name that gets printed in the overview HTML log files.

-refresh_logs

Refreshes the top-level HTML index files.

-shell

Starts interactive shell mode (described later).

-step [step_opts]

Steps through test cases using the Erlang Debugger (described later).

-spec <testspecs>

Uses test specification as input (described later).

-allow_user_terms

Allows user-specific terms in a test specification (described later).

-silent_connections [conn_types]

, tells Common Test to suppress printouts for specified connections (described later).

-stylesheet <css_file>

Points out a user HTML style sheet (described later).
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-cover <cover_cfg_file>

To perform code coverage test (see Code Coverage Analysis).

-cover_stop <bool>

To specify if the cover tool is to be stopped after the test is completed (see Code Coverage Analysis).

-event_handler <event_handlers>

To install event handlers.

-event_handler_init <event_handlers>

To install event handlers including start arguments.

-ct_hooks <ct_hooks>

To install Common Test Hooks including start arguments.

-enable_builtin_hooks <bool>

To enable or disable Built-in Common Test Hooks. Default is true.

-include

Specifies include directories (described earlier).

-no_auto_compile

Disables the automatic test suite compilation feature (described earlier).

-abort_if_missing_suites

Aborts the test run if one or more suites fail to compile (described earlier).

-multiply_timetraps <n>

Extends timetrap time-out values.

-scale_timetraps <bool>

Enables automatic timetrap time-out scaling.

-repeat <n>

Tells Common Test to repeat the tests n times (described later).

-duration <time>

Tells Common Test to repeat the tests for duration of time (described later).

-until <stop_time>

Tells Common Test to repeat the tests until stop_time (described later).

-force_stop [skip_rest]

On time-out, the test run is aborted when the current test job is finished. If skip_rest is provided, the remaining
test cases in the current test job are skipped (described later).

-decrypt_key <key>

Provides a decryption key for encrypted configuration files.

-decrypt_file <key_file>

Points out a file containing a decryption key for encrypted configuration files.

-basic_html

Switches off HTML enhancements that can be incompatible with older browsers.
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-logopts <opts>

Enables modification of the logging behavior, see Log options.

-verbosity <levels>

Sets verbosity levels for printouts.

-no_esc_chars

Disables automatic escaping of special HTML characters. See the Logging chapter.

Note:

Directories passed to Common Test can have either relative or absolute paths.

Note:

Any start flags to the Erlang runtime system (application ERTS) can also be passed as parameters to ct_run. It is,
for example, useful to be able to pass directories to be added to the Erlang code server search path with flag -pa or
-pz. If you have common help- or library modules for test suites (separately compiled), stored in other directories
than the test suite directories, these help/lib directories are preferably added to the code path this way.

Example:

$ ct_run -dir ./chat_server -logdir ./chat_server/testlogs -pa $PWD/
chat_server/ebin

The absolute path of directory chat_server/ebin is here passed to the code server. This is essential because
relative paths are stored by the code server as relative, and Common Test changes the current working directory
of ERTS during the test run.

The ct_run program sets the exit status before shutting down. The following values are defined:

• 0 indicates a successful testrun, that is, without failed or auto-skipped test cases.

• 1 indicates that one or more test cases have failed, or have been auto-skipped.

• 2 indicates that the test execution has failed because of, for example, compilation errors, or an illegal return
value from an information function.

If auto-skipped test cases do not affect the exit status. The default behavior can be changed using start flag:

 -exit_status ignore_config

Note:

Executing ct_run without start flags is equal to the command: ct_run -dir ./

For more information about the ct_run program, see module ct_run and section Installation.

1.8.4  Running Tests from the Erlang Shell or from an Erlang Program
Common Test provides an Erlang API for running tests. The main (and most flexible) function for specifying and
executing tests is ct:run_test/1. It takes the same start parameters as ct_run, but the flags are instead specified
as options in a list of key-value tuples. For example, a test specified with ct_run as follows:

$ ct_run -suite ./my_SUITE -logdir ./results

is with ct:run_test/1 specified as:
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1> ct:run_test([{suite,"./my_SUITE"},{logdir,"./results"}]).

The function returns the test result, represented by the tuple {Ok,Failed,{UserSkipped,AutoSkipped}},
where each element is an integer. If test execution fails, the function returns the tuple {error,Reason}, where the
term Reason explains the failure.

The default start option {dir,Cwd} (to run all suites in the current working directory) is used if the function is called
with an empty list of options.

Releasing the Erlang Shell
During execution of tests started with ct:run_test/1, the Erlang shell process, controlling stdin, remains the
top-level process of the Common Test system of processes. Consequently, the Erlang shell is not available for
interaction during the test run. If this is not desirable, for example, because the shell is needed for debugging purposes
or for interaction with the SUT during test execution, set start option release_shell to true (in the call to
ct:run_test/1 or by using the corresponding test specification term, described later). This makes Common Test
release the shell immediately after the test suite compilation stage. To accomplish this, a test runner process is spawned
to take control of the test execution. The effect is that ct:run_test/1 returns the pid of this process rather than
the test result, which instead is printed to tty at the end of the test run.

Note:

To use the functions ct:break/1,2 and ct:continue/0,1, release_shell must be set to true.

For details, see ct:run_test/1 manual page.

1.8.5  Test Case Group Execution
With the ct_run flag, or ct:run_test/1 option group, one or more test case groups can be specified, optionally
in combination with specific test cases. The syntax for specifying groups on the command line is as follows:

 $ ct_run -group <group_names_or_paths> [-case <cases>]

The syntax in the Erlang shell is as follows:

 1> ct:run_test([{group,GroupsNamesOrPaths}, {case,Cases}]).

Parameter group_names_or_paths specifies one or more group names and/or one or more group paths. At
startup, Common Test searches for matching groups in the group definitions tree (that is, the list returned from
Suite:groups/0; for details, see section Test Case Groups.

Given a group name, say g, Common Test searches for all paths leading to g. By path is meant a sequence of
nested groups, which must be followed to get from the top-level group to g. To execute the test cases in group g,
Common Test must call the init_per_group/2 function for each group in the path to g, and all corresponding
end_per_group/2 functions afterwards. This is because the configuration of a test case in g (and its Config input
data) depends on init_per_testcase(TestCase, Config) and its return value, which in turn depends on
init_per_group(g, Config) and its return value, which in turn depends on init_per_group/2 of the
group above g, and so on, all the way up to the top-level group.

This means that if there is more than one way to locate a group (and its test cases) in a path, the result of the group
search operation is a number of tests, all of which are to be performed. Common Test interprets a group specification
that consists of a single name as follows:

"Search and find all paths in the group definitions tree that lead to the specified group and, for each path, create a test
that does the following, in order:
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• Executes all configuration functions in the path to the specified group.

• Executes all, or all matching, test cases in this group.

• Executes all, or all matching, test cases in all subgroups of the group."

The user can specify a specific group path with parameter group_names_or_paths. With this type of specification
execution of unwanted groups (in otherwise matching paths), and/or the execution of subgroups can be avoided. The
command line syntax of the group path is a list of group names in the path, for example:

$ ct_run -suite "./x_SUITE" -group [g1,g3,g4] -case tc1 tc5

The syntax in the Erlang shell is as follows (requires a list within the groups list):

1> ct:run_test([{suite,"./x_SUITE"}, {group,[[g1,g3,g4]]}, {testcase,
[tc1,tc5]}]).

The last group in the specified path is the terminating group in the test, that is, no subgroups following this group are
executed. In the previous example, g4 is the terminating group. Hence, Common Test executes a test that calls all
init configuration functions in the path to g4, that is, g1..g3..g4. It then calls test cases tc1 and tc5 in g4,
and finally all end configuration functions in order g4..g3..g1.

Note:

The group path specification does not necessarily have to include all groups in the path to the terminating group.
Common Test searches for all matching paths if an incomplete group path is specified.

Note:

Group names and group paths can be combined with parameter group_names_or_paths. Each element is
treated as an individual specification in combination with parameter cases. The following examples illustrates
this.

Examples:

 -module(x_SUITE).
 ...
 %% The group definitions:      
 groups() ->
   [{top1,[],[tc11,tc12,
       {sub11,[],[tc12,tc13]},
       {sub12,[],[tc14,tc15,
    {sub121,[],[tc12,tc16]}]}]},

    {top2,[],[{group,sub21},{group,sub22}]},
    {sub21,[],[tc21,{group,sub2X2}]},
    {sub22,[],[{group,sub221},tc21,tc22,{group,sub2X2}]},
    {sub221,[],[tc21,tc23]},
    {sub2X2,[],[tc21,tc24]}].

The following executes two tests, one for all cases and all subgroups under top1, and one for all under top2:

 $ ct_run -suite "x_SUITE" -group all
 1> ct:run_test([{suite,"x_SUITE"}, {group,all}]).

Using -group top1 top2, or {group,[top1,top2]} gives the same result.

The following executes one test for all cases and subgroups under top1:
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 $ ct_run -suite "x_SUITE" -group top1
 1> ct:run_test([{suite,"x_SUITE"}, {group,[top1]}]).

The following runs a test executing tc12 in top1 and any subgroup under top1 where it can be found (sub11
and sub121):

 $ ct_run -suite "x_SUITE" -group top1 -case tc12
 1> ct:run_test([{suite,"x_SUITE"}, {group,[top1]}, {testcase,[tc12]}]).

The following executes tc12 only in group top1:

 $ ct_run -suite "x_SUITE" -group [top1] -case tc12
 1> ct:run_test([{suite,"x_SUITE"}, {group,[[top1]]}, {testcase,[tc12]}]).

The following searches top1 and all its subgroups for tc16 resulting in that this test case executes in group sub121:

 $ ct_run -suite "x_SUITE" -group top1 -case tc16
 1> ct:run_test([{suite,"x_SUITE"}, {group,[top1]}, {testcase,[tc16]}]).

Using the specific path -group [sub121] or {group,[[sub121]]} gives the same result in this example.

The following executes two tests, one including all cases and subgroups under sub12, and one with only the test
cases in sub12:

 $ ct_run -suite "x_SUITE" -group sub12 [sub12]
 1> ct:run_test([{suite,"x_SUITE"}, {group,[sub12,[sub12]]}]).

In the following example, Common Test finds and executes two tests, one for the path from top2 to sub2X2
through sub21, and one from top2 to sub2X2 through sub22:

 $ ct_run -suite "x_SUITE" -group sub2X2
 1> ct:run_test([{suite,"x_SUITE"}, {group,[sub2X2]}]).

In the following example, by specifying the unique path top2 -> sub21 -> sub2X2, only one test is executed.
The second possible path, from top2 to sub2X2 (from the former example) is discarded:

 $ ct_run -suite "x_SUITE" -group [sub21,sub2X2]
 1> ct:run_test([{suite,"x_SUITE"}, {group,[[sub21,sub2X2]]}]).

The following executes only the test cases for sub22 and in reverse order compared to the group definition:

 $ ct_run -suite "x_SUITE" -group [sub22] -case tc22 tc21
 1> ct:run_test([{suite,"x_SUITE"}, {group,[[sub22]]}, {testcase,[tc22,tc21]}]).

If a test case belonging to a group (according to the group definition) is executed without a group specification, that
is, simply by (using the command line):

$ ct_run -suite "my_SUITE" -case my_tc

or (using the Erlang shell):

1> ct:run_test([{suite,"my_SUITE"}, {testcase,my_tc}]).

then Common Test ignores the group definition and executes the test case in the scope of the test suite only (no
group configuration functions are called).
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The group specification feature, as presented in this section, can also be used in Test Specifications (with some extra
features added).

1.8.6  Running the Interactive Shell Mode
You can start Common Test in an interactive shell mode where no automatic testing is performed. Instead, Common
Test starts its utility processes, installs configuration data (if any), and waits for the user to call functions (typically
test case support functions) from the Erlang shell.

The shell mode is useful, for example, for debugging test suites, analyzing and debugging the SUT during "simulated"
test case execution, and trying out various operations during test suite development.

To start the interactive shell mode, start an Erlang shell manually and call ct:install/1 to install any configuration
data you might need (use [] as argument otherwise). Then call ct:start_interactive/0 to start Common
Test.

If you use the ct_run program, you can start the Erlang shell and Common Test in one go by using the flag -
shell and, optionally, flag -config and/or -userconfig.

Examples:

• ct_run -shell

• ct_run -shell -config cfg/db.cfg

• ct_run -shell -userconfig db_login testuser x523qZ

If no configuration file is specified with command ct_run, a warning is displayed. If Common Test has been run
from the same directory earlier, the same configuration file(s) are used again. If Common Test has not been run
from this directory before, no configuration files are available.

If any functions using "required configuration data" (for example, functions ct_telnet or ct_ftp) are to be called
from the Erlang shell, first require configuration data with  ct:require/1,2. This is equivalent to a require
statement in the Test Suite Information Function or in the Test Case Information Function.

Example:

 
 1> ct:require(unix_telnet, unix).
 ok
 2> ct_telnet:open(unix_telnet).
 {ok,<0.105.0>}
 4> ct_telnet:cmd(unix_telnet, "ls .").
 {ok,["ls .","file1  ...",...]}

Everything that Common Test normally prints in the test case logs, are in the interactive mode written to a
log named ctlog.html in directory ct_run.<timestamp>. A link to this file is available in the file named
last_interactive.html in the directory from which you execute ct_run. Specifying a different root directory
for the logs than the current working directory is not supported.

If you wish to exit the interactive mode (for example, to start an automated test run with ct:run_test/1),
call function ct:stop_interactive/0. This shuts down the running ct application. Associations
between configuration names and data created with require are consequently deleted. Function
ct:start_interactive/0 takes you back into interactive mode, but the previous state is not restored.

1.8.7  Step-by-Step Execution of Test Cases with the Erlang Debugger
Using ct_run -step [opts], or by passing option {step,Opts} to ct:run_test/1, the following is
possible:

• Get the Erlang Debugger started automatically.

• Use its graphical interface to investigate the state of the current test case.
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• Execute the test case step-by-step and/or set execution breakpoints.

If no extra options are specified with flag/option step, breakpoints are set automatically on the test cases that are
to be executed by Common Test, and those functions only. If step option config is specified, breakpoints are
also initially set on the configuration functions in the suite, that is, init_per_suite/1, end_per_suite/1,
init_per_group/2, end_per_group/2, init_per_testcase/2 and end_per_testcase/2.

Common Test enables the Debugger auto-attach feature, which means that for every new interpreted test case
function that starts to execute, a new trace window automatically pops up (as each test case executes on a dedicated
Erlang process). Whenever a new test case starts, Common Test attempts to close the inactive trace window
of the previous test case. However, if you prefer Common Test to leave inactive trace windows, use option
keep_inactive.

The step functionality can be used together with flag/option suite and suite + case/testcase, but not together
with dir.

1.8.8  Test Specifications
General Description
The most flexible way to specify what to test, is to use a test specification, which is a sequence of Erlang terms. The
terms are normally declared in one or more text files (see ct:run_test/1), but can also be passed to Common
Test on the form of a list (see ct:run_testspec/1). There are two general types of terms: configuration terms
and test specification terms.

With configuration terms it is, for example, possible to do the following:

• Label the test run (similar to ct_run -label).

• Evaluate any expressions before starting the test.

• Import configuration data (similar to ct_run -config/-userconfig).

• Specify the top-level HTML log directory (similar to ct_run -logdir).

• Enable code coverage analysis (similar to ct_run -cover).

• Install Common Test Hooks (similar to ct_run -ch_hooks).

• Install event_handler plugins (similar to ct_run -event_handler).

• Specify include directories to be passed to the compiler for automatic compilation (similar to ct_run -
include).

• Disable the auto-compilation feature (similar to ct_run -no_auto_compile).

• Set verbosity levels (similar to ct_run -verbosity).

Configuration terms can be combined with ct_run start flags or ct:run_test/1 options. The result is, for some
flags/options and terms, that the values are merged (for example, configuration files, include directories, verbosity
levels, and silent connections) and for others that the start flags/options override the test specification terms (for
example, log directory, label, style sheet, and auto-compilation).

With test specification terms, it is possible to state exactly which tests to run and in which order. A test term specifies
either one or more suites, one or more test case groups (possibly nested), or one or more test cases in a group (or in
multiple groups) or in a suite.

Any number of test terms can be declared in sequence. Common Test compiles by default the terms into one or
more tests to be performed in one resulting test run. A term that specifies a set of test cases "swallows" one that only
specifies a subset of these cases. For example, the result of merging one term specifying that all cases in suite S are
to be executed, with another term specifying only test case X and Y in S, is a test of all cases in S. However, if a
term specifying test case X and Y in S is merged with a term specifying case Z in S, the result is a test of X, Y, and
Z in S. To disable this behavior, that is, to instead perform each test sequentially in a "script-like" manner, set term
merge_tests to false in the test specification.
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A test term can also specify one or more test suites, groups, or test cases to be skipped. Skipped suites, groups, and
cases are not executed and show up in the HTML log files as SKIPPED.

Using Multiple Test Specification Files
When multiple test specification files are specified at startup (either with ct_run -spec file1 file2 ...
or ct:run_test([{spec, [File1,File2,...]}])), Common Test either executes one test run per
specification file, or joins the files and performs all tests within one single test run. The first behavior is the default
one. The latter requires that start flag/option join_specs is provided, for example, run_test -spec ./
my_tests1.ts ./my_tests2.ts -join_specs.

Joining a number of specifications, or running them separately, can also be accomplished with (and can be combined
with) test specification file inclusion.

Test Specification File Inclusion
With the term specs, a test specification can include other specifications. An included specification can either be
joined with the source specification or used to produce a separate test run (as with start flag/option join_specs
above).

Example:

 %% In specification file "a.spec"
 {specs, join, ["b.spec", "c.spec"]}.
 {specs, separate, ["d.spec", "e.spec"]}.
 %% Config and test terms follow
 ...

In this example, the test terms defined in files "b.spec" and "c.spec" are joined with the terms in source specification
"a.spec" (if any). The inclusion of specifications "d.spec" and "e.spec" results in two separate, and independent, test
runs (one for each included specification).

Option join does not imply that the test terms are merged, only that all tests are executed in one single test run.

Joined specifications share common configuration settings, such as the list of config files or include directories.
For configurations that cannot be combined, such as settings for logdir or verbosity, it is up to the user to
ensure there are no clashes when the test specifications are joined. Specifications included with option separate
do not share configuration settings with the source specification. This is useful, for example, if there are clashing
configuration settings in included specifications, making it them impossible to join.

If {merge_tests,true} is set in the source specification (which is the default setting), terms in joined
specifications are merged with terms in the source specification (according to the description of merge_tests
earlier).

Notice that it is always the merge_tests setting in the source specification that is used when joined
with other specifications. Say, for example, that a source specification A, with tests TA1 and TA2, has
{merge_tests,false} set, and that it includes another specification, B, with tests TB1 and TB2, that has
{merge_tests,true} set. The result is that the test series TA1,TA2,merge(TB1,TB2) is executed. The
opposite merge_tests settings would result in the test series merge(merge(TA1,TA2),TB1,TB2).

The term specs can be used to nest specifications, that is, have one specification include other specifications, which
in turn include others, and so no

Test Case Groups
When a test case group is specified, the resulting test executes function init_per_group, followed by all test cases
and subgroups (including their configuration functions), and finally function end_per_group. Also, if particular
test cases in a group are specified, init_per_group and end_per_group, for the group in question, are called.
If a group defined (in Suite:group/0) as a subgroup of another group, is specified (or if particular test cases of
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a subgroup are), Common Test calls the configuration functions for the top-level groups and for the subgroup in
question (making it possible to pass configuration data all the way from init_per_suite down to the test cases
in the subgroup).

The test specification uses the same mechanism for specifying test case groups through names and paths, as explained
in section Test Case Group Execution, with the addition of element GroupSpec.

Element GroupSpec makes it possible to specify group execution properties that overrides those in the group
definition (that is, in groups/0). Execution properties for subgroups might be overridden as well. This feature makes
it possible to change properties of groups at the time of execution, without having to edit the test suite. The same feature
is available for group elements in the Suite:all/0 list. For details and examples, see section Test Case Groups.

Test Specification Syntax
Test specifications can be used to run tests both in a single test host environment and in a distributed Common Test
environment (Large Scale Testing). The node parameters in term init are only relevant in the latter (see section Test
Specifications in Large Scale Testing). For details about the various terms, see the corresponding sections in the User's
Guide, for example, the following:

• The ct_run program for an overview of available start flags (as most flags have a corresponding
configuration term)

• Logging (for terms verbosity, stylesheet, basic_html and esc_chars)

• External Configuration Data (for terms config and userconfig)

• Event Handling (for the event_handler term)

• Common Test Hooks (for term ct_hooks)

Configuration terms:
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 {merge_tests, Bool}.

 {define, Constant, Value}.

 {specs, InclSpecsOption, TestSpecs}.

 {node, NodeAlias, Node}.

 {init, InitOptions}.
 {init, [NodeAlias], InitOptions}.

 {label, Label}.
 {label, NodeRefs, Label}.

 {verbosity, VerbosityLevels}.
 {verbosity, NodeRefs, VerbosityLevels}.

 {stylesheet, CSSFile}.
 {stylesheet, NodeRefs, CSSFile}.

 {silent_connections, ConnTypes}.
 {silent_connections, NodeRefs, ConnTypes}.

 {multiply_timetraps, N}.
 {multiply_timetraps, NodeRefs, N}.

 {scale_timetraps, Bool}.
 {scale_timetraps, NodeRefs, Bool}.

 {cover, CoverSpecFile}.
 {cover, NodeRefs, CoverSpecFile}.

 {cover_stop, Bool}.
 {cover_stop, NodeRefs, Bool}.

 {include, IncludeDirs}.
 {include, NodeRefs, IncludeDirs}.

 {auto_compile, Bool},
 {auto_compile, NodeRefs, Bool},

 {abort_if_missing_suites, Bool},
 {abort_if_missing_suites, NodeRefs, Bool},

 {config, ConfigFiles}.
 {config, ConfigDir, ConfigBaseNames}.
 {config, NodeRefs, ConfigFiles}.
 {config, NodeRefs, ConfigDir, ConfigBaseNames}.

 {userconfig, {CallbackModule, ConfigStrings}}.
 {userconfig, NodeRefs, {CallbackModule, ConfigStrings}}.

 {logdir, LogDir}.                                        
 {logdir, NodeRefs, LogDir}.

 {logopts, LogOpts}.
 {logopts, NodeRefs, LogOpts}.

 {create_priv_dir, PrivDirOption}.
 {create_priv_dir, NodeRefs, PrivDirOption}.

 {event_handler, EventHandlers}.
 {event_handler, NodeRefs, EventHandlers}.
 {event_handler, EventHandlers, InitArgs}.
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 {event_handler, NodeRefs, EventHandlers, InitArgs}.

 {ct_hooks, CTHModules}.
 {ct_hooks, NodeRefs, CTHModules}.

 {enable_builtin_hooks, Bool}.

 {basic_html, Bool}.
 {basic_html, NodeRefs, Bool}.

 {esc_chars, Bool}.
 {esc_chars, NodeRefs, Bool}.

 {release_shell, Bool}.

Test terms:

 {suites, Dir, Suites}.                                
 {suites, NodeRefs, Dir, Suites}.

 {groups, Dir, Suite, Groups}.
 {groups, NodeRefs, Dir, Suite, Groups}.

 {groups, Dir, Suite, Groups, {cases,Cases}}.
 {groups, NodeRefs, Dir, Suite, Groups, {cases,Cases}}.

 {cases, Dir, Suite, Cases}.                           
 {cases, NodeRefs, Dir, Suite, Cases}.

 {skip_suites, Dir, Suites, Comment}.
 {skip_suites, NodeRefs, Dir, Suites, Comment}.

 {skip_groups, Dir, Suite, GroupNames, Comment}.
 {skip_groups, NodeRefs, Dir, Suite, GroupNames, Comment}.

 {skip_cases, Dir, Suite, Cases, Comment}.
 {skip_cases, NodeRefs, Dir, Suite, Cases, Comment}.

Types:
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 Bool            = true | false
 Constant        = atom()
 Value           = term()
 InclSpecsOption = join | separate
 TestSpecs       = string() | [string()]
 NodeAlias       = atom()
 Node            = node()
 NodeRef         = NodeAlias | Node | master
 NodeRefs        = all_nodes | [NodeRef] | NodeRef
 InitOptions     = term()
 Label           = atom() | string()
 VerbosityLevels = integer() | [{Category,integer()}]
 Category        = atom()
 CSSFile         = string()
 ConnTypes       = all | [atom()]
 N               = integer()
 CoverSpecFile   = string()
 IncludeDirs     = string() | [string()]
 ConfigFiles     = string() | [string()]
 ConfigDir       = string()
 ConfigBaseNames = string() | [string()]
 CallbackModule  = atom()
 ConfigStrings   = string() | [string()]
 LogDir          = string()
 LogOpts         = [term()]
 PrivDirOption   = auto_per_run | auto_per_tc | manual_per_tc
 EventHandlers   = atom() | [atom()]
 InitArgs        = [term()]
 CTHModules      = [CTHModule |
      {CTHModule, CTHInitArgs} |
      {CTHModule, CTHInitArgs, CTHPriority}]
 CTHModule       = atom()
 CTHInitArgs     = term()
 Dir             = string()
 Suites          = atom() | [atom()] | all
 Suite           = atom()
 Groups          = GroupPath | [GroupPath] | GroupSpec | [GroupSpec] | all
 GroupPath       = [GroupName]
 GroupSpec       = GroupName | {GroupName,Properties} | {GroupName,Properties,GroupSpec}
 GroupName       = atom()
 GroupNames      = GroupName | [GroupName]
 Cases           = atom() | [atom()] | all
 Comment         = string() | ""

The difference between the config terms above is that with ConfigDir, ConfigBaseNames is a list of base
names, that is, without directory paths. ConfigFiles must be full names, including paths. For example, the
following two terms have the same meaning:

 {config, ["/home/testuser/tests/config/nodeA.cfg",
           "/home/testuser/tests/config/nodeB.cfg"]}.

 {config, "/home/testuser/tests/config", ["nodeA.cfg","nodeB.cfg"]}.
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Note:

Any relative paths, specified in the test specification, are relative to the directory containing the test specification file
if ct_run -spec TestSpecFile ... or ct:run:test([{spec,TestSpecFile},...]) executes
the test.

The path is relative to the top-level log directory if ct:run:testspec(TestSpec) executes the test.

Constants
The term define introduces a constant that is used to replace the name Constant with Value, wherever it is found
in the test specification. This replacement occurs during an initial iteration through the test specification. Constants
can be used anywhere in the test specification, for example, in any lists and tuples, and even in strings and inside the
value part of other constant definitions. A constant can also be part of a node name, but that is the only place where
a constant can be part of an atom.

Note:

For the sake of readability, the name of the constant must always begin with an uppercase letter, or a $, ?, or _.
This means that it must always be single quoted (as the constant name is an atom, not text).

The main benefit of constants is that they can be used to reduce the size (and avoid repetition) of long strings, such
as file paths.

Examples:

 %% 1a. no constant
 {config, "/home/testuser/tests/config", ["nodeA.cfg","nodeB.cfg"]}.
 {suites, "/home/testuser/tests/suites", all}.

 %% 1b. with constant
 {define, 'TESTDIR', "/home/testuser/tests"}.
 {config, "'TESTDIR'/config", ["nodeA.cfg","nodeB.cfg"]}.
 {suites, "'TESTDIR'/suites", all}.

 %% 2a. no constants
 {config, [testnode@host1, testnode@host2], "../config", ["nodeA.cfg","nodeB.cfg"]}.
 {suites, [testnode@host1, testnode@host2], "../suites", [x_SUITE, y_SUITE]}.

 %% 2b. with constants
 {define, 'NODE', testnode}.
 {define, 'NODES', ['NODE'@host1, 'NODE'@host2]}.
 {config, 'NODES', "../config", ["nodeA.cfg","nodeB.cfg"]}.
 {suites, 'NODES', "../suites", [x_SUITE, y_SUITE]}.

Constants make the test specification term alias, in previous versions of Common Test, redundant. This term is
deprecated but remains supported in upcoming Common Test releases. Replacing alias terms with define is
strongly recommended though. An example of such replacement follows:
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 %% using the old alias term
 {config, "/home/testuser/tests/config/nodeA.cfg"}.
 {alias, suite_dir, "/home/testuser/tests/suites"}.
 {groups, suite_dir, x_SUITE, group1}.

 %% replacing with constants
 {define, 'TestDir', "/home/testuser/tests"}.
 {define, 'CfgDir', "'TestDir'/config"}.
 {define, 'SuiteDir', "'TestDir'/suites"}.
 {config, 'CfgDir', "nodeA.cfg"}.
 {groups, 'SuiteDir', x_SUITE, group1}.

Constants can well replace term node also, but this still has a declarative value, mainly when used in combination
with NodeRefs == all_nodes (see Types).

Example
Here follows a simple test specification example:

 {define, 'Top', "/home/test"}.
 {define, 'T1', "'Top'/t1"}.
 {define, 'T2', "'Top'/t2"}.
 {define, 'T3', "'Top'/t3"}.
 {define, 'CfgFile', "config.cfg"}.

 {logdir, "'Top'/logs"}.

 {config, ["'T1'/'CfgFile'", "'T2'/'CfgFile'", "'T3'/'CfgFile'"]}.

 {suites, 'T1', all}.
 {skip_suites, 'T1', [t1B_SUITE,t1D_SUITE], "Not implemented"}.
 {skip_cases, 'T1', t1A_SUITE, [test3,test4], "Irrelevant"}.
 {skip_cases, 'T1', t1C_SUITE, [test1], "Ignore"}.

 {suites, 'T2', [t2B_SUITE,t2C_SUITE]}.
 {cases, 'T2', t2A_SUITE, [test4,test1,test7]}.

 {skip_suites, 'T3', all, "Not implemented"}.

The example specifies the following:

• The specified logdir directory is used for storing the HTML log files (in subdirectories tagged with node
name, date, and time).

• The variables in the specified test system configuration files are imported for the test.

• The first test to run includes all suites for system t1. Suites t1B and t1D are excluded from the test. Test cases
test3 and test4 in t1A and test1 case in t1C are also excluded from the test.

• The second test to run is for system t2. The included suites are t2B and t2C. Test cases test4, test1, and
test7 in suite t2A are also included. The test cases are executed in the specified order.

• The last test to run is for system t3. Here, all suites are skipped and this is explicitly noted in the log files.

The init Term
With term init it is possible to specify initialization options for nodes defined in the test specification. There are
options to start the node and to evaluate any function on the node. For details, see section Automatic Startup of Test
Target Nodes in section Using Common Test for Large Scale Testing.
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User-Specific Terms
The user can provide a test specification including (for Common Test) unrecognizable terms. If this is desired, use
flag -allow_user_terms when starting tests with ct_run. This forces Common Test to ignore unrecognizable
terms. In this mode, Common Test is not able to check the specification for errors as efficiently as if the scanner
runs in default mode. If ct:run_test/1 is used for starting the tests, the relaxed scanner mode is enabled by tuple
{allow_user_terms,true}.

Reading Test Specification Terms
Terms in the current test specification (that is, the specification that has been used to configure and run the current
test) can be looked up. The function get_testspec_terms() returns a list of all test specification terms (both
configuration terms and test terms), and get_testspec_terms(Tags) returns the term (or a list of terms)
matching the tag (or tags) in Tags.

For example, in the test specification:

 ...
 {label, my_server_smoke_test}.
 {config, "../../my_server_setup.cfg"}.
 {config, "../../my_server_interface.cfg"}.
 ...

And in, for example, a test suite or a Common Test Hook function:

 ...
 [{label,[{_Node,TestType}]}, {config,CfgFiles}] =
     ct:get_testspec_terms([label,config]),

 [verify_my_server_cfg(TestType, CfgFile) || {Node,CfgFile} <- CfgFiles,
          Node == node()];
 ...

1.8.9  Log Files
As the execution of the test suites proceed, events are logged in the following four different ways:

• Text to the operator console.

• Suite-related information is sent to the major log file.

• Case-related information is sent to the minor log file.

• The HTML overview log file is updated with test results.

• A link to all runs executed from a certain directory is written in the log named all_runs.html and direct
links to all tests (the latest results) are written to the top-level index.html.

Typically the operator, possibly running hundreds or thousands of test cases, does not want to fill the console with
details about, or printouts from, specific test cases. By default, the operator only sees the following:

• A confirmation that the test has started and information about how many test cases are executed in total.

• A small note about each failed test case.

• A summary of all the run test cases.

• A confirmation when the test run is complete.

• Some special information, such as error reports, progress reports, and printouts written with
erlang:display/1, or io:format/3 specifically addressed to a receiver other than standard_io (for
example, the default group leader process user).
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To dig deeper into the general results, or the result of a specific test case, the operator can do so by following the links
in the HTML presentation and read the major or minor log files. The "all_runs.html" page is a good starting point. It
is located in logdir and contains a link to each test run, including a quick overview (with date and time, node name,
number of tests, test names, and test result totals).

An "index.html" page is written for each test run (that is, stored in the ct_run directory tagged with node name,
date, and time). This file provides an overview of all individual tests performed in the same test run. The test names
follow the following convention:

• TopLevelDir.TestDir (all suites in TestDir executed)

• TopLevelDir.TestDir:suites (specific suites executed)

• TopLevelDir.TestDir.Suite (all cases in Suite executed)

• TopLevelDir.TestDir.Suite:cases (specific test cases executed)

• TopLevelDir.TestDir.Suite.Case (only Case executed)

The "test run index" page includes a link to the Common Test Framework Log file in which information about
imported configuration data and general test progress is written. This log file is useful to get snapshot information
about the test run during execution. It can also be helpful when analyzing test results or debugging test suites.

The "test run index" page indicates if a test has missing suites (that is, suites that Common Test failed to compile).
Names of the missing suites can be found in the Common Test Framework Log file.

The major log file shows a detailed report of the test run. It includes test suite and test case names, execution time,
the exact reason for failures, and so on. The information is available in both a file with textual and with HTML
representation. The HTML file shows a summary that gives a good overview of the test run. It also has links to each
individual test case log file for quick viewing with an HTML browser.

The minor log files contain full details of every single test case, each in a separate file. This way, it is straightforward
to compare the latest results to that of previous test runs, even if the set of test cases changes. If application SASL is
running, its logs are also printed to the current minor log file by the cth_log_redirect built-in hook.

The full name of the minor log file (that is, the name of the file including the absolute directory path) can be read
during execution of the test case. It comes as value in tuple {tc_logfile,LogFileName} in the Config list
(which means it can also be read by a pre- or post Common Test Hook function). Also, at the start of a test case,
this data is sent with an event to any installed event handler. For details, see section Event Handling.

The log files are written continuously during a test run and links are always created initially when a test starts. Thevtest
progress can therefore be followed simply by refreshing pages in the HTML browser. Statistics totals are not presented
until a test is complete however.

Log Options
With start flag logopts options that modify some aspects of the logging behavior can be specified. The following
options are available:

no_src

The HTML version of the test suite source code is not generated during the test run (and is consequently not
available in the log file system).

no_nl

Common Test does not add a newline character (\n) to the end of an output string that it receives from a call
to, for example, io:format/2, and which it prints to the test case log.

For example, if a test is started with:

$ ct_run -suite my_SUITE -logopts no_nl

then printouts during the test made by successive calls to io:format("x"), appears in the test case log as:
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xxx

instead of each x printed on a new line, which is the default behavior.

Sorting HTML Table Columns
By clicking the name in the column header of any table (for example, "Ok", "Case", "Time", and so on), the table
rows are sorted in whatever order makes sense for the type of value (for example, numerical for "Ok" or "Time", and
alphabetical for "Case"). The sorting is performed through JavaScript code, automatically inserted into the HTML
log files. Common Test uses the jQuery library and the tablesorter plugin, with customized sorting functions, for
this implementation.

The Unexpected I/O Log
The test suites overview page includes a link to the Unexpected I/O Log. In this log, Common Test saves printouts
made with ct:log/1,2,3,4,5 and ct:pal/1,2,3,4,5, as well as captured system error- and progress reports,
which cannot be associated with particular test cases and therefore cannot be written to individual test case log files.
This occurs, for example, if a log printout is made from an external process (not a test case process), or if an error- or
progress report comes in, during a short interval while Common Test is not executing a test case or configuration
function, or while Common Test is currently executing a parallel test case group.

The Pre- and Post Test I/O Log
The Common Test Framework Log page includes links to the Pre- and Post Test I/O Log. In this log, Common
Test saves printouts made with ct:log/1,2,3,4,5 and ct:pal/1,2,3,4,5, as well as captured system
error- and progress reports, which take place before, and after, the test run. Examples of this are printouts from a CT
hook init- or terminate function, or progress reports generated when an OTP application is started from a CT hook init
function. Another example is an error report generated because of a failure when an external application is stopped
from a CT hook terminate function. All information in these examples ends up in the Pre- and Post Test I/O Log.
For more information on how to synchronize test runs with external user applications, see section Synchronizing in
section Common Test Hooks.

Note:

Logging to file with ct:log/1,2,3,4,5 or ct:pal/1,2,3,4,5 only works when Common Test is
running. Printouts with ct:pal/1,2,3,4,5 are however always displayed on screen.

Delete Old Logs
Common Test can automatically delete old log. This is specified with the keep_logs option. The default value
for this option is all, which means that no logs are deleted. If the value is set to an integer, N, Common Test deletes
all ct_run.<timestamp> directories, except the N newest.

1.8.10  HTML Style Sheets
Common Test uses an HTML Style Sheet (CSS file) to control the look of the HTML log files generated during test
runs. If the log files are not displayed correctly in the browser of your choice, or you prefer a more primitive ("pre
Common Test v1.6") look of the logs, use the start flag/option:

 basic_html

This disables the use of style sheets and JavaScripts (see Sorting HTML Table Columns).

Common Test includes an optional feature to allow user HTML style sheets for customizing printouts. The functions
in ct that print to a test case HTML log file (log/3,4,5 and pal/3,4,5) accept Category as first argument.
With this argument a category can be specified that can be mapped to a named div selector in a CSS rule-set. This is
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useful, especially for coloring text differently depending on the type of (or reason for) the printout. Say you want one
particular background color for test system configuration information, a different one for test system state information,
and finally one for errors detected by the test case functions. The corresponding style sheet can look as follows:

 div.sys_config  { background:blue }
 div.sys_state   { background:yellow }
 div.error       { background:red }

Common Test prints the text from ct:log/3,4,5 or ct:pal/3,4,5 inside a pre element nested under the
named div element. Since the pre selector has a predefined CSS rule (in file ct_default.css) for the attributes
color, font-family and font-size, if a user wants to change any of the predefined attribute settings, a new
rule for pre must be added to the user stylesheet. Example:

div.error pre { color:white }

Here, white text is used instead of the default black for div.error printouts (and no other attribute settings for
pre are affected).

To install the CSS file (Common Test inlines the definition in the HTML code), the file name can be provided when
executing ct_run.

Example:

 $ ct_run -dir $TEST/prog -stylesheet $TEST/styles/test_categories.css

Categories in a CSS file installed with flag -stylesheet are on a global test level in the sense that they can be
used in any suite that is part of the test run.

Style sheets can also be installed on a per suite and per test case basis.

Example:

 -module(my_SUITE).
 ...
 suite() -> [..., {stylesheet,"suite_categories.css"}, ...].
 ...
 my_testcase(_) ->
     ...
     ct:log(sys_config, "Test node version: ~p", [VersionInfo]),
     ...
     ct:log(sys_state, "Connections: ~p", [ConnectionInfo]),
     ...
     ct:pal(error, "Error ~p detected! Info: ~p", [SomeFault,ErrorInfo]),
     ct:fail(SomeFault).

If the style sheet is installed as in this example, the categories are private to the suite in question. They can be used by
all test cases in the suite, but cannot be used by other suites. A suite private style sheet, if specified, is used in favor of
a global style sheet (one specified with flag -stylesheet). A stylesheet tuple (as returned by suite/0 above) can
also be returned from a test case information function. In this case the categories specified in the style sheet can only
be used in that particular test case. A test case private style sheet is used in favor of a suite or global level style sheet.

In a tuple {stylesheet,CSSFile}, if CSSFile is specified with a path, for example, "$TEST/styles/
categories.css", this full name is used to locate the file. However, if only the file name is specified, for example,
categories.css, the CSS file is assumed to be located in the data directory, data_dir, of the suite. The latter
use is recommended, as it is portable compared to hard coding path names in the suite.
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Argument Category in the previous example can have the value (atom) sys_config (blue background),
sys_state (yellow background), or error (white text on red background).

1.8.11  Repeating Tests
You can order Common Test to repeat the tests you specify. You can choose to repeat tests a number of times,
repeat tests for a specific period of time, or repeat tests until a particular stop time is reached. If repetition is controlled
by time, an action for Common Test to take upon time-out can be specified. Either Common Test performs all
tests in the current run before stopping, or it stops when the current test job is finished. Repetition can be activated
by ct_run start flags, or tuples in the ct:run:test/1 option list argument. The flags (options in parentheses)
are the following:

• -repeat N ({repeat,N}), where N is a positive integer

• -duration DurTime ({duration,DurTime}), where DurTime is the duration

• -until StopTime ({until,StopTime}), where StopTime is finish time

• -force_stop ({force_stop,true})

• -force_stop skip_rest ({force_stop,skip_rest})

DurTime

The duration time is specified as HHMMSS, for example, -duration 012030 or {duration,"012030"}

, which means that the tests are executed and (if time allows) repeated until time-out occurs after 1 hour, 20
minutes, and 30 seconds.

StopTime

The finish time can be specified as HHMMSS and is then interpreted as a time today (or possibly
tomorrow), but can also be specified as YYMoMoDDHHMMSS, for example, -until 071001120000 or
{until,"071001120000"}. This means that the tests are executed and (if time allows) repeated, until 12
o'clock on the 1st of October 2007.

When time-out occurs, Common Test never aborts the ongoing test case, as this can leave the SUT in an undefined,
and possibly bad, state. Instead Common Test, by default, finishes the current test run before stopping. If flag
force_stop is specified, Common Test stops when the current test job is finished. If flag force_stop is
specified with skip_rest, Common Test only completes the current test case and skips the remaining tests in
the test job.

Note:

As Common Test always finishes at least the current test case, the time specified with duration or until
is never definitive.

Log files from every repeated test run is saved in normal Common Test fashion (described earlier).

Common Test might later support an optional feature to only store the last (and possibly the first) set of logs of
repeated test runs, but for now the user must be careful not to run out of disk space if tests are repeated during long
periods of time.

For each test run that is part of a repeated session, information about the particular test run is printed in the Common
Test Framework Log. The information includes the repetition number, remaining time, and so on.

Example 1:

 $ ct_run -dir $TEST_ROOT/to1 $TEST_ROOT/to2 -duration 001000 -force_stop

Here, the suites in test directory to1, followed by the suites in to2, are executed in one test run. A time-out event
occurs after 10 minutes. As long as there is time left, Common Test repeats the test run (that is, starting over with
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test to1). After time-out, Common Test stops when the current job is finished (because of flag force_stop). As
a result, the specified test run can be aborted after test to1 and before test to2.

Example 2:

 $ ct_run -dir $TEST_ROOT/to1 $TEST_ROOT/to2 -duration 001000 -forces_stop skip_rest

Here, the same tests as in Example 1 are run, but with flag force_stop set to skip_rest. If time-out occurs while
executing tests in directory to1, the remaining test cases in to1 are skipped and the test is aborted without running
the tests in to2 another time. If time-out occurs while executing tests in directory to2, the remaining test cases in
to2 are skipped and the test is aborted.

Example 3:

 $ date
 Fri Sep 28 15:00:00 MEST 2007

 $ ct_run -dir $TEST_ROOT/to1 $TEST_ROOT/to2 -until 160000

Here, the same test run as in the previous examples are executed (and possibly repeated). However, when the time-
out occurs, after 1 hour, Common Test finishes the entire test run before stopping (that is, both to1 and to2 are
always executed in the same test run).

Example 4:

 $ ct_run -dir $TEST_ROOT/to1 $TEST_ROOT/to2 -repeat 5

Here, the test run, including both the to1 and the to2 test, is repeated five times.

Note:

Do not confuse this feature with the repeat property of a test case group. The options described here are used
to repeat execution of entire test runs, while the repeat property of a test case group makes it possible to repeat
execution of sets of test cases within a suite. For more information about the latter, see section Test Case Groups
in section Writing Test Suites.

1.8.12  Silent Connections
The protocol handling processes in Common Test, implemented by ct_telnet, ct_ssh, ct_ftp, and so on,
do verbose printing to the test case logs. This can be switched off with flag -silent_connections:

 ct_run -silent_connections [conn_types]

Here, conn_types specifies SSH, Telnet, FTP, RPC, and/or SNMP.

Example 1:

 ct_run ... -silent_connections ssh telnet

This switches off logging for SSH and Telnet connections.

Example 2:

 ct_run ... -silent_connections
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This switches off logging for all connection types.

Fatal communication error and reconnection attempts are always printed, even if logging has been suppressed for the
connection type in question. However, operations such as sending and receiving data are performed silently.

silent_connections can also be specified in a test suite. This is accomplished by returning a tuple,
{silent_connections,ConnTypes}, in the suite/0 or test case information list. If ConnTypes is a list of
atoms (SSH, Telnet, FTP, RPC and/or SNMP), output for any corresponding connections are suppressed. Full logging
is by default enabled for any connection of type not specified in ConnTypes. Hence, if ConnTypes is the empty
list, logging is enabled for all connections.

Example 3:

 -module(my_SUITE).

 suite() -> [..., {silent_connections,[telnet,ssh]}, ...].

 ...

 my_testcase1() ->
     [{silent_connections,[ssh]}].

 my_testcase1(_) ->
     ...

 my_testcase2(_) ->
     ...

In this example, suite/0 tells Common Test to suppress printouts from Telnet and SSH connections. This is valid
for all test cases. However, my_testcase1/0 specifies that for this test case, only SSH is to be silent. The result is
that my_testcase1 gets Telnet information (if any) printed in the log, but not SSH information. my_testcase2
gets no information from either connection printed.

silent_connections can also be specified with a term in a test specification (see section Test Specifications in
section Running Tests and Analyzing Results). Connections provided with start flag/option silent_connections
are merged with any connections listed in the test specification.

Start flag/option silent_connections and the test specification term override any settings made by the
information functions inside the test suite.

Note:

In the current Common Test version, the silent_connections feature only works for Telnet and SSH
connections. Support for other connection types can be added in future Common Test versions.

1.9  External Configuration Data
1.9.1  General
To avoid hard-coding data values related to the test and/or System Under Test (SUT) in the test suites, the data can
instead be specified through configuration files or strings that Common Test reads before the start of a test run.
External configuration data makes it possible to change test properties without modifying the test suites using the data.
Examples of configuration data follows:

• Addresses to the test plant or other instruments

• User login information

Ericsson AB. All Rights Reserved.: Common Test | 57



1.9  External Configuration Data

• Names of files needed by the test

• Names of programs to be executed during the test

• Any other variable needed by the test

1.9.2  Syntax
A configuration file can contain any number of elements of the type:

 {CfgVarName,Value}.

where

 CfgVarName = atom()
 Value = term() | [{CfgVarName,Value}]

1.9.3  Requiring and Reading Configuration Data
In a test suite, one must require that a configuration variable (CfgVarName in the previous definition) exists before
attempting to read the associated value in a test case or configuration function.

require is an assert statement, which can be part of the Test Suite Information Function or Test Case Information
Function. If the required variable is unavailable, the test is skipped (unless a default value has been specified, see
section Test Case Information Function for details). Also, function ct:require/1/2 can be called from a test
case to check if a specific variable is available. The return value from this function must be checked explicitly and
appropriate action be taken depending on the result (for example, to skip the test case if the variable in question does
not exist).

A require statement in the test suite information case or test case information-list is to look like
{require,CfgVarName} or {require,AliasName,CfgVarName}. The arguments AliasName and
CfgVarName are the same as the arguments to ct:require/1,2. AliasName becomes an alias for the
configuration variable, and can be used as reference to the configuration data value. The configuration variable can be
associated with any number of alias names, but each name must be unique within the same test suite. The two main
uses for alias names follows:

• To identify connections (described later).

• To help adapt configuration data to a test suite (or test case) and improve readability.

To read the value of a configuration variable, use function get_config/1,2,3.

Example:

 suite() -> 
     [{require, domain, 'CONN_SPEC_DNS_SUFFIX'}].

 ...

 testcase(Config) ->
     Domain = ct:get_config(domain),
     ...

1.9.4  Using Configuration Variables Defined in Multiple Files
If a configuration variable is defined in multiple files and you want to access all possible values, use function
ct:get_config/3 and specify all in the options list. The values are then returned in a list and the order of the
elements corresponds to the order that the configuration files were specified at startup.
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1.9.5  Encrypted Configuration Files
Configuration files containing sensitive data can be encrypted if they must be stored in open and shared directories.

To have Common Test encrypt a specified file using function DES3 in application Crypto, call
ct:encrypt_config_file/2,3 The encrypted file can then be used as a regular configuration file in
combination with other encrypted files or normal text files. However, the key for decrypting the configuration file
must be provided when running the test. This can be done with flag/option decrypt_key or decrypt_file, or
a key file in a predefined location.

Common Test also provides decryption functions, ct:decrypt_config_file/2,3, for recreating the original
text files.

1.9.6  Opening Connections Using Configuration Data
Two different methods for opening a connection using the support functions in, for example, ct_ssh, ct_ftp, and
ct_telnet follows:

• Using a configuration target name (an alias) as reference.

• Using the configuration variable as reference.

When a target name is used for referencing the configuration data (that specifies the connection to be opened), the
same name can be used as connection identity in all subsequent calls related to the connection (also for closing it).
Only one open connection per target name is possible. If you attempt to open a new connection using a name already
associated with an open connection, Common Test returns the already existing handle so the previously opened
connection is used. This feature makes it possible to call the function for opening a particular connection whenever
useful. An action like this does not necessarily open any new connections unless it is required (which could be the
case if, for example, the previous connection has been closed unexpectedly by the server). Using named connections
also removes the need to pass handle references around in the suite for these connections.

When a configuration variable name is used as reference to the data specifying the connection, the handle returned as a
result of opening the connection must be used in all subsequent calls (also for closing the connection). Repeated calls
to the open function with the same variable name as reference results in multiple connections being opened. This can
be useful, for example, if a test case needs to open multiple connections to the same server on the target node (using
the same configuration data for each connection).

1.9.7  User-Specific Configuration Data Formats
The user can specify configuration data on a different format than key-value tuples in a text file, as described so far.
The data can, for example, be read from any files, fetched from the web over HTTP, or requested from a user-specific
process. To support this, Common Test provides a callback module plugin mechanism to handle configuration data.

Default Callback Modules for Handling Configuration Data
Common Test includes default callback modules for handling configuration data specified in standard configuration
files (described earlier) and in XML files as follows:

• ct_config_plain - for reading configuration files with key-value tuples (standard format). This handler is
used to parse configuration files if no user callback is specified.

• ct_config_xml - for reading configuration data from XML files.

Using XML Configuration Files
An example of an XML configuration file follows:
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 <config>
    <ftp_host>
        <ftp>"targethost"</ftp>
        <username>"tester"</username>
        <password>"letmein"</password>
    </ftp_host>
    <lm_directory>"/test/loadmodules"</lm_directory>
 </config>

Once read, this file produces the same configuration variables as the following text file:

 {ftp_host, [{ftp,"targethost"},
             {username,"tester"},
             {password,"letmein"}]}.

 {lm_directory, "/test/loadmodules"}.

Implement a User-Specific Handler
The user-specific handler can be written to handle special configuration file formats. The parameter can be either file
names or configuration strings (the empty list is valid).

The callback module implementing the handler is responsible for checking the correctness of configuration strings.

To validate the configuration strings, the callback module is to have function Callback:check_parameter/1
exported.

The input argument is passed from Common Test, as defined in the test specification, or specified as an option to
ct_run or ct:run_test.

The return value is to be any of the following values, indicating if the specified configuration parameter is valid:

• {ok, {file, FileName}} - the parameter is a file name and the file exists.

• {ok, {config, ConfigString}} - the parameter is a configuration string and it is correct.

• {error, {nofile, FileName}} - there is no file with the specified name in the current directory.

• {error, {wrong_config, ConfigString}} - the configuration string is wrong.

The function Callback:read_config/1 is to be exported from the callback module to read configuration data,
initially before the tests start, or as a result of data being reloaded during test execution. The input argument is the
same as for function check_parameter/1.

The return value is to be either of the following:

• {ok, Config} - if the configuration variables are read successfully.

• {error, {Error, ErrorDetails}} - if the callback module fails to proceed with the specified
configuration parameters.

Config is the proper Erlang key-value list, with possible key-value sublists as values, like the earlier configuration
file example:

 [{ftp_host, [{ftp, "targethost"}, {username, "tester"}, {password, "letmein"}]},
  {lm_directory, "/test/loadmodules"}]

1.9.8  Examples of Configuration Data Handling
A configuration file for using the FTP client to access files on a remote host can look as follows:
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 {ftp_host, [{ftp,"targethost"},
      {username,"tester"},
      {password,"letmein"}]}.

 {lm_directory, "/test/loadmodules"}.

The XML version shown earlier can also be used, but it is to be explicitly specified that the ct_config_xml callback
module is to be used by Common Test.

The following is an example of how to assert that the configuration data is available and can be used for an FTP session:

 init_per_testcase(ftptest, Config) ->
     {ok,_} = ct_ftp:open(ftp),
     Config.

 end_per_testcase(ftptest, _Config) ->
     ct_ftp:close(ftp).

 ftptest() ->
     [{require,ftp,ftp_host},
      {require,lm_directory}].

 ftptest(Config) ->
     Remote = filename:join(ct:get_config(lm_directory), "loadmodX"),
     Local = filename:join(?config(priv_dir,Config), "loadmodule"),
     ok = ct_ftp:recv(ftp, Remote, Local),
     ...

The following is an example of how the functions in the previous example can be rewritten if it is necessary to open
multiple connections to the FTP server:

 init_per_testcase(ftptest, Config) ->
     {ok,Handle1} = ct_ftp:open(ftp_host),
     {ok,Handle2} = ct_ftp:open(ftp_host),
     [{ftp_handles,[Handle1,Handle2]} | Config].

 end_per_testcase(ftptest, Config) ->
     lists:foreach(fun(Handle) -> ct_ftp:close(Handle) end, 
                   ?config(ftp_handles,Config)).

 ftptest() ->
     [{require,ftp_host},
      {require,lm_directory}].

 ftptest(Config) ->
     Remote = filename:join(ct:get_config(lm_directory), "loadmodX"),
     Local = filename:join(?config(priv_dir,Config), "loadmodule"),
     [Handle | MoreHandles] = ?config(ftp_handles,Config),
     ok = ct_ftp:recv(Handle, Remote, Local),
     ...

1.9.9  Example of User-Specific Configuration Handler
A simple configuration handling driver, asking an external server for configuration data, can be implemented as
follows:

Ericsson AB. All Rights Reserved.: Common Test | 61



1.9  External Configuration Data

 -module(config_driver).
 -export([read_config/1, check_parameter/1]).

 read_config(ServerName)->
     ServerModule = list_to_atom(ServerName),
     ServerModule:start(),
     ServerModule:get_config().

 check_parameter(ServerName)->
     ServerModule = list_to_atom(ServerName),
     case code:is_loaded(ServerModule) of
         {file, _}->
             {ok, {config, ServerName}};
         false->
             case code:load_file(ServerModule) of
                 {module, ServerModule}->
                     {ok, {config, ServerName}};
                 {error, nofile}->
                     {error, {wrong_config, "File not found: " ++ ServerName ++ ".beam"}}
             end
     end.

The configuration string for this driver can be config_server, if the config_server.erl module that follows
is compiled and exists in the code path during test execution:
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 -module(config_server).
 -export([start/0, stop/0, init/1, get_config/0, loop/0]).

 -define(REGISTERED_NAME, ct_test_config_server).

 start()->
     case whereis(?REGISTERED_NAME) of
         undefined->
             spawn(?MODULE, init, [?REGISTERED_NAME]),
             wait();
         _Pid->
         ok
     end,
     ?REGISTERED_NAME.

 init(Name)->
     register(Name, self()),
     loop().

 get_config()->
     call(self(), get_config).

 stop()->
     call(self(), stop).

 call(Client, Request)->
     case whereis(?REGISTERED_NAME) of
         undefined->
             {error, {not_started, Request}};
         Pid->
             Pid ! {Client, Request},
             receive
                 Reply->
                     {ok, Reply}
             after 4000->
                 {error, {timeout, Request}}
             end
     end.

 loop()->
     receive
         {Pid, stop}->
             Pid ! ok;
         {Pid, get_config}->
             {D,T} = erlang:localtime(),
             Pid !
                 [{localtime, [{date, D}, {time, T}]},
                  {node, erlang:node()},
                  {now, erlang:now()},
                  {config_server_pid, self()},
                  {config_server_vsn, ?vsn}],
             ?MODULE:loop()
     end.

 wait()->
     case whereis(?REGISTERED_NAME) of
         undefined->
             wait();
         _Pid->
             ok
     end.
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Here, the handler also provides for dynamically reloading of configuration variables. If
ct:reload_config(localtime) is called from the test case function, all variables loaded with
config_driver:read_config/1 are updated with their latest values, and the new value for variable
localtime is returned.

1.10  Code Coverage Analysis
1.10.1  General
Although Common Test was created primarily for black-box testing, nothing prevents it from working perfectly as
a white-box testing tool as well. This is especially true when the application to test is written in Erlang. Then the test
ports are easily realized with Erlang function calls.

When white-box testing an Erlang application, it is useful to be able to measure the code coverage of the test.
Common Test provides simple access to the OTP Cover tool for this purpose. Common Test handles all necessary
communication with the Cover tool (starting, compiling, analysing, and so on). The Common Test user only needs
to specify the extent of the code coverage analysis.

1.10.2  Use
To specify the modules to be included in the code coverage test, provide a cover specification file. With this file you
can point out specific modules or specify directories containing modules to be included in the analysis. You can also
specify modules to be excluded from the analysis.

If you are testing a distributed Erlang application, it is likely that code you want included in the code coverage analysis
gets executed on another Erlang node than the one Common Test is running on. If so, you must specify these other
nodes in the cover specification file or add them dynamically to the code coverage set of nodes. For details on the
latter, see module ct_cover.

In the cover specification file you can also specify your required level of the code coverage analysis; details or
overview. In detailed mode, you get a coverage overview page, showing per module and total coverage percentages.
You also get an HTML file printed for each module included in the analysis showing exactly what parts of the code
have been executed during the test. In overview mode, only the code coverage overview page is printed.

You can choose to export and import code coverage data between tests. If you specify the name of an export file in
the cover specification file, Common Test exports collected coverage data to this file at the end of the test. You can
similarly specify previously exported data to be imported and included in the analysis for a test (multiple import files
can be specified). This way, the total code coverage can be analyzed without necessarily running all tests at once.

To activate the code coverage support, specify the name of the cover specification file as you start Common Test.
Do this by using flag -cover with ct_run, for example:

 $ ct_run -dir $TESTOBJS/db -cover $TESTOBJS/db/config/db.coverspec

You can also pass the cover specification file name in a call to ct:run_test/1, by adding a
{cover,CoverSpec} tuple to argument Opts.

You can also enable code coverage in your test specifications (see section Test Specifications in section Running Tests
and Analyzing Results).

1.10.3  Stopping the Cover Tool When Tests Are Completed
By default, the Cover tool is automatically stopped when the tests are completed. This causes the original (non-cover
compiled) modules to be loaded back into the test node. If a process at this point still runs old code of any of the modules
that are cover compiled, meaning that it has not done any fully qualified function call after the cover compilation, the
process is killed. To avoid this, set the value of option cover_stop to false. This means that the modules stay
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cover compiled. Therefore, this is only recommended if the Erlang nodes under test are terminated after the test is
completed, or if cover can be manually stopped.

The option can be set by using flag -cover_stop with ct_run, by adding {cover_stop,true|false} to
argument Opts to ct:run_test/1, or by adding a cover_stop term in the test specification (see section Test
Specifications in section Running Tests and Analyzing Results).

1.10.4  The Cover Specification File
General Config
Here follows the general configuration terms that are allowed in a cover specification file:

 %% List of Nodes on which cover will be active during test.
 %% Nodes = [atom()]
 {nodes, Nodes}.       

 %% Files with previously exported cover data to include in analysis.
 %% CoverDataFiles = [string()]
 {import, CoverDataFiles}.

 %% Cover data file to export from this session.
 %% CoverDataFile = string()
 {export, CoverDataFile}.

 %% Cover analysis level.
 %% Level = details | overview
 {level, Level}.       
 
 %% Directories to include in cover.
 %% Dirs = [string()]
 {incl_dirs, Dirs}.

 %% Directories, including subdirectories, to include.
 {incl_dirs_r, Dirs}.

 %% Specific modules to include in cover.
 %% Mods = [atom()]
 {incl_mods, Mods}.

 %% Directories to exclude in cover.
 {excl_dirs, Dirs}.

 %% Directories, including subdirectories, to exclude.
 {excl_dirs_r, Dirs}.

 %% Specific modules to exclude in cover.
 {excl_mods, Mods}.

 %% Cross cover compilation
 %% Tag = atom(), an identifier for a test run
 %% Mod = [atom()], modules to compile for accumulated analysis
 {cross,[{Tag,Mods}]}.

The terms incl_dirs_r and excl_dirs_r tell Common Test to search the specified directories recursively
and include or exclude any module found during the search. The terms incl_dirs and excl_dirs result in a non-
recursive search for modules (that is, only modules found in the specified directories are included or excluded).
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Note:

Directories containing Erlang modules to be included in a code coverage test must exist in the code server path.
Otherwise, the Cover tool fails to recompile the modules. It is not sufficient to specify these directories in the cover
specification file for Common Test.

OTP application Config
When using a cover specification in the testing of an OTP application itself, there is a special incl_app directive that
includes the applications modules for the cover compilation.

{incl_app, AppName, Cover:: overview | details}.

Note:

If you desire to also use some other general cover configuration together with this option you should insert the
AppName in between the option and its value creating a three tuple.

1.10.5  Cross Cover Analysis
The cross cover mechanism allows cover analysis of modules across multiple tests. It is useful if some code, for
example, a library module, is used by many different tests and the accumulated cover result is desirable.

This can also be achieved in a more customized way by using parameter export in the cover specification and
analysing the result off line. However, the cross cover mechanism is a built-in solution that also provides logging.

The mechanism is easiest explained by an example:

Assume that there are two systems, s1 and s2, that are tested in separate test runs. System s1 contains a library
module m1 tested by test run s1 and is included in the cover specification of s1 as follows:

 s1.cover:
   {incl_mods,[m1]}.

When analysing code coverage, the result for m1 can be seen in the cover log in the s1 test result.

Now, imagine that as m1 is a library module, it is also often used by system s2. Test run s2 does not specifically
test m1, but it can still be interesting to see which parts of m1 that are covered by the s2 tests. To do this, m1 can be
included also in the cover specification of s2 as follows:

 s2.cover:
   {incl_mods,[m1]}.

This gives an entry for m1 also in the cover log for test run s2. The problem is that this only reflects the coverage by
s2 tests, not the accumulated result over s1 and s2. This is where the cross cover mechanism comes in handy.

If instead the cover specification for s2 is like the following:

 s2.cover:
   {cross,[{s1,[m1]}]}.

Then m1 is cover compiled in test run s2, but not shown in the coverage log. Instead, if
ct_cover:cross_cover_analyse/2 is called after both s1 and s2 test runs are completed, the accumulated
result for m1 is available in the cross cover log for test run s1.

The call to the analyze function must be as follows:
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 ct_cover:cross_cover_analyse(Level, [{s1,S1LogDir},{s2,S2LogDir}]).

Here, S1LogDir and S2LogDir are the directories named <TestName>.logs for each test respectively.

Notice the tags s1 and s2, which are used in the cover specification file and in the call to
ct_cover:cross_cover_analyse/2. The purpose of these is only to map the modules specified in the cover
specification to the log directory specified in the call to the analyze function. The tag name has no meaning beyond this.

1.10.6  Logging
To view the result of a code coverage test, click the button labeled "COVER LOG" in the top-level index page for
the test run.

Before Erlang/OTP 17.1, if your test run consisted of multiple tests, cover would be started and stopped for each test
within the test run. Separate logs would be available through the "Coverage log" link on the test suite result pages.
These links are still available, but now they all point to the same page as the button on the top-level index page. The
log contains the accumulated results for the complete test run. For details about this change, see the release notes.

The button takes you to the code coverage overview page. If you have successfully performed a detailed coverage
analysis, links to each individual module coverage page are found here.

If cross cover analysis is performed, and there are accumulated coverage results for the current test, the link "Coverdata
collected over all tests" takes you to these results.

1.11  Using Common Test for Large-Scale Testing
1.11.1  General
Large-scale automated testing requires running multiple independent test sessions in parallel. This is accomplished
by running some Common Test nodes on one or more hosts, testing different target systems. Configuring, starting,
and controlling the test nodes independently can be a cumbersome operation. To aid this kind of automated large-
scale testing, Common Test offers a master test node component, Common Test Master, which handles central
configuration and control in a system of distributed Common Test nodes.

The Common Test Master server runs on one dedicated Erlang node and uses distributed Erlang to communicate
with any number of Common Test test nodes, each hosting a regular Common Test server. Test specifications are
used as input to specify what to test on which test nodes, using what configuration.

The Common Test Master server writes progress information to HTML log files similarly to the regular Common
Test server. The logs contain test statistics and links to the log files written by each independent Common Test
server.

The Common Test Master API is exported by module ct_master.

1.11.2  Use
Common Test Master requires all test nodes to be on the same network and share a common file system. Common
Test Master cannot start test nodes automatically. The nodes must be started in advance for Common Test Master
to be able to start test sessions on them.

Tests are started by calling ct_master:run(TestSpecs) or ct_master:run(TestSpecs,
InclNodes, ExclNodes)

TestSpecs is either the name of a test specification file (string) or a list of test specifications. If it is a list, the
specifications are handled (and the corresponding tests executed) in sequence. An element in a TestSpecs list can
also be list of test specifications. The specifications in such a list are merged into one combined specification before
test execution.
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Example:

 ct_master:run(["ts1","ts2",["ts3","ts4"]])

Here, the tests specified by "ts1" run first, then the tests specified by "ts2", and finally the tests specified by both
"ts3" and "ts4".

The InclNodes argument to run/3 is a list of node names. Function run/3 runs the tests in TestSpecs just
like run/1, but also takes any test in TestSpecs, which is not explicitly tagged with a particular node name, and
execute it on the nodes listed in InclNodes. By using run/3 this way, any test specification can be used, with or
without node information, in a large-scale test environment.

ExclNodes is a list of nodes to be excluded from the test. That is, tests that are specified in the test specification to
run on a particular node are not performed if that node is listed in ExclNodes at runtime.

If Common Test Master fails initially to connect to any of the test nodes specified in a test specification or in the
InclNodes list, the operator is prompted with the option to either start over again (after manually checking the status
of the nodes in question), to run without the missing nodes, or to abort the operation.

When tests start, Common Test Master displays information to console about the involved nodes. Common Test
Master also reports when tests finish, successfully or unsuccessfully. If connection is lost to a node, the test on that
node is considered finished. Common Test Master does not attempt to re-establish contact with the failing node.

At any time, to get the current status of the test nodes, call function ct_master:progress().

To stop one or more tests, use function ct_master:abort() (to stop all) or ct_master:abort(Nodes).

For details about the Common Test Master API, see module ct_master.

1.11.3  Test Specifications
The test specifications used as input to Common Test Master are fully compatible with the specifications used as
input to the regular Common Test server. The syntax is described in section Test Specifications in section Running
Tests and Analyzing Results.

All test specification terms can have a NodeRefs element. This element specifies which node or nodes a configuration
operation or a test is to be executed on. NodeRefs is defined as follows:

NodeRefs = all_nodes | [NodeRef] | NodeRef

NodeRef = NodeAlias | node() | master

A NodeAlias (atom()) is used in a test specification as a reference to a node name (so the node name only needs
to be declared once, which also can be achieved using constants). The alias is declared with a node term as follows:

{node, NodeAlias, NodeName}

If NodeRefs has the value all_nodes, the operation or test is performed on all specified test nodes. (Declaring a
term without a NodeRefs element has the same effect). If NodeRefs has the value master, the operation is only
performed on the Common Test Master node (namely set the log directory or install an event handler).

Consider the example in section Test Specifications in section Running Tests and Analysing Results, now extended
with node information and intended to be executed by Common Test Master:
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 {define, 'Top', "/home/test"}.
 {define, 'T1', "'Top'/t1"}.
 {define, 'T2', "'Top'/t2"}.
 {define, 'T3', "'Top'/t3"}.
 {define, 'CfgFile', "config.cfg"}.
 {define, 'Node', ct_node}.

 {node, node1, 'Node@host_x'}.
 {node, node2, 'Node@host_y'}.

 {logdir, master, "'Top'/master_logs"}.
 {logdir, "'Top'/logs"}.

 {config, node1, "'T1'/'CfgFile'"}.
 {config, node2, "'T2'/'CfgFile'"}.
 {config, "'T3'/'CfgFile'"}.

 {suites, node1, 'T1', all}.
 {skip_suites, node1, 'T1', [t1B_SUITE,t1D_SUITE], "Not implemented"}.
 {skip_cases, node1, 'T1', t1A_SUITE, [test3,test4], "Irrelevant"}.
 {skip_cases, node1, 'T1', t1C_SUITE, [test1], "Ignore"}.

 {suites, node2, 'T2', [t2B_SUITE,t2C_SUITE]}.
 {cases, node2, 'T2', t2A_SUITE, [test4,test1,test7]}.

 {skip_suites, 'T3', all, "Not implemented"}.

This example specifies the same tests as the original example. But now if started with a call to
ct_master:run(TestSpecName), test t1 is executed on node ct_node@host_x (node1), test t2 on
ct_node@host_y (node2) and test t3 on both node1 and node2. Configuration file t1 is only read on node1
and configuration file t2 only on node2, while the configuration file t3 is read on both node1 and node2. Both test
nodes write log files to the same directory. (However, the Common Test Master node uses a different log directory
than the test nodes.)

If the test session is instead started with a call to ct_master:run(TestSpecName, [ct_node@host_z],
[ct_node@host_x]), the result is that test t1 does not run on ct_node@host_x (or any other node) while test
t3 runs on both ct_node@host_y and ct_node@host_z.

A nice feature is that a test specification that includes node information can still be used as input to the regular Common
Test server (as described in section Test Specifications). The result is that any test specified to run on a node with the
same name as the Common Test node in question (typically ct@somehost if started with the ct_run program),
is performed. Tests without explicit node association are always performed too, of course.

1.11.4  Automatic Startup of Test Target Nodes
Initial actions can be started and performed automatically on test target nodes using test specification term init.

Two subterms are supported, node_start and eval.

Example:

 {node, node1, node1@host1}.
 {node, node2, node1@host2}.
 {node, node3, node2@host2}.
 {node, node4, node1@host3}.
 {init, node1, [{node_start, [{callback_module, my_slave_callback}]}]}.
 {init, [node2, node3], {node_start, [{username, "ct_user"}, {password, "ct_password"}]}}.
 {init, node4, {eval, {module, function, []}}}.
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This test specification declares that node1@host1 is to be started using the user callback function
callback_module:my_slave_callback/0, and nodes node1@host2 and node2@host2 are to be
started with the default callback module ct_slave. The specified username and password are used to log on to
remote host host2. Also, function module:function/0 is evaluated on node1@host3, and the result of this
call is printed to the log.

The default callback module ct_slave, has the following features:

• Starting Erlang target nodes on local or remote hosts (application SSH is used for communication).

• Ability to start an Erlang emulator with more flags (any flags supported by erl are supported).

• Supervision of a node being started using internal callback functions. Used to prevent hanging nodes.
(Configurable.)

• Monitoring of the master node by the slaves. A slave node can be stopped if the master node terminates.
(Configurable.)

• Execution of user functions after a slave node is started. Functions can be specified as a list of {Module,
Function, Arguments} tuples.

Note:

An eval term for the node and startup_functions in the node_start options list can be specified. In
this case, the node is started first, then the startup_functions are executed, and finally functions specified
with eval are called.

1.12  Event Handling
1.12.1  General
The operator of a Common Test system can receive event notifications continuously during a test run. For example,
Common Test reports when a test case starts and stops, the current count of successful, failed, and skipped cases,
and so on. This information can be used for different purposes such as logging progress and results in another format
than HTML, saving statistics to a database for report generation, and test system supervision.

Common Test has a framework for event handling based on the OTP event manager concept and gen_event
behavior. When the Common Test server starts, it spawns an event manager. During test execution the manager
gets a notification from the server when something of potential interest happens. Any event handler plugged into the
event manager can match on events of interest, take action, or pass the information on. The event handlers are Erlang
modules implemented by the Common Test user according to the gen_event behavior (for details, see module
gen_event and section gen_event Behaviour in OTP Design Principles in the System Documentation).

A Common Test server always starts an event manager. The server also plugs in a default event handler, which only
purpose is to relay notifications to a globally registered Common Test Master event manager (if a Common Test
Master server is running in the system). The Common Test Master also spawns an event manager at startup. Event
handlers plugged into this manager receives the events from all the test nodes, plus information from the Common
Test Master server.

User-specific event handlers can be plugged into a Common Test event manager, either by telling Common Test
to install them before the test run (described later), or by adding the handlers dynamically during the test run using
gen_event:add_handler/3 or gen_event:add_sup_handler/3. In the latter scenario, the reference of
the Common Test event manager is required. To get it, call ct:get_event_mgr_ref/0 or (on the Common
Test Master node) ct_master:get_event_mgr_ref/0.
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1.12.2  Use
Event handlers can be installed by an event_handler start flag (ct_run) or option ct:run_test/1, where
the argument specifies the names of one or more event handler modules.

Example:

$ ct_run -suite test/my_SUITE -event_handler handlers/my_evh1 handlers/my_evh2
-pa $PWD/handlers

To pass start arguments to the event handler init function, use option ct_run -event_handler_init instead
of -event_handler.

Note:

All event handler modules must have gen_event behavior. These modules must be precompiled and their
locations must be added explicitly to the Erlang code server search path (as in the previous example).

An event_handler tuple in argument Opts has the following definition (see ct:run_test/1):

 {event_handler,EventHandlers}

 EventHandlers = EH | [EH]
 EH = atom() | {atom(),InitArgs} | {[atom()],InitArgs}
 InitArgs = [term()]

In the following example, two event handlers for the my_SUITE test are installed:

 1> ct:run_test([{suite,"test/my_SUITE"},{event_handler,[my_evh1,{my_evh2,[node()]}]}]).

Event handler my_evh1 is started with [] as argument to the init function. Event handler my_evh2 is started with
the name of the current node in the init argument list.

Event handlers can also be plugged in using one of the following test specification terms:

• {event_handler, EventHandlers}

• {event_handler, EventHandlers, InitArgs}

• {event_handler, NodeRefs, EventHandlers}

• {event_handler, NodeRefs, EventHandlers, InitArgs}

EventHandlers is a list of module names. Before a test session starts, the init function of each plugged in event
handler is called (with the InitArgs list as argument or [] if no start arguments are specified).

To plug in a handler to the Common Test Master event manager, specify master as the node in NodeRefs.

To be able to match on events, the event handler module must include the header file ct_event.hrl. An event is
a record with the following definition:

#event{name, node, data}

name

Label (type) of the event.

node

Name of the node that the event originated from (only relevant for Common Test Master event handlers).

data

Specific for the event.
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General Events
The general events are as follows:

#event{name = start_logging, data = LogDir}

LogDir = string(), top-level log directory for the test run.

This event indicates that the logging process of Common Test has started successfully and is ready to receive
I/O messages.

#event{name = stop_logging, data = []}

This event indicates that the logging process of Common Test was shut down at the end of the test run.

#event{name = test_start, data = {StartTime,LogDir}}

StartTime = {date(),time()}, test run start date and time.

LogDir = string(), top-level log directory for the test run.

This event indicates that Common Test has finished initial preparations and begins executing test cases.

#event{name = test_done, data = EndTime}

EndTime = {date(),time()}, date and time the test run finished.

This event indicates that the last test case has been executed and Common Test is shutting down.

#event{name = start_info, data = {Tests,Suites,Cases}}

Tests = integer(), number of tests.

Suites = integer(), total number of suites.

Cases = integer() | unknown, total number of test cases.

This event gives initial test run information that can be interpreted as: "This test run will execute Tests separate
tests, in total containing Cases number of test cases, in Suites number of suites". However, if a test case group
with a repeat property exists in any test, the total number of test cases cannot be calculated (unknown).

#event{name = tc_start, data = {Suite,FuncOrGroup}}

Suite = atom(), name of the test suite.

FuncOrGroup = Func | {Conf,GroupName,GroupProperties}

Func = atom(), name of test case or configuration function.

Conf = init_per_group | end_per_group, group configuration function.

GroupName = atom(), name of the group.

GroupProperties = list(), list of execution properties for the group.

This event informs about the start of a test case, or a group configuration function. The event is sent also for
init_per_suite and end_per_suite, but not for init_per_testcase and end_per_testcase.
If a group configuration function starts, the group name and execution properties are also specified.

#event{name = tc_logfile, data = {{Suite,Func},LogFileName}}

Suite = atom(), name of the test suite.

Func = atom(), name of test case or configuration function.

LogFileName = string(), full name of the test case log file.

This event is sent at the start of each test case (and configuration function except init/end_per_testcase)
and carries information about the full name (that is, the file name including the absolute directory path) of the
current test case log file.
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#event{name = tc_done, data = {Suite,FuncOrGroup,Result}}

Suite = atom(), name of the suite.

FuncOrGroup = Func | {Conf,GroupName,GroupProperties}

Func = atom(), name of test case or configuration function.

Conf = init_per_group | end_per_group, group configuration function.

GroupName = unknown | atom(), name of the group (unknown if init- or end function times out).

GroupProperties = list(), list of execution properties for the group.

Result = ok | {auto_skipped,SkipReason} | {skipped,SkipReason} |
{failed,FailReason}, the result.

SkipReason = {require_failed,RequireInfo} |
{require_failed_in_suite0,RequireInfo} | {failed,
{Suite,init_per_testcase,FailInfo}} | UserTerm, why the case was skipped.

FailReason = {error,FailInfo} | {error,{RunTimeError,StackTrace}} |
{timetrap_timeout,integer()} | {failed,{Suite,end_per_testcase,FailInfo}},
reason for failure.

RequireInfo = {not_available,atom() | tuple()}, why require failed.

FailInfo = {timetrap_timeout,integer()} | {RunTimeError,StackTrace} |
UserTerm, error details.

RunTimeError = term(), a runtime error, for example, badmatch or undef.

StackTrace = list(), list of function calls preceding a runtime error.

UserTerm = term(), any data specified by user, or exit/1 information.

This event informs about the end of a test case or a configuration function (see event tc_start for details
on element FuncOrGroup). With this event comes the final result of the function in question. It is possible to
determine on the top level of Result if the function was successful, skipped (by the user), or if it failed.

It is also possible to dig deeper and, for example, perform pattern matching on the various reasons for skipped
or failed. Notice that {'EXIT',Reason} tuples are translated into {error,Reason}. Notice also that if a
{failed,{Suite,end_per_testcase,FailInfo} result is received, the test case was successful, but
end_per_testcase for the case failed.

#event{name = tc_auto_skip, data = {Suite,TestName,Reason}}

Suite = atom(), the name of the suite.

TestName = init_per_suite | end_per_suite | {init_per_group,GroupName} |
{end_per_group,GroupName} | {FuncName,GroupName} | FuncName

FuncName = atom(), the name of the test case or configuration function.

GroupName = atom(), the name of the test case group.

Reason = {failed,FailReason} | {require_failed_in_suite0,RequireInfo}, reason
for auto-skipping Func.

FailReason = {Suite,ConfigFunc,FailInfo}} | {Suite,FailedCaseInSequence},
reason for failure.

RequireInfo = {not_available,atom() | tuple()}, why require failed.

ConfigFunc = init_per_suite | init_per_group
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FailInfo = {timetrap_timeout,integer()} | {RunTimeError,StackTrace} |
bad_return | UserTerm, error details.

FailedCaseInSequence = atom(), the name of a case that failed in a sequence.

RunTimeError = term(), a runtime error, for example badmatch or undef.

StackTrace = list(), list of function calls preceeding a runtime error.

UserTerm = term(), any data specified by user, or exit/1 information.

This event is sent for every test case or configuration function that Common Test has skipped automatically
because of either a failed init_per_suite or init_per_group, a failed require in suite/0, or a
failed test case in a sequence. Notice that this event is never received as a result of a test case getting skipped
because of init_per_testcase failing, as that information is carried with event tc_done. If a failed test
case belongs to a test case group, the second data element is a tuple {FuncName,GroupName}, otherwise
only the function name.

#event{name = tc_user_skip, data = {Suite,TestName,Comment}}

Suite = atom(), the name of the suite.

TestName = init_per_suite | end_per_suite | {init_per_group,GroupName} |
{end_per_group,GroupName} | {FuncName,GroupName} | FuncName

FuncName = atom(), the name of the test case or configuration function.

GroupName = atom(), the name of the test case group.

Comment = string(), why the test case was skipped.

This event specifies that a test case was skipped by the user. It is only received if the skip is declared in a test
specification. Otherwise, user skip information is received as a {skipped,SkipReason} result in event
tc_done for the test case. If a skipped test case belongs to a test case group, the second data element is a tuple
{FuncName,GroupName}, otherwise only the function name.

#event{name = test_stats, data = {Ok,Failed,Skipped}}

Ok = integer(), current number of successful test cases.

Failed = integer(), current number of failed test cases.

Skipped = {UserSkipped,AutoSkipped}

UserSkipped = integer(), current number of user-skipped test cases.

AutoSkipped = integer(), current number of auto-skipped test cases.

This is a statistics event with current count of successful, skipped, and failed test cases so far. This event is sent
after the end of each test case, immediately following event tc_done.

Internal Events
The internal events are as follows:

#event{name = start_make, data = Dir}

Dir = string(), running make in this directory.

This internal event says that Common Test starts compiling modules in directory Dir.

#event{name = finished_make, data = Dir}

Dir = string(), finished running make in this directory.

This internal event says that Common Test is finished compiling modules in directory Dir.
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#event{name = start_write_file, data = FullNameFile}

FullNameFile = string(), full name of the file.

This internal event is used by the Common Test Master process to synchronize particular file operations.

#event{name = finished_write_file, data = FullNameFile}

FullNameFile = string(), full name of the file.

This internal event is used by the Common Test Master process to synchronize particular file operations.

Notes
The events are also documented in ct_event.erl. This module can serve as an example of what an event handler
for the Common Test event manager can look like.

Note:

To ensure that printouts to stdout (or printouts made with ct:log/2,3 or ct:pal,2,3) get written to the
test case log file, and not to the Common Test framework log, you can synchronize with the Common Test
server by matching on evvents tc_start and tc_done. In the period between these events, all I/O is directed
to the test case log file. These events are sent synchronously to avoid potential timing problems (for example, that
the test case log file is closed just before an I/O message from an external process gets through). Knowing this,
you need to be careful that your handle_event/2 callback function does not stall the test execution, possibly
causing unexpected behavior as a result.

1.13  Dependencies between Test Cases and Suites
1.13.1  General
When creating test suites, it is strongly recommended to not create dependencies between test cases, that is, letting
test cases depend on the result of previous test cases. There are various reasons for this, such as, the following:

• It makes it impossible to run test cases individually.

• It makes it impossible to run test cases in a different order.

• It makes debugging difficult (as a fault can be the result of a problem in a different test case than the one
failing).

• There are no good and explicit ways to declare dependencies, so it can be difficult to see and understand these
in test suite code and in test logs.

• Extending, restructuring, and maintaining test suites with test case dependencies is difficult.

There are often sufficient means to work around the need for test case dependencies. Generally, the problem is related
to the state of the System Under Test (SUT). The action of one test case can change the system state. For some other
test case to run properly, this new state must be known.

Instead of passing data between test cases, it is recommended that the test cases read the state from the SUT and perform
assertions (that is, let the test case run if the state is as expected, otherwise reset or fail). It is also recommended to use
the state to set variables necessary for the test case to execute properly. Common actions can often be implemented as
library functions for test cases to call to set the SUT in a required state. (Such common actions can also be separately
tested, if necessary, to ensure that they work as expected). It is sometimes also possible, but not always desirable, to
group tests together in one test case, that is, let a test case perform a "scenario" test (a test consisting of subtests).

Consider, for example, a server application under test. The following functionality is to be tested:

• Starting the server

• Configuring the server
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• Connecting a client to the server

• Disconnecting a client from the server

• Stopping the server

There are obvious dependencies between the listed functions. The server cannot be configured if it has not first been
started, a client connot be connectd until the server is properly configured, and so on. If we want to have one test case
for each function, we might be tempted to try to always run the test cases in the stated order and carry possible data
(identities, handles, and so on) between the cases and therefore introduce dependencies between them.

To avoid this, we can consider starting and stopping the server for every test. We can thus implement the start and stop
action as common functions to be called from init_per_testcase and end_per_testcase. (Remember to
test the start and stop functionality separately.) The configuration can also be implemented as a common function,
maybe grouped with the start function. Finally, the testing of connecting and disconnecting a client can be grouped
into one test case. The resulting suite can look as follows:
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 -module(my_server_SUITE).
 -compile(export_all).
 -include_lib("ct.hrl").

 %%% init and end functions...

 suite() -> [{require,my_server_cfg}].

 init_per_testcase(start_and_stop, Config) ->
     Config;

 init_per_testcase(config, Config) ->
     [{server_pid,start_server()} | Config];

 init_per_testcase(_, Config) ->
     ServerPid = start_server(),
     configure_server(),
     [{server_pid,ServerPid} | Config].

 end_per_testcase(start_and_stop, _) ->
     ok;

 end_per_testcase(_, _) ->
     ServerPid = ?config(server_pid),
     stop_server(ServerPid).

 %%% test cases...

 all() -> [start_and_stop, config, connect_and_disconnect].

 %% test that starting and stopping works
 start_and_stop(_) ->
     ServerPid = start_server(),
     stop_server(ServerPid).

 %% configuration test
 config(Config) ->
     ServerPid = ?config(server_pid, Config),
     configure_server(ServerPid).

 %% test connecting and disconnecting client
 connect_and_disconnect(Config) ->
     ServerPid = ?config(server_pid, Config),
     {ok,SessionId} = my_server:connect(ServerPid),
     ok = my_server:disconnect(ServerPid, SessionId).

 %%% common functions...

 start_server() ->
     {ok,ServerPid} = my_server:start(),
     ServerPid.

 stop_server(ServerPid) ->
     ok = my_server:stop(),
     ok.

 configure_server(ServerPid) ->
     ServerCfgData = ct:get_config(my_server_cfg),
     ok = my_server:configure(ServerPid, ServerCfgData),
     ok.
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1.13.2  Saving Configuration Data
Sometimes it is impossible, or infeasible, to implement independent test cases. Maybe it is not possible to read the
SUT state. Maybe resetting the SUT is impossible and it takes too long time to restart the system. In situations where
test case dependency is necessary, CT offers a structured way to carry data from one test case to the next. The same
mechanism can also be used to carry data from one test suite to the next.

The mechanism for passing data is called save_config. The idea is that one test case (or suite) can save the current
value of Config, or any list of key-value tuples, so that the next executing test case (or test suite) can read it. The
configuration data is not saved permanently but can only be passed from one case (or suite) to the next.

To save Config data, return tuple {save_config,ConfigList} from end_per_testcase or from the
main test case function.

To read data saved by a previous test case, use macro config with a saved_config key as follows:

{Saver,ConfigList} = ?config(saved_config, Config)

Saver (atom()) is the name of the previous test case (where the data was saved). The config macro can be used
to extract particular data also from the recalled ConfigList. It is strongly recommended that Saver is always
matched to the expected name of the saving test case. This way, problems because of restructuring of the test suite can
be avoided. Also, it makes the dependency more explicit and the test suite easier to read and maintain.

To pass data from one test suite to another, the same mechanism is used. The data is to be saved by finction
end_per_suite and read by function init_per_suite in the suite that follows. When passing data between
suites, Saver carries the name of the test suite.

Example:
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 -module(server_b_SUITE).
 -compile(export_all).
 -include_lib("ct.hrl").

 %%% init and end functions...

 init_per_suite(Config) ->
     %% read config saved by previous test suite
     {server_a_SUITE,OldConfig} = ?config(saved_config, Config),
     %% extract server identity (comes from server_a_SUITE)
     ServerId = ?config(server_id, OldConfig),
     SessionId = connect_to_server(ServerId),
     [{ids,{ServerId,SessionId}} | Config].

 end_per_suite(Config) ->
     %% save config for server_c_SUITE (session_id and server_id)
     {save_config,Config}

 %%% test cases...

 all() -> [allocate, deallocate].

 allocate(Config) ->
     {ServerId,SessionId} = ?config(ids, Config),
     {ok,Handle} = allocate_resource(ServerId, SessionId),
     %% save handle for deallocation test
     NewConfig = [{handle,Handle}],
     {save_config,NewConfig}.

 deallocate(Config) ->
     {ServerId,SessionId} = ?config(ids, Config),
     {allocate,OldConfig} = ?config(saved_config, Config),
     Handle = ?config(handle, OldConfig),
     ok = deallocate_resource(ServerId, SessionId, Handle).

To save Config data from a test case that is to be skipped, return tuple
{skip_and_save,Reason,ConfigList}.

The result is that the test case is skipped with Reason printed to the log file (as described earlier) and ConfigList is
saved for the next test case. ConfigList can be read using ?config(saved_config, Config), as described
earlier. skip_and_save can also be returned from init_per_suite. In this case, the saved data can be read
by init_per_suite in the suite that follows.

1.13.3  Sequences
Sometimes test cases depend on each other so that if one case fails, the following tests are not to be executed. Typically,
if the save_config facility is used and a test case that is expected to save data crashes, the following case cannot
run. Common Test offers a way to declare such dependencies, called sequences.

A sequence of test cases is defined as a test case group with a sequence property. Test case groups are defined
through function groups/0 in the test suite (for details, see section Test Case Groups.

For example, to ensure that if allocate in server_b_SUITE crashes, deallocate is skipped, the following
sequence can be defined:

 groups() -> [{alloc_and_dealloc, [sequence], [alloc,dealloc]}].

Assume that the suite contains the test case get_resource_status that is independent of the other two cases,
then function all can look as follows:
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 all() -> [{group,alloc_and_dealloc}, get_resource_status].

If alloc succeeds, dealloc is also executed. If alloc fails however, dealloc is not executed but
marked as SKIPPED in the HTML log. get_resource_status runs no matter what happens to the
alloc_and_dealloc cases.

Test cases in a sequence are executed in order until all succeed or one fails. If one fails, all following cases in the
sequence are skipped. The cases in the sequence that have succeeded up to that point are reported as successful in the
log. Any number of sequences can be specified.

Example:

 groups() -> [{scenarioA, [sequence], [testA1, testA2]}, 
              {scenarioB, [sequence], [testB1, testB2, testB3]}].

 all() -> [test1, 
           test2, 
           {group,scenarioA}, 
    test3, 
           {group,scenarioB}, 
           test4].

A sequence group can have subgroups. Such subgroups can have any property, that is, they are not required
to also be sequences. If you want the status of the subgroup to affect the sequence on the level above, return
{return_group_result,Status} from end_per_group/2, as described in section Repeated Groups in
Writing Test Suites. A failed subgroup (Status == failed) causes the execution of a sequence to fail in the
same way a test case does.

1.14  Common Test Hooks
1.14.1  General
The Common Test Hook (CTH) framework allows extensions of the default behavior of Common Test using
hooks before and after all test suite calls. CTHs allow advanced Common Test users to abstract out behavior that is
common to multiple test suites without littering all test suites with library calls. This can be used for logging, starting,
and monitoring external systems, building C files needed by the tests, and so on.

In brief, CTH allows you to do the following:

• Manipulate the runtime configuration before each suite configuration call.

• Manipulate the return of all suite configuration calls, and in extension, the result of the tests themselves.

The following sections describe how to use CTHs, when they are run, and how to manipulate the test results in a CTH.

Warning:

When executing within a CTH, all timetraps are shut off. So if your CTH never returns, the entire test run is stalled.

1.14.2  Installing a CTH
A CTH can be installed in multiple ways in your test run. You can do it for all tests in a run, for specific test suites,
and for specific groups within a test suite. If you want a CTH to be present in all test suites within your test run, there
are three ways to accomplish that, as follows:
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• Add -ct_hooks as an argument to ct_run. To add multiple CTHs using this method, append them to each
other using the keyword and, that is, ct_run -ct_hooks cth1 [{debug,true}] and cth2 ....

• Add tag ct_hooks to your Test Specification.

• Add tag ct_hooks to your call to ct:run_test/1.

CTHs can also be added within a test suite. This is done by returning {ct_hooks,[CTH]} in the configuration list
from suite/0, init_per_suite/1, or init_per_group/2.

In this case, CTH can either be only the module name of the CTH or a tuple with the module name and the initial
arguments, and optionally the hook priority of the CTH. For example, one of the following:

• {ct_hooks,[my_cth_module]}

• {ct_hooks,[{my_cth_module,[{debug,true}]}]}

• {ct_hooks,[{my_cth_module,[{debug,true}],500}]}

Overriding CTHs
By default, each installation of a CTH causes a new instance of it to be activated. This can cause problems if you want
to override CTHs in test specifications while still having them in the suite information function. The id/1 callback
exists to address this problem. By returning the same id in both places, Common Test knows that this CTH is
already installed and does not try to install it again.

CTH Execution Order
By default, each CTH installed is executed in the order that they are installed for init calls, and then reversed for end
calls. This is not always desired, so Common Test allows the user to specify a priority for each hook. The priority
can either be specified in the CTH function init/2 or when installing the hook. The priority specified at installation
overrides the priority returned by the CTH.

1.14.3  CTH Scope
Once the CTH is installed into a certain test run it remains there until its scope is expired. The scope of a CTH depends
on when it is installed, see the following table. Function init/2 is called at the beginning of the scope and function
terminate/1 is called when the scope ends.

CTH installed in CTH scope begins before CTH scope ends after

ct_run the first test suite is to be run the last test suite has been run

ct:run_test the first test suite is run the last test suite has been run

Test Specification the first test suite is run the last test suite has been run

suite/0 pre_init_per_suite/3 is called
post_end_per_suite/4 has been
called for that test suite

init_per_suite/1 post_init_per_suite/4 is called
post_end_per_suite/4 has been
called for that test suite

init_per_group/2 post_init_per_group/5 is called
post_end_per_group/5 has been
called for that group

Table 14.1:   Scope of a CTH
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CTH Processes and Tables
CTHs are run with the same process scoping as normal test suites, that is, a different process executes the
init_per_suite hooks then the init_per_group or per_testcase hooks. So if you want to spawn a
process in the CTH, you cannot link with the CTH process, as it exits after the post hook ends. Also, if you for some
reason need an ETS table with your CTH, you must spawn a process that handles it.

External Configuration Data and Logging
Configuration data values in the CTH can be read by calling ct:get_config/1,2,3 (as explained in section
Requiring and Reading Configuration Data). The configuration variables in question must, as always, first have been
required by a suite-, group-, or test case information function, or by function ct:require/1/2. The latter can also
be used in CT hook functions.

The CT hook functions can call any logging function in the ct interface to print information to the log files, or to
add comments in the suite overview page.

1.14.4  Manipulating Tests
Through CTHs the results of tests and configuration functions can be manipulated. The main purpose to do this with
CTHs is to allow common patterns to be abstracted out from test suites and applied to multiple test suites without
duplicating any code. All the callback functions for a CTH follow a common interface described hereafter.

Common Test always calls all available hook functions, even pre- and post hooks for configuration
functions that are not implemented in the suite. For example, pre_init_per_suite(x_SUITE, ...) and
post_init_per_suite(x_SUITE, ...) are called for test suite x_SUITE, even if it does not export
init_per_suite/1. With this feature hooks can be used as configuration fallbacks, and all configuration functions
can be replaced with hook functions.

Pre Hooks
In a CTH, the behavior can be hooked in before the following functions:

• init_per_suite

• init_per_group

• init_per_testcase

• end_per_testcase

• end_per_group

• end_per_suite

This is done in the CTH functions called pre_<name of function>. These functions take the arguments
SuiteName, Name (group or test case name, if applicable), Config, and CTHState. The return value of the CTH
function is always a combination of a result for the suite/group/test and an updated CTHState.

To let the test suite continue on executing, return the configuration list that you want the test to use as the result.

All pre hooks, except pre_end_per_testcase/4, can skip or fail the test by returning a tuple with skip or
fail, and a reason as the result.

Example:

 pre_init_per_suite(SuiteName, Config, CTHState) ->
   case db:connect() of
     {error,_Reason} ->
       {{fail, "Could not connect to DB"}, CTHState};
     {ok, Handle} ->
       {[{db_handle, Handle} | Config], CTHState#state{ handle = Handle }}
   end.
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Note:

If you use multiple CTHs, the first part of the return tuple is used as input for the next CTH. So in the previous
example the next CTH can get {fail,Reason} as the second parameter. If you have many CTHs interacting,
do not let each CTH return fail or skip. Instead, return that an action is to be taken through the Config list
and implement a CTH that, at the end, takes the correct action.

Post Hooks
In a CTH, behavior can be hooked in after the following functions:

• init_per_suite

• init_per_group

• init_per_testcase

• end_per_testcase

• end_per_group

• end_per_suite

This is done in the CTH functions called post_<name of function>. These functions take the arguments
SuiteName, Name (group or test case name, if applicable), Config, Return, and CTHState. Config in this
case is the same Config as the testcase is called with. Return is the value returned by the testcase. If the testcase
fails by crashing, Return is {'EXIT',{{Error,Reason},Stacktrace}}.

The return value of the CTH function is always a combination of a result for the suite/group/test and an updated
CTHState. If you do not want the callback to affect the outcome of the test, return the Return data as it is given to
the CTH. You can also modify the test result. By returning the Config list with element tc_status removed, you
can recover from a test failure. As in all the pre hooks, it is also possible to fail/skip the test case in the post hook.

Example:

 post_end_per_testcase(_Suite, _TC, Config, {'EXIT',{_,_}}, CTHState) ->
   case db:check_consistency() of
     true ->
       %% DB is good, pass the test.
       {proplists:delete(tc_status, Config), CTHState};
     false ->
       %% DB is not good, mark as skipped instead of failing
       {{skip, "DB is inconsisten!"}, CTHState}
   end;
 post_end_per_testcase(_Suite, _TC, Config, Return, CTHState) ->
   %% Do nothing if tc does not crash.
   {Return, CTHState}.

Note:

Do recover from a testcase failure using CTHs only a last resort. If used wrongly, it can be very difficult to determine
which tests that pass or fail in a test run.

Skip and Fail Hooks
After any post hook has been executed for all installed CTHs, on_tc_fail or on_tc_skip is called if the testcase failed
or was skipped, respectively. You cannot affect the outcome of the tests any further at this point.
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1.14.5  Synchronizing External User Applications with Common Test
CTHs can be used to synchronize test runs with external user applications. The init function can, for example, start and/
or communicate with an application that has the purpose of preparing the SUT for an upcoming test run, or initialize
a database for saving test data to during the test run. The terminate function can similarly order such an application to
reset the SUT after the test run, and/or tell the application to finish active sessions and terminate. Any system error-
or progress reports generated during the init- or termination stage are saved in the Pre- and Post Test I/O Log. (This
is also true for any printouts made with ct:log/2 and ct:pal/2).

To ensure that Common Test does not start executing tests, or closes its log files and shuts down, before the
external application is ready for it, Common Test can be synchronized with the application. During startup and
shutdown, Common Test can be suspended, simply by having a CTH evaluate a receive expression in the init- or
terminate function. The macros ?CT_HOOK_INIT_PROCESS (the process executing the hook init function) and ?
CT_HOOK_TERMINATE_PROCESS (the process executing the hook terminate function) each specifies the name of
the correct Common Test process to send a message to. This is done to return from the receive. These macros
are defined in ct.hrl.

1.14.6  Example CTH
The following CTH logs information about a test run into a format parseable by file:consult/1 (in Kernel):
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 %%% Common Test Example Common Test Hook module.
 -module(example_cth).

 %% Callbacks
 -export([id/1]).
 -export([init/2]).

 -export([pre_init_per_suite/3]).
 -export([post_init_per_suite/4]).
 -export([pre_end_per_suite/3]).
 -export([post_end_per_suite/4]).

 -export([pre_init_per_group/4]).
 -export([post_init_per_group/5]).
 -export([pre_end_per_group/4]).
 -export([post_end_per_group/5]).

 -export([pre_init_per_testcase/4]).
 -export([post_init_per_testcase/5]).
 -export([pre_end_per_testcase/4]).
 -export([post_end_per_testcase/5]).

 -export([on_tc_fail/4]).
 -export([on_tc_skip/4]).

 -export([terminate/1]).

 -record(state, { file_handle, total, suite_total, ts, tcs, data }).

 %% Return a unique id for this CTH.
 id(Opts) ->
   proplists:get_value(filename, Opts, "/tmp/file.log").

 %% Always called before any other callback function. Use this to initiate
 %% any common state. 
 init(Id, Opts) ->
     {ok,D} = file:open(Id,[write]),
     {ok, #state{ file_handle = D, total = 0, data = [] }}.

 %% Called before init_per_suite is called.
 pre_init_per_suite(Suite,Config,State) ->
     {Config, State#state{ suite_total = 0, tcs = [] }}.

 %% Called after init_per_suite.
 post_init_per_suite(Suite,Config,Return,State) ->
     {Return, State}.

 %% Called before end_per_suite.
 pre_end_per_suite(Suite,Config,State) ->
     {Config, State}.

 %% Called after end_per_suite.
 post_end_per_suite(Suite,Config,Return,State) ->
     Data = {suites, Suite, State#state.suite_total, lists:reverse(State#state.tcs)},
     {Return, State#state{ data = [Data | State#state.data] ,
                           total = State#state.total + State#state.suite_total } }.

 %% Called before each init_per_group.
 pre_init_per_group(Suite,Group,Config,State) ->
     {Config, State}.

 %% Called after each init_per_group.
 post_init_per_group(Suite,Group,Config,Return,State) ->
     {Return, State}.
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 %% Called before each end_per_group.
 pre_end_per_group(Suite,Group,Config,State) ->
     {Config, State}.

 %% Called after each end_per_group.
 post_end_per_group(Suite,Group,Config,Return,State) ->
     {Return, State}.

 %% Called before each init_per_testcase.
 pre_init_per_testcase(Suite,TC,Config,State) ->
     {Config, State#state{ ts = now(), total = State#state.suite_total + 1 } }.

 %% Called after each init_per_testcase (immediately before the test case).
 post_init_per_testcase(Suite,TC,Config,Return,State) ->
     {Return, State}

%% Called before each end_per_testcase (immediately after the test case).
 pre_end_per_testcase(Suite,TC,Config,State) ->
     {Config, State}.

 %% Called after each end_per_testcase.
 post_end_per_testcase(Suite,TC,Config,Return,State) ->
     TCInfo = {testcase, Suite, TC, Return, timer:now_diff(now(), State#state.ts)},
     {Return, State#state{ ts = undefined, tcs = [TCInfo | State#state.tcs] } }.

 %% Called after post_init_per_suite, post_end_per_suite, post_init_per_group,
 %% post_end_per_group and post_end_per_testcase if the suite, group or test case failed.
 on_tc_fail(Suite, TC, Reason, State) ->
     State.

 %% Called when a test case is skipped by either user action
 %% or due to an init function failing.  
 on_tc_skip(Suite, TC, Reason, State) ->
     State.

 %% Called when the scope of the CTH is done
 terminate(State) ->
     io:format(State#state.file_handle, "~p.~n",
                [{test_run, State#state.total, State#state.data}]),
     file:close(State#state.file_handle),
     ok.

1.14.7  Built-In CTHs
Common Test is delivered with some general-purpose CTHs that can be enabled by the user to provide generic
testing functionality. Some of these CTHs are enabled by default when common_test is started to run. They can
be disabled by setting enable_builtin_hooks to false on the command line or in the test specification. The
following two CTHs are delivered with Common Test:

cth_log_redirect

Built-in

Captures all log events that would normally be printed by the default logger handler, and prints them to the current
test case log. If an event cannot be associated with a test case, it is printed in the Common Test framework log.
This happens for test cases running in parallel and events occuring in-between test cases.

The log events are handled using a Logger handler called cth_log_redirect. The formatting and level is copied
from the current default handler when the cth is started. If you want to use another level either change the
default handler level before starting common_test, or use the logger:set_handler_config/3 API.

cth_surefire

Not built-in
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Captures all test results and outputs them as surefire XML into a file. The created file is by default called
junit_report.xml. The file name can be changed by setting option path for this hook, for example:

-ct_hooks cth_surefire [{path,"/tmp/report.xml"}]

If option url_base is set, an extra attribute named url is added to each testsuite and testcase XML
element. The value is constructed from url_base and a relative path to the test suite or test case log, respectively,
for example:

-ct_hooks cth_surefire [{url_base, "http://myserver.com/"}]

gives an URL attribute value similar to

"http://myserver.com/ct_run.ct@myhost.2012-12-12_11.19.39/ x86_64-unknown-
linux-gnu.my_test.logs/run.2012-12-12_11.19.39/suite.log.html"

Surefire XML can, for example, be used by Jenkins to display test results.

1.15  Some Thoughts about Testing
1.15.1  Goals
It is not possible to prove that a program is correct by testing. On the contrary, it has been formally proven that it is
impossible to prove programs in general by testing. Theoretical program proofs or plain examination of code can be
viable options for those wishing to certify that a program is correct. The test server, as it is based on testing, cannot
be used for certification. Its intended use is instead to (cost effectively) find bugs. A successful test suite is one that
reveals a bug. If a test suite results in OK, then we know very little that we did not know before.

1.15.2  What to Test
There are many kinds of test suites. Some concentrate on calling every function or command (in the documented way)
in a certain interface. Some others do the same, but use all kinds of illegal parameters, and verify that the server stays
alive and rejects the requests with reasonable error codes. Some test suites simulate an application (typically consisting
of a few modules of an application), some try to do tricky requests in general, and some test suites even test internal
functions with help of special Load Modules on target.

Another interesting category of test suites is the one checking that fixed bugs do not reoccur. When a bugfix is
introduced, a test case that checks for that specific bug is written and submitted to the affected test suites.

Aim for finding bugs. Write whatever test that has the highest probability of finding a bug, now or in the future.
Concentrate more on the critical parts. Bugs in critical subsystems are much more expensive than others.

Aim for functionality testing rather than implementation details. Implementation details change quite often, and the test
suites are to be long lived. Implementation details often differ on different platforms and versions. If implementation
details must be tested, try to factor them out into separate test cases. These test cases can later be rewritten or skipped.

Also, aim for testing everything once, no less, no more. It is not effective having every test case fail only because one
function in the interface changed.

1.16  Common Test's Property Testing Support:
ct_property_test
1.16.1  General
The Common Test Property Testing Support (ct_property_test) is an aid to run property based testing tools in
Common Test test suites.
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Basic knowledge of property based testing is assumed in the following. It is also assumed that at least one of the
following property based testing tools is installed and available in the library path:

• QuickCheck,

• PropEr or

• Triq

1.16.2  What Is Supported?
The ct_property_test module does the following:

• Compiles the files with property tests in the subdirectory property_test

• Tests properties in those files using the first found Property Testing Tool.

• Saves the results - that is the printouts - in the usual Common Test Log

1.16.3  Introductory Example
Assume that we want to test the lists:sort/1 function.

We need a property to test the function. In normal way, we create property_test/ct_prop.erl module in
the test directory in our application:

-module(ct_prop).
-export([prop_sort/0]).

%%% This will include the .hrl file for the installed testing tool:
-include_lib("common_test/include/ct_property_test.hrl").

%%% The property we want to check:
%%%   For all possibly unsorted lists,
%%%   the result of lists:sort/1 is sorted.
prop_sort() ->
    ?FORALL(UnSorted, list(),
            is_sorted(lists:sort(UnSorted))
           ).

%%% Function to check that a list is sorted:
is_sorted([]) ->
    true;
is_sorted([_]) ->
    true;
is_sorted([H1,H2|SortedTail]) when H1 =< H2 ->
    is_sorted([H2|SortedTail]);
is_sorted(_) ->
    false.

We also need a CommonTest test suite:
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-module(ct_property_test_SUITE).
-compile(export_all). % Only in tests!

-include_lib("common_test/include/ct.hrl").

all() -> [prop_sort
         ].

%%% First prepare Config and compile the property tests for the found tool:
init_per_suite(Config) ->
    ct_property_test:init_per_suite(Config).

end_per_suite(Config) ->
    Config.

%%%================================================================
%%% Test suites
%%%
prop_sort(Config) ->
    ct_property_test:quickcheck(
      ct_prop:prop_sort(),
      Config
     ).

We run it as usual, for example with ct_run in the OS shell:

..../test$ ct_run -suite ct_property_test_SUITE

.....
Common Test: Running make in test directories...

TEST INFO: 1 test(s), 1 case(s) in 1 suite(s)

Testing lib.common_test.ct_property_test_SUITE: Starting test, 1 test cases

----------------------------------------------------
2019-12-18 10:44:46.293
Found property tester proper
at "/home/X/lib/proper/ebin/proper.beam"

----------------------------------------------------
2019-12-18 10:44:46.294
Compiling in "/home/..../test/property_test"
  Deleted:   ["ct_prop.beam"]
  ErlFiles:  ["ct_prop.erl"]
  MacroDefs: [{d,'PROPER'}]

Testing lib.common_test.ct_property_test_SUITE: TEST COMPLETE, 1 ok, 0 failed of 1 test cases

....
  

1.16.4  A stateful testing example
Assume a test that generates some parallel stateful commands, and runs 300 tests:
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prop_parallel(Config) ->
    numtests(300,
             ?FORALL(Cmds, parallel_commands(?MODULE),
                     begin
                         RunResult = run_parallel_commands(?MODULE, Cmds),
                         ct_property_test:present_result(?MODULE, Cmds, RunResult, Config)
                     end)).

The ct_property_test:present_result/4 is a help function for printing some statistics in the CommonTest log file.

Our example test could for example be a simple test of an ftp server, where we perform get, put and delete requests,
some of them in parallel. Per default, the result has three sections:

*** User 2019-12-11 13:28:17.504 ***

Distribution sequential/parallel

 57.7% sequential
 28.0% parallel_2
 14.3% parallel_1

*** User 2019-12-11 13:28:17.505 ***

Function calls

 44.4% get
 39.3% put
 16.3% delete

*** User 2019-12-11 13:28:17.505 ***

Length of command sequences

Range  : Number in range
-------:----------------
 0 -  4:    8    2.7%  <-- min=3
 5 -  9:   44   14.7% 
10 - 14:   74   24.7% 
15 - 19:   60   20.0%  <-- mean=18.7 <-- median=16.0
20 - 24:   38   12.7% 
25 - 29:   26    8.7% 
30 - 34:   19    6.3% 
35 - 39:   19    6.3% 
40 - 44:    8    2.7% 
45 - 49:    4    1.3%  <-- max=47
        ------
          300
    

The first part - Distribution sequential/parallel - shows the distribution in the sequential and parallel part of the result
of parallel_commands/1. See any property testing tool for an explanation of this function. The table shows that of all
commands (get and put in our case), 57.7% are executed in the sequential part prior to the parallel part, 28.0% are
executed in the first parallel list and the rest in the second parallel list.

The second part - Function calls - shows the distribution of the three calls in the generated command lists. We see
that all of the three calls are executed. If it was so that we thought that we also generated a fourth call, a table like
this shows that we failed with that.
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The third and final part - Length of command sequences - show statistics of the generated command sequences. We
see that the shortest list has three elementes while the longest has 47 elements. The mean and median values are also
shown. Further we could for example see that only 2.7% of the lists (that is eight lists) only has three or four elements.
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2    Reference Manual
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Erlang module

The Common Test framework is an environment for implementing and performing automatic and semi-automatic
execution of test cases.

In brief, Common Test supports:

• Automated execution of test suites (sets of test cases)

• Logging of events during execution

• HTML presentation of test suite results

• HTML presentation of test suite code

• Support functions for test suite authors

• Step-by-step execution of test cases

The following section describes the mandatory and optional test suite functions that Common Test calls during test
execution. For more details, see section Writing Test Suites in the User's Guide.

The following functions define the callback interface for a test suite.

Exports

Module:all() -> Tests | {skip,Reason}
Types:

Tests = [TestCase | {testcase,TestCase,TCRepeatProps} | {group,GroupName}
| {group,GroupName,Properties} | {group,GroupName,Properties,SubGroups}]

TestCase = atom()

TCRepeatProps = [{repeat,N} | {repeat_until_ok,N} | {repeat_until_fail,N}]

GroupName = atom()

Properties = [parallel | sequence | Shuffle | {GroupRepeatType,N}] |
default

SubGroups = [{GroupName,Properties} | {GroupName,Properties,SubGroups}]

Shuffle = shuffle | {shuffle,Seed}

Seed = {integer(),integer(),integer()}

GroupRepeatType = repeat | repeat_until_all_ok | repeat_until_all_fail |
repeat_until_any_ok | repeat_until_any_fail

N = integer() | forever

Reason = term()

MANDATORY

Returns the list of all test cases and test case groups in the test suite module to be executed. This list also specifies the
order the cases and groups are executed by Common Test. A test case is represented by an atom, the name of the test
case function, or a testcase tuple indicating that the test case shall be repeated. A test case group is represented by
a group tuple, where GroupName, an atom, is the name of the group (defined in groups/0). Execution properties
for groups can also be specified, both for a top-level group and for any of its subgroups. Group execution properties
specified here override properties in the group definition (see groups/0). (With value default, the group definition
properties are used).
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If {skip,Reason} is returned, all test cases in the module are skipped and Reason is printed on the HTML result
page.

For details on groups, see section Test Case Groups in the User's Guide.

Module:groups() -> GroupDefs
Types:

GroupDefs = [Group]

Group = {GroupName,Properties,GroupsAndTestCases}

GroupName = atom()

Properties = [parallel | sequence | Shuffle | {GroupRepeatType,N}]

GroupsAndTestCases = [Group | {group,GroupName} | TestCase |
{testcase,TestCase,TCRepeatProps}]

TestCase = atom()

TCRepeatProps = [{repeat,N} | {repeat_until_ok,N} | {repeat_until_fail,N}]

Shuffle = shuffle | {shuffle,Seed}

Seed = {integer(),integer(),integer()}

GroupRepeatType = repeat | repeat_until_all_ok | repeat_until_all_fail |
repeat_until_any_ok | repeat_until_any_fail

N = integer() | forever

OPTIONAL

Defines test case groups. For details, see section Test Case Groups in the User's Guide.

Module:suite() -> [Info]
Types:

Info = {timetrap,Time} | {require,Required} | {require,Name,Required} |
{userdata,UserData} | {silent_connections,Conns} | {stylesheet,CSSFile} |
{ct_hooks, CTHs}

Time = TimeVal | TimeFunc

TimeVal = MilliSec | {seconds,integer()} | {minutes,integer()} |
{hours,integer()}

TimeFunc = {Mod,Func,Args} | Fun

MilliSec = integer()

Mod = atom()

Func = atom()

Args = list()

Fun = fun()

Required = Key | {Key,SubKeys} | {Key,SubKey} | {Key,SubKey,SubKeys}

Key = atom()

SubKeys = SubKey | [SubKey]

SubKey = atom()

Name = atom()

UserData = term()

Conns = [atom()]

CSSFile = string()

94 | Ericsson AB. All Rights Reserved.: Common Test



common_test

CTHs = [CTHModule |

        {CTHModule, CTHInitArgs} |

        {CTHModule, CTHInitArgs, CTHPriority}]

CTHModule = atom()

CTHInitArgs = term()

OPTIONAL

The test suite information function. Returns a list of tagged tuples specifying various properties related to the execution
of this test suite (common for all test cases in the suite).

Tag timetrap sets the maximum time that each test case is allowed to execute (including
init_per_testcase/2 and end_per_testcase/2). If the timetrap time is exceeded, the test case fails with
reason timetrap_timeout. A TimeFunc function can be used to set a new timetrap by returning a TimeVal. It
can also be used to trigger a timetrap time-out by, at some point, returning a value other than a TimeVal. For details,
see section Timetrap Time-Outs in the User's Guide.

Tag require specifies configuration variables required by test cases (or configuration functions) in the suite. If the
required configuration variables are not found in any of the configuration files, all test cases are skipped. For details
about the require functionality, see funtion ct:require/1,2.

With userdata, the user can specify any test suite-related information, which can be read by calling
ct:userdata/2.

Tag ct_hooks specifies the Common Test Hooks to be run with this suite.

Other tuples than the ones defined are ignored.

For details about the test suite information function, see section Test Suite Information Function in the User's Guide.

Module:init_per_suite(Config) -> NewConfig | {skip,Reason} |
{skip_and_save,Reason,SaveConfig}
Types:

Config = NewConfig = SaveConfig = [{Key,Value}]

Key = atom()

Value = term()

Reason = term()

OPTIONAL; if this function is defined, then end_per_suite/1 must also be defined.

This configuration function is called as the first function in the suite. It typically contains initializations that are
common for all test cases in the suite, and that must only be done once. Parameter Config is the configuration data
that can be modified. Whatever is returned from this function is specified as Config to all configuration functions
and test cases in the suite.

If {skip,Reason} is returned, all test cases in the suite are skipped and Reason is printed in the overview log
for the suite.

For information on save_config and skip_and_save, see section Saving Configuration Data in the User's
Guide.

Module:end_per_suite(Config) -> term() | {save_config,SaveConfig}
Types:

Config = SaveConfig = [{Key,Value}]

Key = atom()

Value = term()
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OPTIONAL; if this function is defined, then init_per_suite/1 must also be defined.

This function is called as the last test case in the suite. It is meant to be used for cleaning up after
init_per_suite/1.

For information on save_config, see section Saving Configuration Data in the User's Guide.

Module:group(GroupName) -> [Info]
Types:

Info = {timetrap,Time} | {require,Required} | {require,Name,Required} |
{userdata,UserData} | {silent_connections,Conns} | {stylesheet,CSSFile} |
{ct_hooks, CTHs}

Time = TimeVal | TimeFunc

TimeVal = MilliSec | {seconds,integer()} | {minutes,integer()} |
{hours,integer()}

TimeFunc = {Mod,Func,Args} | Fun

MilliSec = integer()

Mod = atom()

Func = atom()

Args = list()

Fun = fun()

Required = Key | {Key,SubKeys} | {Key,Subkey} | {Key,Subkey,SubKeys}

Key = atom()

SubKeys = SubKey | [SubKey]

SubKey = atom()

Name = atom()

UserData = term()

Conns = [atom()]

CSSFile = string()

CTHs = [CTHModule |

        {CTHModule, CTHInitArgs} |

        {CTHModule, CTHInitArgs, CTHPriority}]

CTHModule = atom()

CTHInitArgs = term()

OPTIONAL

The test case group information function. It is supposed to return a list of tagged tuples that specify various properties
related to the execution of a test case group (that is, its test cases and subgroups). Properties set by group/1 override
properties with the same key that have been set previously by suite/0.

Tag timetrap sets the maximum time that each test case is allowed to execute (including
init_per_testcase/2 and end_per_testcase/2). If the timetrap time is exceeded, the test case fails with
reason timetrap_timeout. A TimeFunc function can be used to set a new timetrap by returning a TimeVal. It
can also be used to trigger a timetrap time-out by, at some point, returning a value other than a TimeVal. For details,
see section Timetrap Time-Outs in the User's Guide.

Tag require specifies configuration variables required by test cases (or configuration functions) in the suite. If the
required configuration variables are not found in any of the configuration files, all test cases in this group are skipped.
For details about the require functionality, see function ct:require/1,2.
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With userdata, the user can specify any test case group related information that can be read by calling
ct:userdata/2.

Tag ct_hooks specifies the Common Test Hooks to be run with this suite.

Other tuples than the ones defined are ignored.

For details about the test case group information function, see section Group Information Function in the User's Guide.

Module:init_per_group(GroupName, Config) -> NewConfig | {skip,Reason}
Types:

GroupName = atom()

Config = NewConfig = [{Key,Value}]

Key = atom()

Value = term()

Reason = term()

OPTIONAL; if this function is defined, then end_per_group/2 must also be defined.

This configuration function is called before execution of a test case group. It typically contains initializations that are
common for all test cases and subgroups in the group, and that must only be performed once. GroupName is the name
of the group, as specified in the group definition (see groups/0). Parameter Config is the configuration data that
can be modified. The return value of this function is given as Config to all test cases and subgroups in the group.

If {skip,Reason} is returned, all test cases in the group are skipped and Reason is printed in the overview log
for the group.

For information about test case groups, see section Test Case Groups in the User's Guide.

Module:end_per_group(GroupName, Config) -> term() |
{return_group_result,Status}
Types:

GroupName = atom()

Config = [{Key,Value}]

Key = atom()

Value = term()

Status = ok | skipped | failed

OPTIONAL; if this function is defined, then init_per_group/2 must also be defined.

This function is called after the execution of a test case group is finished. It is meant to be used
for cleaning up after init_per_group/2. A status value for a nested subgroup can be returned with
{return_group_result,Status}. The status can be retrieved in end_per_group/2 for the group on the
level above. The status is also used by Common Test for deciding if execution of a group is to proceed if property
sequence or repeat_until_* is set.

For details about test case groups, see section Test Case Groups in the User's Guide.

Module:init_per_testcase(TestCase, Config) -> NewConfig | {fail,Reason} |
{skip,Reason}
Types:

TestCase = atom()

Config = NewConfig = [{Key,Value}]

Key = atom()
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Value = term()

Reason = term()

OPTIONAL; if this function is defined, then end_per_testcase/2 must also be defined.

This function is called before each test case. Argument TestCase is the test case name, and Config (list of key-
value tuples) is the configuration data that can be modified. The NewConfig list returned from this function is given
as Config to the test case. If {fail,Reason} is returned, the test case is marked as failed without being executed.

If {skip,Reason} is returned, the test case is skipped and Reason is printed in the overview log for the suite.

Module:end_per_testcase(TestCase, Config) -> term() | {fail,Reason} |
{save_config,SaveConfig}
Types:

TestCase = atom()

Config = SaveConfig = [{Key,Value}]

Key = atom()

Value = term()

Reason = term()

OPTIONAL; if this function is defined, then init_per_testcase/2 must also be defined.

This function is called after each test case, and can be used to clean up after init_per_testcase/2 and the test
case. Any return value (besides {fail,Reason} and {save_config,SaveConfig}) is ignored. By returning
{fail,Reason}, TestCase is marked as faulty (even though it was successful in the sense that it returned a value
instead of terminating).

For information on save_config, see section Saving Configuration Data in the User's Guide.

Module:Testcase() -> [Info]
Types:

Info = {timetrap,Time} | {require,Required} | {require,Name,Required} |
{userdata,UserData} | {silent_connections,Conns}

Time = TimeVal | TimeFunc

TimeVal = MilliSec | {seconds,integer()} | {minutes,integer()} |
{hours,integer()}

TimeFunc = {Mod,Func,Args} | Fun

MilliSec = integer()

Mod = atom()

Func = atom()

Args = list()

Fun = fun()

Required = Key | {Key,SubKeys} | {Key,Subkey} | {Key,Subkey,SubKeys}

Key = atom()

SubKeys = SubKey | [SubKey]

SubKey = atom()

Name = atom()

UserData = term()

Conns = [atom()]

OPTIONAL
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The test case information function. It is supposed to return a list of tagged tuples that specify various properties related
to the execution of this particular test case. Properties set by Testcase/0 override properties set previously for the
test case by group/1 or suite/0.

Tag timetrap sets the maximum time that the test case is allowed to execute. If the timetrap time is exceeded, the
test case fails with reason timetrap_timeout. init_per_testcase/2 and end_per_testcase/2 are
included in the timetrap time. A TimeFunc function can be used to set a new timetrap by returning a TimeVal. It
can also be used to trigger a timetrap time-out by, at some point, returning a value other than a TimeVal. For details,
see section Timetrap Time-Outs in the User's Guide.

Tag require specifies configuration variables that are required by the test case (or init_per_testcase/2 or
end_per_testcase/2). If the required configuration variables are not found in any of the configuration files, the
test case is skipped. For details about the require functionality, see function ct:require/1,2.

If timetrap or require is not set, the default values specified by suite/0 (or group/1) are used.

With userdata, the user can specify any test case-related information that can be read by calling ct:userdata/3.

Other tuples than the ones defined are ignored.

For details about the test case information function, see section Test Case Information Function in the User's Guide.

Module:Testcase(Config) -> term() | {skip,Reason} | {comment,Comment} |
{save_config,SaveConfig} | {skip_and_save,Reason,SaveConfig} | exit()
Types:

Config = SaveConfig = [{Key,Value}]

Key = atom()

Value = term()

Reason = term()

Comment = string()

MANDATORY

The implementation of a test case. Call the functions to test and check the result. If something fails, ensure the function
causes a runtime error or call ct:fail/1,2 (which also causes the test case process to terminate).

Elements from the Config list can, for example, be read with proplists:get_value/2 in STDLIB (or the
macro ?config defined in ct.hrl).

If you decide not to run the test case after all, return {skip,Reason}. Reason is then printed in field Comment
on the HTML result page.

To print some information in field Comment on the HTML result page, return {comment,Comment}.

If the function returns anything else, the test case is considered successful. The return value always gets printed in
the test case log file.

For details about test case implementation, see section Test Cases in the User's Guide.

For information on save_config and skip_and_save, see section Saving Configuration Data in the User's
Guide.
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Command

The ct_run program is automatically installed with Erlang/OTP and the Common Test application (for more
information, see section Installation in the User's Guide). The program accepts different start flags. Some flags trigger
ct_run to start Common Test and pass on data to it. Some flags start an Erlang node prepared for running Common
Test in a particular mode.

The interface function ct:run_test/1, corresponding to the ct_run program, is used for starting Common Test
from the Erlang shell (or an Erlang program). For details, see the ct manual page.

ct_run also accepts Erlang emulator flags. These are used when ct_run calls erl to start the Erlang node (this
makes it possible to add directories to the code server path, change the cookie on the node, start more applications,
and so on).

With the optional flag -erl_args, options on the ct_run command line can be divided into two groups:

• One group that Common Test is to process (those preceding -erl_args).

• One group that Common Test is to ignore and pass on directly to the emulator (those following -
erl_args).

Options preceding -erl_args that Common Test does not recognize are also passed on to the emulator untouched.
By -erl_args the user can specify flags with the same name, but with different destinations, on the ct_run
command line.

If flags -pa or -pz are specified in the Common Test group of options (preceding -erl_args), relative directories
are converted to absolute and reinserted into the code path by Common Test. This is to avoid problems loading user
modules when Common Test changes working directory during test runs. However, Common Test ignores flags
-pa and -pz following -erl_args on the command line. These directories are added to the code path normally
(that is, on specified form).

Exit status is set before the program ends. Value 0 indicates a successful test result, 1 indicates one or more failed or
auto-skipped test cases, and 2 indicates test execution failure.

If ct_run is called with option -help, it prints all valid start flags to stdout.
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Run Tests from Command Line

 ct_run -dir TestDir1 TestDir2 .. TestDirN |
  [-dir TestDir] -suite Suite1 Suite2 .. SuiteN
  [-group Groups1 Groups2 .. GroupsN] [-case Case1 Case2 .. CaseN]
  [-step [config | keep_inactive]]
  [-config ConfigFile1 ConfigFile2 .. ConfigFileN]
  [-userconfig CallbackModule1 ConfigString1 and CallbackModule2
   ConfigString2 and .. CallbackModuleN ConfigStringN]
  [-decrypt_key Key] | [-decrypt_file KeyFile]
  [-label Label]
  [-logdir LogDir]
  [-logopts LogOpts]
  [-verbosity GenVLevel | [Category1 VLevel1 and
   Category2 VLevel2 and .. CategoryN VLevelN]]
  [-silent_connections [ConnType1 ConnType2 .. ConnTypeN]]
  [-stylesheet CSSFile]
  [-cover CoverCfgFile]
  [-cover_stop Bool]
  [-event_handler EvHandler1 EvHandler2 .. EvHandlerN] |
  [-event_handler_init EvHandler1 InitArg1 and
   EvHandler2 InitArg2 and .. EvHandlerN InitArgN]
  [-include InclDir1 InclDir2 .. InclDirN]
  [-no_auto_compile]
  [-abort_if_missing_suites]
  [-muliply_timetraps Multiplier]
  [-scale_timetraps]
  [-create_priv_dir auto_per_run | auto_per_tc | manual_per_tc]
  [-repeat N] |
  [-duration HHMMSS [-force_stop [skip_rest]]] |
  [-until [YYMoMoDD]HHMMSS [-force_stop [skip_rest]]]
  [-basic_html]
  [-no_esc_chars]
  [-keep_logs all | NLogs]
  [-ct_hooks CTHModule1 CTHOpts1 and CTHModule2 CTHOpts2 and ..
   CTHModuleN CTHOptsN]
  [-exit_status ignore_config]
  [-help]
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Run Tests using Test Specification

 ct_run -spec TestSpec1 TestSpec2 .. TestSpecN
  [-join_specs]
  [-config ConfigFile1 ConfigFile2 .. ConfigFileN]
  [-userconfig CallbackModule1 ConfigString1 and CallbackModule2
   ConfigString2 and .. and CallbackModuleN ConfigStringN]
  [-decrypt_key Key] | [-decrypt_file KeyFile]
  [-label Label]
  [-logdir LogDir]
  [-logopts LogOpts]
  [-verbosity GenVLevel | [Category1 VLevel1 and
   Category2 VLevel2 and .. CategoryN VLevelN]]
  [-allow_user_terms]
  [-silent_connections [ConnType1 ConnType2 .. ConnTypeN]]
  [-stylesheet CSSFile]
  [-cover CoverCfgFile]
  [-cover_stop Bool]
  [-event_handler EvHandler1 EvHandler2 .. EvHandlerN] |
  [-event_handler_init EvHandler1 InitArg1 and
   EvHandler2 InitArg2 and .. EvHandlerN InitArgN]
  [-include InclDir1 InclDir2 .. InclDirN]
  [-no_auto_compile]
  [-abort_if_missing_suites]
  [-muliply_timetraps Multiplier]
  [-scale_timetraps]
  [-create_priv_dir auto_per_run | auto_per_tc | manual_per_tc]
  [-repeat N] |
  [-duration HHMMSS [-force_stop [skip_rest]]] |
  [-until [YYMoMoDD]HHMMSS [-force_stop [skip_rest]]]
  [-basic_html]
  [-no_esc_chars]
  [-keep_logs all | NLogs]
  [-ct_hooks CTHModule1 CTHOpts1 and CTHModule2 CTHOpts2 and ..
   CTHModuleN CTHOptsN]
  [-exit_status ignore_config]

Run Tests in Web-Based GUI

 ct_run -vts [-browser Browser]
  [-dir TestDir1 TestDir2 .. TestDirN] |
  [[dir TestDir] -suite Suite [[-group Group] [-case Case]]]
  [-config ConfigFile1 ConfigFile2 .. ConfigFileN]
  [-userconfig CallbackModule1 ConfigString1 and CallbackModule2
    ConfigString2 and .. and CallbackModuleN ConfigStringN]
  [-logopts LogOpts]
  [-verbosity GenVLevel | [Category1 VLevel1 and
   Category2 VLevel2 and .. CategoryN VLevelN]]
  [-decrypt_key Key] | [-decrypt_file KeyFile]
  [-include InclDir1 InclDir2 .. InclDirN]
  [-no_auto_compile]
  [-abort_if_missing_suites]
  [-muliply_timetraps Multiplier]
  [-scale_timetraps]
  [-create_priv_dir auto_per_run | auto_per_tc | manual_per_tc]
  [-basic_html]
  [-no_esc_chars]
  [-keep_logs all | NLogs]
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Refresh HTML Index Files

 ct_run -refresh_logs [-logdir LogDir] [-basic_html]
  [-keep_logs all | NLogs]

Run Common Test in Interactive Mode

 ct_run -shell
  [-config ConfigFile1 ConfigFile2 ... ConfigFileN]
  [-userconfig CallbackModule1 ConfigString1 and CallbackModule2
   ConfigString2 and .. and CallbackModuleN ConfigStringN]
  [-decrypt_key Key] | [-decrypt_file KeyFile]

Start a Common Test Master Node

 ct_run -ctmaster

See Also
For information about the start flags, see section Running Tests and Analyzing Results in the User's Guide.
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ct
Erlang module

Main user interface for the Common Test framework.

This module implements the command-line interface for running tests and basic functions for Common Test case
issues, such as configuration and logging.

Test Suite Support Macros

The config macro is defined in ct.hrl. This macro is to be used to retrieve information from the Config variable
sent to all test cases. It is used with two arguments; the first is the name of the configuration variable to retrieve, the
second is the Config variable supplied to the test case.

Possible configuration variables include:

• data_dir - Data file directory

• priv_dir - Scratch file directory

• Whatever added by init_per_suite/1 or init_per_testcase/2 in the test suite.

Data Types
handle() = pid()
The identity (handle) of a connection.

config_key() = atom()
A configuration key which exists in a configuration file

target_name() = atom()
A name and association to configuration data introduced through a require statement, or a call to ct:require/2,
for example, ct:require(mynodename,{node,[telnet]}).

key_or_name() = config_key() | target_name()conn_log_options() =
[conn_log_option()]
Options that can be given to the cth_conn_log hook, which is used for logging of NETCONF and Telnet
connections. See ct_netconfc or ct_telnet for description and examples of how to use this hook.

conn_log_option() = {log_type,conn_log_type()} | {hosts,
[key_or_name()]}conn_log_type() = raw | pretty | html | silentconn_log_mod()
= ct_netconfc | ct_telnet

Exports

abort_current_testcase(Reason) -> ok | {error, ErrorReason}
Types:

Reason = term()

ErrorReason = no_testcase_running | parallel_group

Aborts the currently executing test case. The user must know with certainty which test case is currently executing. The
function is therefore only safe to call from a function that has been called (or synchronously invoked) by the test case.

Reason, the reason for aborting the test case, is printed in the test case log.
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add_config(Callback, Config) -> ok | {error, Reason}
Types:

Callback = atom()

Config = string()

Reason = term()

Loads configuration variables using the specified callback module and configuration string. The callback module is
to be either loaded or present in the code part. Loaded configuration variables can later be removed using function
ct:remove_config/2.

break(Comment) -> ok | {error, Reason}
Types:

Comment = string()

Reason = {multiple_cases_running, TestCases} | 'enable break with
release_shell option'

TestCases = [atom()]

Cancels any active timetrap and pauses the execution of the current test case until the user calls function continue/0.
The user can then interact with the Erlang node running the tests, for example, for debugging purposes or for manually
executing a part of the test case. If a parallel group is executing, ct:break/2 is to be called instead.

A cancelled timetrap is not automatically reactivated after the break, but must be started exlicitly with
ct:timetrap/1.

In order for the break/continue functionality to work, Common Test must release the shell process controlling
stdin. This is done by setting start option release_shell to true. For details, see section Running Tests from
the Erlang Shell or from an Erlang Program in the User's Guide.

break(TestCase, Comment) -> ok | {error, Reason}
Types:

TestCase = atom()

Comment = string()

Reason = 'test case not running' | 'enable break with release_shell
option'

Works the same way as ct:break/1, only argument TestCase makes it possible to pause a test case executing
in a parallel group. Function ct:continue/1 is to be used to resume execution of TestCase.

For details, see ct:break/1.

capture_get() -> ListOfStrings
Types:

ListOfStrings = [string()]

Equivalent to ct:capture_get([default]).

capture_get(ExclCategories) -> ListOfStrings
Types:

ExclCategories = [atom()]

ListOfStrings = [string()]
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Returns and purges the list of text strings buffered during the latest session of capturing printouts to stdout.
Log categories that are to be ignored in ListOfStrings can be specified with ExclCategories. If
ExclCategories = [], no filtering takes place.

See also ct:capture_start/0, ct:capture_stop/0, ct:log/3.

capture_start() -> ok
Starts capturing all text strings printed to stdout during execution of the test case.

See also ct:capture_get/1, ct:capture_stop/0.

capture_stop() -> ok
Stops capturing text strings (a session started with capture_start/0).

See also ct:capture_get/1, ct:capture_start/0.

comment(Comment) -> ok
Types:

Comment = term()

Prints the specified Comment in the comment field in the table on the test suite result page.

If called several times, only the last comment is printed. The test case return value {comment,Comment} overwrites
the string set by this function.

comment(Format, Args) -> ok
Types:

Format = string()

Args = list()

Prints the formatted string in the comment field in the table on the test suite result page.

Arguments Format and Args are used in a call to io_lib:format/2 to create the comment string. The behavior
of comment/2 is otherwise the same as function ct:comment/1.

continue() -> ok
This function must be called to continue after a test case (not executing in a parallel group) has called function
ct:break/1.

continue(TestCase) -> ok
Types:

TestCase = atom()

This function must be called to continue after a test case has called ct:break/2. If the paused test case, TestCase,
executes in a parallel group, this function, rather than continue/0, must be used to let the test case proceed.

decrypt_config_file(EncryptFileName, TargetFileName) -> ok | {error, Reason}
Types:

EncryptFileName = string()

TargetFileName = string()

Reason = term()
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Decrypts EncryptFileName, previously generated with ct:encrypt_config_file/2,3. The original
file contents is saved in the target file. The encryption key, a string, must be available in a text file named
.ct_config.crypt, either in the current directory, or the home directory of the user (it is searched for in that
order).

decrypt_config_file(EncryptFileName, TargetFileName, KeyOrFile) -> ok |
{error, Reason}
Types:

EncryptFileName = string()

TargetFileName = string()

KeyOrFile = {key, string()} | {file, string()}

Reason = term()

Decrypts EncryptFileName, previously generated with ct:encrypt_config_file/2,3. The original file
contents is saved in the target file. The key must have the same value as that used for encryption.

encrypt_config_file(SrcFileName, EncryptFileName) -> ok | {error, Reason}
Types:

SrcFileName = string()

EncryptFileName = string()

Reason = term()

Encrypts the source configuration file with DES3 and saves the result in file EncryptFileName. The key, a string,
must be available in a text file named .ct_config.crypt, either in the current directory, or the home directory
of the user (it is searched for in that order).

For information about using encrypted configuration files when running tests, see section Encrypted Configuration
Files in the User's Guide.

For details on DES3 encryption/decryption, see application Crypto.

encrypt_config_file(SrcFileName, EncryptFileName, KeyOrFile) -> ok | {error,
Reason}
Types:

SrcFileName = string()

EncryptFileName = string()

KeyOrFile = {key, string()} | {file, string()}

Reason = term()

Encrypts the source configuration file with DES3 and saves the result in the target file EncryptFileName. The
encryption key to use is either the value in {key,Key} or the value stored in the file specified by {file,File}.

For information about using encrypted configuration files when running tests, see section Encrypted Configuration
Files in the User's Guide.

For details on DES3 encryption/decryption, see application Crypto.

fail(Reason) -> ok
Types:

Reason = term()

Terminates a test case with the specified error Reason.
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fail(Format, Args) -> ok
Types:

Format = string()

Args = list()

Terminates a test case with an error message specified by a format string and a list of values (used as arguments to
io_lib:format/2).

get_config(Required) -> Value
Equivalent to ct:get_config(Required, undefined, []).

get_config(Required, Default) -> Value
Equivalent to ct:get_config(Required, Default, []).

get_config(Required, Default, Opts) -> ValueOrElement
Types:

Required = KeyOrName | {KeyOrName, SubKey} | {KeyOrName, SubKey, SubKey}

KeyOrName = atom()

SubKey = atom()

Default = term()

Opts = [Opt] | []

Opt = element | all

ValueOrElement = term() | Default

Reads configuration data values.

Returns the matching values or configuration elements, given a configuration variable key or its associated name (if
one has been specified with ct:require/2 or a require statement).

Example:

Given the following configuration file:

 {unix,[{telnet,IpAddr},
        {user,[{username,Username},
               {password,Password}]}]}.

Then:

 ct:get_config(unix,Default) -> [{telnet,IpAddr}, 
  {user, [{username,Username}, {password,Password}]}]
 ct:get_config({unix,telnet},Default) -> IpAddr
 ct:get_config({unix,user,username},Default) -> Username
 ct:get_config({unix,ftp},Default) -> Default
 ct:get_config(unknownkey,Default) -> Default

If a configuration variable key has been associated with a name (by ct:require/2 or a require statement), the
name can be used instead of the key to read the value:

 ct:require(myuser,{unix,user}) -> ok.
 ct:get_config(myuser,Default) -> [{username,Username}, {password,Password}]
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If a configuration variable is defined in multiple files, use option all to access all possible values. The values are
returned in a list. The order of the elements corresponds to the order that the configuration files were specified at startup.

If configuration elements (key-value tuples) are to be returned as result instead of values, use option element. The
returned elements are then on the form {Required,Value}.

See also ct:get_config/1, ct:get_config/2, ct:require/1, ct:require/2.

get_event_mgr_ref() -> EvMgrRef
Types:

EvMgrRef = atom()

Gets a reference to the Common Test event manager. The reference can be used to, for example, add a user-specific
event handler while tests are running.

Example:

 gen_event:add_handler(ct:get_event_mgr_ref(), my_ev_h, [])

get_progname() -> string()
Returns the command used to start this Erlang instance. If this information could not be found, the string
"no_prog_name" is returned.

get_status() -> TestStatus | {error, Reason} | no_tests_running
Types:

TestStatus = [StatusElem]

StatusElem = {current, TestCaseInfo} | {successful, Successful} | {failed,
Failed} | {skipped, Skipped} | {total, Total}

TestCaseInfo = {Suite, TestCase} | [{Suite, TestCase}]

Suite = atom()

TestCase = atom()

Successful = integer()

Failed = integer()

Skipped = {UserSkipped, AutoSkipped}

UserSkipped = integer()

AutoSkipped = integer()

Total = integer()

Reason = term()

Returns status of ongoing test. The returned list contains information about which test case is executing (a list of cases
when a parallel test case group is executing), as well as counters for successful, failed, skipped, and total test cases
so far.

get_target_name(Handle) -> {ok, TargetName} | {error, Reason}
Types:

Handle = handle()

TargetName = target_name()

Returns the name of the target that the specified connection belongs to.
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get_testspec_terms() -> TestSpecTerms | undefined
Types:

TestSpecTerms = [{Tag, Value}]

Value = [term()]

Gets a list of all test specification terms used to configure and run this test.

get_testspec_terms(Tags) -> TestSpecTerms | undefined
Types:

Tags = [Tag] | Tag

Tag = atom()

TestSpecTerms = [{Tag, Value}] | {Tag, Value}

Value = [{Node, term()}] | [term()]

Node = atom()

Reads one or more terms from the test specification used to configure and run this test. Tag is any valid test
specification tag, for example, label, config, or logdir. User-specific terms are also available to read if option
allow_user_terms is set.

All value tuples returned, except user terms, have the node name as first element.

To read test terms, use Tag = tests (rather than suites, groups, or cases). Value is then the list of all tests
on the form [{Node,Dir,[{TestSpec,GroupsAndCases1},...]},...], where GroupsAndCases =
[{Group,[Case]}] | [Case].

get_timetrap_info() -> {Time, {Scaling,ScaleVal}}
Types:

Time = integer() | infinity

Scaling = true | false

ScaleVal = integer()

Reads information about the timetrap set for the current test case. Scaling indicates if Common Test will attempt
to compensate timetraps automatically for runtime delays introduced by, for example, tools like cover. ScaleVal is
the value of the current scaling multipler (always 1 if scaling is disabled). Note the Time is not the scaled result.

get_verbosity(Category) -> Level | undefined
Types:

Category = default | atom()

Level = integer()

This function returns the verbosity level for the specified logging category. See the User's Guide for details. Use the
value default to read the general verbosity level.

install(Opts) -> ok | {error, Reason}
Types:

Opts = [Opt]

Opt = {config, ConfigFiles} | {event_handler, Modules} | {decrypt,
KeyOrFile}

ConfigFiles = [ConfigFile]

ConfigFile = string()
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Modules = [atom()]

KeyOrFile = {key, Key} | {file, KeyFile}

Key = string()

KeyFile = string()

Installs configuration files and event handlers.

Run this function once before the first test.

Example:

 install([{config,["config_node.ctc","config_user.ctc"]}])

This function is automatically run by program ct_run.

listenv(Telnet) -> [Env]
Types:

Telnet = term()

Env = {Key, Value}

Key = string()

Value = string()

Performs command listenv on the specified Telnet connection and returns the result as a list of key-value pairs.

log(Format) -> ok
Equivalent to ct:log(default, 50, Format, [], []).

log(X1, X2) -> ok
Types:

X1 = Category | Importance | Format

X2 = Format | FormatArgs

Equivalent to ct:log(Category, Importance, Format, FormatArgs, []).

log(X1, X2, X3) -> ok
Types:

X1 = Category | Importance

X2 = Importance | Format

X3 = Format | FormatArgs | Opts

Equivalent to ct:log(Category, Importance, Format, FormatArgs, Opts).

log(X1, X2, X3, X4) -> ok
Types:

X1 = Category | Importance

X2 = Importance | Format

X3 = Format | FormatArgs

X4 = FormatArgs | Opts

Equivalent to ct:log(Category, Importance, Format, FormatArgs, Opts).
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log(Category, Importance, Format, FormatArgs, Opts) -> ok
Types:

Category = atom()

Importance = integer()

Format = string()

FormatArgs = list()

Opts = [Opt]

Opt = {heading,string()} | no_css | esc_chars

Prints from a test case to the log file.

This function is meant for printing a string directly from a test case to the test case log file.

Default Category is default, default Importance is ?STD_IMPORTANCE, and default value for
FormatArgs is [].

For details on Category, Importance and the no_css option, see section Logging - Categories and Verbosity
Levels in the User's Guide.

Common Test will not escape special HTML characters (<, > and &) in the text printed with this function, unless the
esc_chars option is used.

make_priv_dir() -> ok | {error, Reason}
Types:

Reason = term()

If the test is started with option create_priv_dir set to manual_per_tc, in order for the test case to use the
private directory, it must first create it by calling this function.

notify(Name, Data) -> ok
Types:

Name = atom()

Data = term()

Sends an asynchronous notification of type Name with Datato the Common Test event manager. This can later be
caught by any installed event manager.

See also gen_event(3).

pal(Format) -> ok
Equivalent to ct:pal(default, 50, Format, [], []).

pal(X1, X2) -> ok
Types:

X1 = Category | Importance | Format

X2 = Format | FormatArgs

Equivalent to ct:pal(Category, Importance, Format, FormatArgs, []).

pal(X1, X2, X3) -> ok
Types:

X1 = Category | Importance
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X2 = Importance | Format

X3 = Format | FormatArgs | Opts

Equivalent to ct:pal(Category, Importance, Format, FormatArgs, Opts).

pal(X1, X2, X3, X4) -> ok
Types:

X1 = Category | Importance

X2 = Importance | Format

X3 = Format | FormatArgs

X4 = FormatArgs | Opts

Equivalent to ct:pal(Category, Importance, Format, FormatArgs, Opts).

pal(Category, Importance, Format, FormatArgs, Opts) -> ok
Types:

Category = atom()

Importance = integer()

Format = string()

FormatArgs = list()

Opts = [Opt]

Opt = {heading,string()} | no_css

Prints and logs from a test case.

This function is meant for printing a string from a test case, both to the test case log file and to the console.

Default Category is default, default Importance is ?STD_IMPORTANCE, and default value for
FormatArgs is [].

For details on Category and Importance, see section Logging - Categories and Verbosity Levels in the User's
Guide.

Note that special characters in the text (<, > and &) will be escaped by Common Test before the text is printed to
the log file.

parse_table(Data) -> {Heading, Table}
Types:

Data = [string()]

Heading = tuple()

Table = [tuple()]

Parses the printout from an SQL table and returns a list of tuples.

The printout to parse is typically the result of a select command in SQL. The returned Table is a list of tuples,
where each tuple is a row in the table.

Heading is a tuple of strings representing the headings of each column in the table.

print(Format) -> ok
Equivalent to ct:print(default, 50, Format, [], []).
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print(X1, X2) -> ok
Types:

X1 = Category | Importance | Format

X2 = Format | FormatArgs

Equivalent to ct:print(Category, Importance, Format, FormatArgs, []).

print(X1, X2, X3) -> ok
Types:

X1 = Category | Importance

X2 = Importance | Format

X3 = Format | FormatArgs | Opts

Equivalent to ct:print(Category, Importance, Format, FormatArgs, Opts).

print(X1, X2, X3, X4) -> ok
Types:

X1 = Category | Importance

X2 = Importance | Format

X3 = Format | FormatArgs

X4 = FormatArgs | Opts

Equivalent to ct:print(Category, Importance, Format, FormatArgs, Opts).

print(Category, Importance, Format, FormatArgs, Opts) -> ok
Types:

Category = atom()

Importance = integer()

Format = string()

FormatArgs = list()

Opts = [Opt]

Opt = {heading,string()}

Prints from a test case to the console.

This function is meant for printing a string from a test case to the console.

Default Category is default, default Importance is ?STD_IMPORTANCE, and default value for
FormatArgs is [].

For details on Category and Importance, see section Logging - Categories and Verbosity Levels in the User's
Guide.

reload_config(Required) -> ValueOrElement | {error, Reason}
Types:

Required = KeyOrName | {KeyOrName, SubKey} | {KeyOrName, SubKey, SubKey}

KeyOrName = atom()

SubKey = atom()

ValueOrElement = term()

Reloads configuration file containing specified configuration key.
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This function updates the configuration data from which the specified configuration variable was read, and returns
the (possibly) new value of this variable.

If some variables were present in the configuration, but are not loaded using this function, they are removed from the
configuration table together with their aliases.

remaining_test_procs() -> {TestProcs,SharedGL,OtherGLs}
Types:

TestProcs = [{pid(),GL}]

GL = pid()

SharedGL = pid()

OtherGLs = [pid()]

This function will return the identity of test- and group leader processes that are still running at the time of this call.
TestProcs are processes in the system that have a Common Test IO process as group leader. SharedGL is the
central Common Test IO process, responsible for printing to log files for configuration functions and sequentially
executing test cases. OtherGLs are Common Test IO processes that print to log files for test cases in parallel test
case groups.

The process information returned by this function may be used to locate and terminate remaining processes after tests
have finished executing. The function would typically by called from Common Test Hook functions.

Note that processes that execute configuration functions or test cases are never included in TestProcs. It
is therefore safe to use post configuration hook functions (such as post_end_per_suite, post_end_per_group,
post_end_per_testcase) to terminate all processes in TestProcs that have the current group leader process as its
group leader.

Note also that the shared group leader (SharedGL) must never be terminated by the user, only by Common Test.
Group leader processes for parallel test case groups (OtherGLs) may however be terminated in post_end_per_group
hook functions.

remove_config(Callback, Config) -> ok
Types:

Callback = atom()

Config = string()

Reason = term()

Removes configuration variables (together wih their aliases) that were loaded with specified callback module and
configuration string.

require(Required) -> ok | {error, Reason}
Types:

Required = Key | {Key, SubKeys} | {Key, SubKey, SubKeys}

Key = atom()

SubKeys = SubKey | [SubKey]

SubKey = atom()

Checks if the required configuration is available. Arbitrarily deep tuples can be specified as Required. Only the last
element of the tuple can be a list of SubKeys.

Example 1. Require the variable myvar:
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 ok = ct:require(myvar).

In this case the configuration file must at least contain:

 {myvar,Value}.

Example 2. Require key myvar with subkeys sub1 and sub2:

 ok = ct:require({myvar,[sub1,sub2]}).

In this case the configuration file must at least contain:

 {myvar,[{sub1,Value},{sub2,Value}]}.

Example 3. Require key myvar with subkey sub1 with subsub1:

 ok = ct:require({myvar,sub1,sub2}).

In this case the configuration file must at least contain:

 {myvar,[{sub1,[{sub2,Value}]}]}.

See also ct:get_config/1, ct:get_config/2, ct:get_config/3, ct:require/2.

require(Name, Required) -> ok | {error, Reason}
Types:

Name = atom()

Required = Key | {Key, SubKey} | {Key, SubKey, SubKey}

SubKey = Key

Key = atom()

Checks if the required configuration is available and gives it a name. The semantics for Required is the same as in
ct:require/1 except that a list of SubKeys cannot be specified.

If the requested data is available, the subentry is associated with Name so that the value of the element can be read
with ct:get_config/1,2 provided Name is used instead of the whole Required term.

Example:

Require one node with a Telnet connection and an FTP connection. Name the node a:

 ok = ct:require(a,{machine,node}).

All references to this node can then use the node name. For example, a file over FTP is fetched like follows:

 ok = ct:ftp_get(a,RemoteFile,LocalFile).

For this to work, the configuration file must at least contain:

 {machine,[{node,[{telnet,IpAddr},{ftp,IpAddr}]}]}.
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Note:

The behavior of this function changed radically in Common Test 1.6.2. To keep some backwards compatability,
it is still possible to do:
ct:require(a,{node,[telnet,ftp]}).
This associates the name a with the top-level node entry. For this to work, the configuration file must at least
contain:
{node,[{telnet,IpAddr},{ftp,IpAddr}]}.

See also ct:get_config/1, ct:get_config/2, ct:get_config/3, ct:require/1.

run(TestDirs) -> Result
Types:

TestDirs = TestDir | [TestDir]

Runs all test cases in all suites in the specified directories.

See also ct:run/3.

run(TestDir, Suite) -> Result
Runs all test cases in the specified suite.

See also ct:run/3.

run(TestDir, Suite, Cases) -> Result
Types:

TestDir = string()

Suite = atom()

Cases = atom() | [atom()]

Result = [TestResult] | {error, Reason}

Runs the specified test cases.

Requires that ct:install/1 has been run first.

Suites (*_SUITE.erl) files must be stored in TestDir or TestDir/test. All suites are compiled when the
test is run.

run_test(Opts) -> Result
Types:

Opts = [OptTuples]

OptTuples = {dir, TestDirs} | {suite, Suites} | {group, Groups}
| {testcase, Cases} | {spec, TestSpecs} | {join_specs, Bool} |
{label, Label} | {config, CfgFiles} | {userconfig, UserConfig} |
{allow_user_terms, Bool} | {logdir, LogDir} | {silent_connections, Conns}
| {stylesheet, CSSFile} | {cover, CoverSpecFile} | {cover_stop, Bool} |
{step, StepOpts} | {event_handler, EventHandlers} | {include, InclDirs} |
{auto_compile, Bool} | {abort_if_missing_suites, Bool} | {create_priv_dir,
CreatePrivDir} | {multiply_timetraps, M} | {scale_timetraps, Bool} |
{repeat, N} | {duration, DurTime} | {until, StopTime} | {force_stop,
ForceStop} | {decrypt, DecryptKeyOrFile} | {refresh_logs, LogDir}
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| {logopts, LogOpts} | {verbosity, VLevels} | {basic_html, Bool}
| {esc_chars, Bool} | {keep_logs,KeepSpec} | {ct_hooks, CTHs} |
{enable_builtin_hooks, Bool} | {release_shell, Bool}

TestDirs = [string()] | string()

Suites = [string()] | [atom()] | string() | atom()

Cases = [atom()] | atom()

Groups = GroupNameOrPath | [GroupNameOrPath]

GroupNameOrPath = [atom()] | atom() | all

TestSpecs = [string()] | string()

Label = string() | atom()

CfgFiles = [string()] | string()

UserConfig = [{CallbackMod, CfgStrings}] | {CallbackMod, CfgStrings}

CallbackMod = atom()

CfgStrings = [string()] | string()

LogDir = string()

Conns = all | [atom()]

CSSFile = string()

CoverSpecFile = string()

StepOpts = [StepOpt] | []

StepOpt = config | keep_inactive

EventHandlers = EH | [EH]

EH = atom() | {atom(), InitArgs} | {[atom()], InitArgs}

InitArgs = [term()]

InclDirs = [string()] | string()

CreatePrivDir = auto_per_run | auto_per_tc | manual_per_tc

M = integer()

N = integer()

DurTime = string(HHMMSS)

StopTime = string(YYMoMoDDHHMMSS) | string(HHMMSS)

ForceStop = skip_rest | Bool

DecryptKeyOrFile = {key, DecryptKey} | {file, DecryptFile}

DecryptKey = string()

DecryptFile = string()

LogOpts = [LogOpt]

LogOpt = no_nl | no_src

VLevels = VLevel | [{Category, VLevel}]

VLevel = integer()

Category = atom()

KeepSpec = all | pos_integer()

CTHs = [CTHModule | {CTHModule, CTHInitArgs}]

CTHModule = atom()

CTHInitArgs = term()

Result = {Ok, Failed, {UserSkipped, AutoSkipped}} | TestRunnerPid |
{error, Reason}
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Ok = integer()

Failed = integer()

UserSkipped = integer()

AutoSkipped = integer()

TestRunnerPid = pid()

Reason = term()

Runs tests as specified by the combination of options in Opts. The options are the same as those used with program
ct_run, see Run Tests from Command Line in the ct_run manual page.

Here a TestDir can be used to point out the path to a Suite. Option testcase corresponds to option -case in
program ct_run. Configuration files specified in Opts are installed automatically at startup.

TestRunnerPid is returned if release_shell == true. For details, see ct:break/1.

Reason indicates the type of error encountered.

run_testspec(TestSpec) -> Result
Types:

TestSpec = [term()]

Result = {Ok, Failed, {UserSkipped, AutoSkipped}} | {error, Reason}

Ok = integer()

Failed = integer()

UserSkipped = integer()

AutoSkipped = integer()

Reason = term()

Runs a test specified by TestSpec. The same terms are used as in test specification files.

Reason indicates the type of error encountered.

set_verbosity(Category, Level) -> ok
Types:

Category = default | atom()

Level = integer()

Use this function to set, or modify, the verbosity level for a logging category. See the User's Guide for details. Use
the value default to set the general verbosity level.

sleep(Time) -> ok
Types:

Time = {hours, Hours} | {minutes, Mins} | {seconds, Secs} | Millisecs |
infinity

Hours = integer()

Mins = integer()

Secs = integer()

Millisecs = integer() | float()

This function, similar to timer:sleep/1 in STDLIB, suspends the test case for a specified time. However, this
function also multiplies Time with the multiply_timetraps value (if set) and under certain circumstances also
scales up the time automatically if scale_timetraps is set to true (default is false).
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start_interactive() -> ok
Starts Common Test in interactive mode.

From this mode, all test case support functions can be executed directly from the Erlang shell. The interactive mode
can also be started from the OS command line with ct_run -shell [-config File...].

If any functions (for example, Telnet or FTP) using "required configuration data" are to be called from the Erlang
shell, configuration data must first be required with ct:require/2.

Example:

 > ct:require(unix_telnet, unix).
 ok
 > ct_telnet:open(unix_telnet).
 {ok,<0.105.0>}
 > ct_telnet:cmd(unix_telnet, "ls .").
 {ok,["ls","file1  ...",...]}

step(TestDir, Suite, Case) -> Result
Types:

Case = atom()

Steps through a test case with the debugger.

See also ct:run/3.

step(TestDir, Suite, Case, Opts) -> Result
Types:

Case = atom()

Opts = [Opt] | []

Opt = config | keep_inactive

Steps through a test case with the debugger. If option config has been specifed, breakpoints are also set on the
configuration functions in Suite.

See also ct:run/3.

stop_interactive() -> ok
Exits the interactive mode.

See also ct:start_interactive/0.

sync_notify(Name, Data) -> ok
Types:

Name = atom()

Data = term()

Sends a synchronous notification of type Name with Data to the Common Test event manager. This can later be
caught by any installed event manager.

See also gen_event(3).

testcases(TestDir, Suite) -> Testcases | {error, Reason}
Types:
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TestDir = string()

Suite = atom()

Testcases = list()

Reason = term()

Returns all test cases in the specified suite.

timetrap(Time) -> ok
Types:

Time = {hours, Hours} | {minutes, Mins} | {seconds, Secs} | Millisecs |
infinity | Func

Hours = integer()

Mins = integer()

Secs = integer()

Millisecs = integer()

Func = {M, F, A} | function()

M = atom()

F = atom()

A = list()

Sets a new timetrap for the running test case.

If the argument is Func, the timetrap is triggered when this function returns. Func can also return a new Time value,
which in that case is the value for the new timetrap.

userdata(TestDir, Suite) -> SuiteUserData | {error, Reason}
Types:

TestDir = string()

Suite = atom()

SuiteUserData = [term()]

Reason = term()

Returns any data specified with tag userdata in the list of tuples returned from suite/0.

userdata(TestDir, Suite, Case::GroupOrCase) -> TCUserData | {error, Reason}
Types:

TestDir = string()

Suite = atom()

GroupOrCase = {group, GroupName} | atom()

GroupName = atom()

TCUserData = [term()]

Reason = term()

Returns any data specified with tag userdata in the list of tuples returned from Suite:group(GroupName)
or Suite:Case().
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ct_master
Erlang module

Distributed test execution control for Common Test.

This module exports functions for running Common Test nodes on multiple hosts in parallel.

Exports

abort() -> ok
Stops all running tests.

abort(Nodes) -> ok
Types:

Nodes = atom() | [atom()]

Stops tests on specified nodes.

basic_html(Bool) -> ok
Types:

Bool = true | false

If set to true, the ct_master logs are written on a primitive HTML format, not using the Common Test
CSS style sheet.

get_event_mgr_ref() -> MasterEvMgrRef
Types:

MasterEvMgrRef = atom()

Gets a reference to the Common Test master event manager. The reference can be used to, for example, add a user-
specific event handler while tests are running.

Example:

 gen_event:add_handler(ct_master:get_event_mgr_ref(), my_ev_h, [])

progress() -> [{Node, Status}]
Types:

Node = atom()

Status = finished_ok | ongoing | aborted | {error, Reason}

Reason = term()

Returns test progress. If Status is ongoing, tests are running on the node and are not yet finished.

run(TestSpecs) -> ok
Types:

TestSpecs = string() | [SeparateOrMerged]

Equivalent to ct_master:run(TestSpecs, false, [], []).
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run(TestSpecs, InclNodes, ExclNodes) -> ok
Types:

TestSpecs = string() | [SeparateOrMerged]

SeparateOrMerged = string() | [string()]

InclNodes = [atom()]

ExclNodes = [atom()]

Equivalent to ct_master:run(TestSpecs, false, InclNodes, ExclNodes).

run(TestSpecs, AllowUserTerms, InclNodes, ExclNodes) -> ok
Types:

TestSpecs = string() | [SeparateOrMerged]

SeparateOrMerged = string() | [string()]

AllowUserTerms = bool()

InclNodes = [atom()]

ExclNodes = [atom()]

Tests are spawned on the nodes as specified in TestSpecs. Each specification in TestSpec is handled separately.
However, it is also possible to specify a list of specifications to be merged into one specification before the tests are
executed. Any test without a particular node specification is also executed on the nodes in InclNodes. Nodes in the
ExclNodes list are excluded from the test.

run_on_node(TestSpecs, Node) -> ok
Types:

TestSpecs = string() | [SeparateOrMerged]

SeparateOrMerged = string() | [string()]

Node = atom()

Equivalent to ct_master:run_on_node(TestSpecs, false, Node).

run_on_node(TestSpecs, AllowUserTerms, Node) -> ok
Types:

TestSpecs = string() | [SeparateOrMerged]

SeparateOrMerged = string() | [string()]

AllowUserTerms = bool()

Node = atom()

Tests are spawned on Node according to TestSpecs.

run_test(Node, Opts) -> ok
Types:

Node = atom()

Opts = [OptTuples]

OptTuples = {config, CfgFiles} | {dir, TestDirs} | {suite, Suites}
| {testcase, Cases} | {spec, TestSpecs} | {allow_user_terms, Bool} |
{logdir, LogDir} | {event_handler, EventHandlers} | {silent_connections,
Conns} | {cover, CoverSpecFile} | {cover_stop, Bool} | {userconfig,
UserCfgFiles}
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CfgFiles = string() | [string()]

TestDirs = string() | [string()]

Suites = atom() | [atom()]

Cases = atom() | [atom()]

TestSpecs = string() | [string()]

LogDir = string()

EventHandlers = EH | [EH]

EH = atom() | {atom(), InitArgs} | {[atom()], InitArgs}

InitArgs = [term()]

Conns = all | [atom()]

Tests are spawned on Node using ct:run_test/1
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ct_cover
Erlang module

Common Test framework code coverage support module.

This module exports help functions for performing code coverage analysis.

Exports

add_nodes(Nodes) -> {ok, StartedNodes} | {error, Reason}
Types:

Nodes = [atom()]

StartedNodes = [atom()]

Reason = cover_not_running | not_main_node

Adds nodes to current cover test. Notice that this only works if cover support is active.

To have effect, this function is to be called from init_per_suite/1 (see common_test) before any tests are
performed.

cross_cover_analyse(Level, Tests) -> ok
Types:

Level = overview | details

Tests = [{Tag, Dir}]

Tag = atom()

Dir = string()

Accumulates cover results over multiple tests. See section Cross Cover Analysis in the Users's Guide.

remove_nodes(Nodes) -> ok | {error, Reason}
Types:

Nodes = [atom()]

Reason = cover_not_running | not_main_node

Removes nodes from the current cover test.

Call this function to stop cover test on nodes previously added with ct_cover:add_nodes/1. Results on the
remote node are transferred to the Common Test node.
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ct_ftp
Erlang module

FTP client module (based on the ftp application).

Data Types
connection() = handle() | target_name()
For target_name, see module ct.

handle() = handle()
Handle for a specific FTP connection, see module ct.

Exports

cd(Connection, Dir) -> ok | {error, Reason}
Types:

Connection = connection()

Dir = string()

Changes directory on remote host.

close(Connection) -> ok | {error, Reason}
Types:

Connection = connection()

Closes the FTP connection.

delete(Connection, File) -> ok | {error, Reason}
Types:

Connection = connection()

File = string()

Deletes a file on remote host.

get(KeyOrName, RemoteFile, LocalFile) -> ok | {error, Reason}
Types:

KeyOrName = Key | Name

Key = atom()

Name = target_name()

RemoteFile = string()

LocalFile = string()

Opens an FTP connection and fetches a file from the remote host.

RemoteFile and LocalFile must be absolute paths.

The configuration file must be as for ct_ftp:put/3.

For target_name, see module ct.
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See also ct:require/2.

ls(Connection, Dir) -> {ok, Listing} | {error, Reason}
Types:

Connection = connection()

Dir = string()

Listing = string()

Lists directory Dir.

open(KeyOrName) -> {ok, Handle} | {error, Reason}
Types:

KeyOrName = Key | Name

Key = atom()

Name = target_name()

Handle = handle()

Opens an FTP connection to the specified node.

You can open a connection for a particular Name and use the same name as reference for all following subsequent
operations. If you want the connection to be associated with Handle instead (if you, for example, need to open
multiple connections to a host), use Key, the configuration variable name, to specify the target. A connection without
an associated target name can only be closed with the handle value.

For information on how to create a new Name, see ct:require/2.

For target_name, see module ct.

put(KeyOrName, LocalFile, RemoteFile) -> ok | {error, Reason}
Types:

KeyOrName = Key | Name

Key = atom()

Name = target_name()

LocalFile = string()

RemoteFile = string()

Opens an FTP connection and sends a file to the remote host.

LocalFile and RemoteFile must be absolute paths.

For target_name, see module ct.

If the target host is a "special" node, the FTP address must be specified in the configuration file as follows:

 {node,[{ftp,IpAddr}]}.

If the target host is something else, for example, a UNIX host, the configuration file must also include the username
and password (both strings):

 {unix,[{ftp,IpAddr},
        {username,Username},
        {password,Password}]}.
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See also ct:require/2.

recv(Connection, RemoteFile) -> ok | {error, Reason}
Fetches a file over FTP.

The file gets the same name on the local host.

See also ct_ftp:recv/3.

recv(Connection, RemoteFile, LocalFile) -> ok | {error, Reason}
Types:

Connection = connection()

RemoteFile = string()

LocalFile = string()

Fetches a file over FTP.

The file is named LocalFile on the local host.

send(Connection, LocalFile) -> ok | {error, Reason}
Sends a file over FTP.

The file gets the same name on the remote host.

See also ct_ftp:send/3.

send(Connection, LocalFile, RemoteFile) -> ok | {error, Reason}
Types:

Connection = connection()

LocalFile = string()

RemoteFile = string()

Sends a file over FTP.

The file is named RemoteFile on the remote host.

type(Connection, Type) -> ok | {error, Reason}
Types:

Connection = connection()

Type = ascii | binary

Changes the file transfer type.
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ct_ssh
Erlang module

SSH/SFTP client module.

This module uses application SSH, which provides detailed information about, for example, functions, types, and
options.

Argument Server in the SFTP functions is only to be used for SFTP sessions that have been started on existing SSH
connections (that is, when the original connection type is ssh). Whenever the connection type is sftp, use the SSH
connection reference only.

The following options are valid for specifying an SSH/SFTP connection (that is, can be used as configuration
elements):

 [{ConnType, Addr},
  {port, Port},
  {user, UserName}
  {password, Pwd}
  {user_dir, String}
  {public_key_alg, PubKeyAlg}
  {connect_timeout, Timeout}
  {key_cb, KeyCallbackMod}]

ConnType = ssh | sftp.

For other types, see ssh(3).

All time-out parameters in ct_ssh functions are values in milliseconds.

Data Types
connection() = handle() | target_name()
For target_name, see module ct.

handle() = handle()
Handle for a specific SSH/SFTP connection, see module ct.

ssh_sftp_return() = term()
Return value from an ssh_sftp function.

Exports

apread(SSH, Handle, Position, Length) -> Result
Types:

SSH = connection()

Result = ssh_sftp_return() | {error, Reason}

Reason = term()

For information and other types, see ssh_sftp(3).

apread(SSH, Server, Handle, Position, Length) -> Result
Types:
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SSH = connection()

Result = ssh_sftp_return() | {error, Reason}

Reason = term()

For information and other types, see ssh_sftp(3).

apwrite(SSH, Handle, Position, Data) -> Result
Types:

SSH = connection()

Result = ssh_sftp_return() | {error, Reason}

Reason = term()

For information and other types, see ssh_sftp(3).

apwrite(SSH, Server, Handle, Position, Data) -> Result
Types:

SSH = connection()

Result = ssh_sftp_return() | {error, Reason}

Reason = term()

For information and other types, see ssh_sftp(3).

aread(SSH, Handle, Len) -> Result
Types:

SSH = connection()

Result = ssh_sftp_return() | {error, Reason}

Reason = term()

For information and other types, see ssh_sftp(3).

aread(SSH, Server, Handle, Len) -> Result
Types:

SSH = connection()

Result = ssh_sftp_return() | {error, Reason}

Reason = term()

For information and other types, see ssh_sftp(3).

awrite(SSH, Handle, Data) -> Result
Types:

SSH = connection()

Result = ssh_sftp_return() | {error, Reason}

Reason = term()

For information and other types, see ssh_sftp(3).

awrite(SSH, Server, Handle, Data) -> Result
Types:

SSH = connection()
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Result = ssh_sftp_return() | {error, Reason}

Reason = term()

For information and other types, see ssh_sftp(3).

close(SSH, Handle) -> Result
Types:

SSH = connection()

Result = ssh_sftp_return() | {error, Reason}

Reason = term()

For information and other types, see ssh_sftp(3).

close(SSH, Server, Handle) -> Result
Types:

SSH = connection()

Result = ssh_sftp_return() | {error, Reason}

Reason = term()

For information and other types, see ssh_sftp(3).

connect(KeyOrName) -> {ok, Handle} | {error, Reason}
Equivalent to ct_ssh:connect(KeyOrName, host, []).

connect(KeyOrName, ConnType) -> {ok, Handle} | {error, Reason}
Equivalent to ct_ssh:connect(KeyOrName, ConnType, []).

connect(KeyOrName, ConnType, ExtraOpts) -> {ok, Handle} | {error, Reason}
Types:

KeyOrName = Key | Name

Key = atom()

Name = target_name()

ConnType = ssh | sftp | host

ExtraOpts = ssh_connect_options()

Handle = handle()

Reason = term()

Opens an SSH or SFTP connection using the information associated with KeyOrName.

If Name (an alias name for Key) is used to identify the connection, this name can be used as connection reference for
subsequent calls. Only one open connection at a time associated with Name is possible. If Key is used, the returned
handle must be used for subsequent calls (multiple connections can be opened using the configuration data specified
by Key).

For information on how to create a new Name, see ct:require/2.

For target_name, see module ct.

ConnType always overrides the type specified in the address tuple in the configuration data (and in ExtraOpts).
So it is possible to, for example, open an SFTP connection directly using data originally specifying an SSH connection.
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Value host means that the connection type specified by the host option (either in the configuration data or in
ExtraOpts) is used.

ExtraOpts (optional) are extra SSH options to be added to the configuration data for KeyOrName. The extra
options override any existing options with the same key in the configuration data. For details on valid SSH options,
see application SSH.

del_dir(SSH, Name) -> Result
Types:

SSH = connection()

Result = ssh_sftp_return() | {error, Reason}

Reason = term()

For information and other types, see ssh_sftp(3).

del_dir(SSH, Server, Name) -> Result
Types:

SSH = connection()

Result = ssh_sftp_return() | {error, Reason}

Reason = term()

For information and other types, see ssh_sftp(3).

delete(SSH, Name) -> Result
Types:

SSH = connection()

Result = ssh_sftp_return() | {error, Reason}

Reason = term()

For information and other types, see ssh_sftp(3).

delete(SSH, Server, Name) -> Result
Types:

SSH = connection()

Result = ssh_sftp_return() | {error, Reason}

Reason = term()

For information and other types, see ssh_sftp(3).

disconnect(SSH) -> ok | {error, Reason}
Types:

SSH = connection()

Reason = term()

Closes an SSH/SFTP connection.

exec(SSH, Command) -> {ok, Data} | {error, Reason}
Equivalent to ct_ssh:exec(SSH, Command, DefaultTimeout).
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exec(SSH, Command, Timeout) -> {ok, Data} | {error, Reason}
Types:

SSH = connection()

Command = string()

Timeout = integer()

Data = list()

Reason = term()

Requests server to perform Command. A session channel is opened automatically for the request. Data is received
from the server as a result of the command.

exec(SSH, ChannelId, Command, Timeout) -> {ok, Data} | {error, Reason}
Types:

SSH = connection()

ChannelId = integer()

Command = string()

Timeout = integer()

Data = list()

Reason = term()

Requests server to perform Command. A previously opened session channel is used for the request. Data is received
from the server as a result of the command.

get_file_info(SSH, Handle) -> Result
Types:

SSH = connection()

Result = ssh_sftp_return() | {error, Reason}

Reason = term()

For information and other types, see ssh_sftp(3).

get_file_info(SSH, Server, Handle) -> Result
Types:

SSH = connection()

Result = ssh_sftp_return() | {error, Reason}

Reason = term()

For information and other types, see ssh_sftp(3).

list_dir(SSH, Path) -> Result
Types:

SSH = connection()

Result = ssh_sftp_return() | {error, Reason}

Reason = term()

For information and other types, see ssh_sftp(3).
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list_dir(SSH, Server, Path) -> Result
Types:

SSH = connection()

Result = ssh_sftp_return() | {error, Reason}

Reason = term()

For information and other types, see ssh_sftp(3).

make_dir(SSH, Name) -> Result
Types:

SSH = connection()

Result = ssh_sftp_return() | {error, Reason}

Reason = term()

For information and other types, see ssh_sftp(3).

make_dir(SSH, Server, Name) -> Result
Types:

SSH = connection()

Result = ssh_sftp_return() | {error, Reason}

Reason = term()

For information and other types, see ssh_sftp(3).

make_symlink(SSH, Name, Target) -> Result
Types:

SSH = connection()

Result = ssh_sftp_return() | {error, Reason}

Reason = term()

For information and other types, see ssh_sftp(3).

make_symlink(SSH, Server, Name, Target) -> Result
Types:

SSH = connection()

Result = ssh_sftp_return() | {error, Reason}

Reason = term()

For information and other types, see ssh_sftp(3).

open(SSH, File, Mode) -> Result
Types:

SSH = connection()

Result = ssh_sftp_return() | {error, Reason}

Reason = term()

For information and other types, see ssh_sftp(3).
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open(SSH, Server, File, Mode) -> Result
Types:

SSH = connection()

Result = ssh_sftp_return() | {error, Reason}

Reason = term()

For information and other types, see ssh_sftp(3).

opendir(SSH, Path) -> Result
Types:

SSH = connection()

Result = ssh_sftp_return() | {error, Reason}

Reason = term()

For information and other types, see ssh_sftp(3).

opendir(SSH, Server, Path) -> Result
Types:

SSH = connection()

Result = ssh_sftp_return() | {error, Reason}

Reason = term()

For information and other types, see ssh_sftp(3).

position(SSH, Handle, Location) -> Result
Types:

SSH = connection()

Result = ssh_sftp_return() | {error, Reason}

Reason = term()

For information and other types, see ssh_sftp(3).

position(SSH, Server, Handle, Location) -> Result
Types:

SSH = connection()

Result = ssh_sftp_return() | {error, Reason}

Reason = term()

For information and other types, see ssh_sftp(3).

pread(SSH, Handle, Position, Length) -> Result
Types:

SSH = connection()

Result = ssh_sftp_return() | {error, Reason}

Reason = term()

For information and other types, see ssh_sftp(3).
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pread(SSH, Server, Handle, Position, Length) -> Result
Types:

SSH = connection()

Result = ssh_sftp_return() | {error, Reason}

Reason = term()

For information and other types, see ssh_sftp(3).

pwrite(SSH, Handle, Position, Data) -> Result
Types:

SSH = connection()

Result = ssh_sftp_return() | {error, Reason}

Reason = term()

For information and other types, see ssh_sftp(3).

pwrite(SSH, Server, Handle, Position, Data) -> Result
Types:

SSH = connection()

Result = ssh_sftp_return() | {error, Reason}

Reason = term()

For information and other types, see ssh_sftp(3).

read(SSH, Handle, Len) -> Result
Types:

SSH = connection()

Result = ssh_sftp_return() | {error, Reason}

Reason = term()

For information and other types, see ssh_sftp(3).

read(SSH, Server, Handle, Len) -> Result
Types:

SSH = connection()

Result = ssh_sftp_return() | {error, Reason}

Reason = term()

For information and other types, see ssh_sftp(3).

read_file(SSH, File) -> Result
Types:

SSH = connection()

Result = ssh_sftp_return() | {error, Reason}

Reason = term()

For information and other types, see ssh_sftp(3).
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read_file(SSH, Server, File) -> Result
Types:

SSH = connection()

Result = ssh_sftp_return() | {error, Reason}

Reason = term()

For information and other types, see ssh_sftp(3).

read_file_info(SSH, Name) -> Result
Types:

SSH = connection()

Result = ssh_sftp_return() | {error, Reason}

Reason = term()

For information and other types, see ssh_sftp(3).

read_file_info(SSH, Server, Name) -> Result
Types:

SSH = connection()

Result = ssh_sftp_return() | {error, Reason}

Reason = term()

For information and other types, see ssh_sftp(3).

read_link(SSH, Name) -> Result
Types:

SSH = connection()

Result = ssh_sftp_return() | {error, Reason}

Reason = term()

For information and other types, see ssh_sftp(3).

read_link(SSH, Server, Name) -> Result
Types:

SSH = connection()

Result = ssh_sftp_return() | {error, Reason}

Reason = term()

For information and other types, see ssh_sftp(3).

read_link_info(SSH, Name) -> Result
Types:

SSH = connection()

Result = ssh_sftp_return() | {error, Reason}

Reason = term()

For information and other types, see ssh_sftp(3).
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read_link_info(SSH, Server, Name) -> Result
Types:

SSH = connection()

Result = ssh_sftp_return() | {error, Reason}

Reason = term()

For information and other types, see ssh_sftp(3).

receive_response(SSH, ChannelId) -> {ok, Data} | {error, Reason}
Equivalent to ct_ssh:receive_response(SSH, ChannelId, close).

receive_response(SSH, ChannelId, End) -> {ok, Data} | {error, Reason}
Equivalent to ct_ssh:receive_response(SSH, ChannelId, End, DefaultTimeout).

receive_response(SSH, ChannelId, End, Timeout) -> {ok, Data} | {timeout,
Data} | {error, Reason}
Types:

SSH = connection()

ChannelId = integer()

End = Fun | close | timeout

Timeout = integer()

Data = list()

Reason = term()

Receives expected data from server on the specified session channel.

If End == close, data is returned to the caller when the channel is closed by the server. If a time-out occurs before
this happens, the function returns {timeout,Data} (where Data is the data received so far).

If End == timeout, a time-out is expected and {ok,Data} is returned both in the case of a time-out and when
the channel is closed.

If End is a fun, this fun is called with one argument, the data value in a received ssh_cm message (see
ssh_connection(3). The fun is to return either true to end the receiving operation (and have the so far collected
data returned) or false to wait for more data from the server. Even if a fun is supplied, the function returns
immediately if the server closes the channel).

rename(SSH, OldName, NewName) -> Result
Types:

SSH = connection()

Result = ssh_sftp_return() | {error, Reason}

Reason = term()

For information and other types, see ssh_sftp(3).

rename(SSH, Server, OldName, NewName) -> Result
Types:

SSH = connection()

Result = ssh_sftp_return() | {error, Reason}
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Reason = term()

For information and other types, see ssh_sftp(3).

send(SSH, ChannelId, Data) -> ok | {error, Reason}
Equivalent to ct_ssh:send(SSH, ChannelId, 0, Data, DefaultTimeout).

send(SSH, ChannelId, Data, Timeout) -> ok | {error, Reason}
Equivalent to ct_ssh:send(SSH, ChannelId, 0, Data, Timeout).

send(SSH, ChannelId, Type, Data, Timeout) -> ok | {error, Reason}
Types:

SSH = connection()

ChannelId = integer()

Type = integer()

Data = list()

Timeout = integer()

Reason = term()

Sends data to server on specified session channel.

send_and_receive(SSH, ChannelId, Data) -> {ok, Data} | {error, Reason}
Equivalent to ct_ssh:send_and_receive(SSH, ChannelId, Data, close).

send_and_receive(SSH, ChannelId, Data, End) -> {ok, Data} | {error, Reason}
Equivalent to ct_ssh;send_and_receive(SSH, ChannelId, 0, Data, End, DefaultTimeout).

send_and_receive(SSH, ChannelId, Data, End, Timeout) -> {ok, Data} | {error,
Reason}
Equivalent to ct_ssh:send_and_receive(SSH, ChannelId, 0, Data, End, Timeout).

send_and_receive(SSH, ChannelId, Type, Data, End, Timeout) -> {ok, Data} |
{error, Reason}
Types:

SSH = connection()

ChannelId = integer()

Type = integer()

Data = list()

End = Fun | close | timeout

Timeout = integer()

Reason = term()

Sends data to server on specified session channel and waits to receive the server response.

For details on argument End, see ct_ssh:receive_response/4.
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session_close(SSH, ChannelId) -> ok | {error, Reason}
Types:

SSH = connection()

ChannelId = integer()

Reason = term()

Closes an SSH session channel.

session_open(SSH) -> {ok, ChannelId} | {error, Reason}
Equivalent to ct_ssh:session_open(SSH, DefaultTimeout).

session_open(SSH, Timeout) -> {ok, ChannelId} | {error, Reason}
Types:

SSH = connection()

Timeout = integer()

ChannelId = integer()

Reason = term()

Opens a channel for an SSH session.

sftp_connect(SSH) -> {ok, Server} | {error, Reason}
Types:

SSH = connection()

Server = pid()

Reason = term()

Starts an SFTP session on an already existing SSH connection. Server identifies the new session and must be
specified whenever SFTP requests are to be sent.

shell(SSH, ChannelId) -> ok | {error, Reason}
Equivalent to ct_ssh:shell(SSH, ChannelId, DefaultTimeout).

shell(SSH, ChannelId, Timeout) -> ok | {error, Reason}
Types:

SSH = connection()

ChannelId = integer()

Timeout = integer()

Reason = term()

Requests that the user default shell (typically defined in /etc/passwd in Unix systems) is executed at the server end.

subsystem(SSH, ChannelId, Subsystem) -> Status | {error, Reason}
Equivalent to ct_ssh:subsystem(SSH, ChannelId, Subsystem, DefaultTimeout).

subsystem(SSH, ChannelId, Subsystem, Timeout) -> Status | {error, Reason}
Types:

SSH = connection()
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ChannelId = integer()

Subsystem = string()

Timeout = integer()

Status = success | failure

Reason = term()

Sends a request to execute a predefined subsystem.

write(SSH, Handle, Data) -> Result
Types:

SSH = connection()

Result = ssh_sftp_return() | {error, Reason}

Reason = term()

For information and other types, see ssh_sftp(3).

write(SSH, Server, Handle, Data) -> Result
Types:

SSH = connection()

Result = ssh_sftp_return() | {error, Reason}

Reason = term()

For information and other types, see ssh_sftp(3).

write_file(SSH, File, Iolist) -> Result
Types:

SSH = connection()

Result = ssh_sftp_return() | {error, Reason}

Reason = term()

For information and other types, see ssh_sftp(3).

write_file(SSH, Server, File, Iolist) -> Result
Types:

SSH = connection()

Result = ssh_sftp_return() | {error, Reason}

Reason = term()

For information and other types, see ssh_sftp(3).

write_file_info(SSH, Name, Info) -> Result
Types:

SSH = connection()

Result = ssh_sftp_return() | {error, Reason}

Reason = term()

For information and other types, see ssh_sftp(3).
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write_file_info(SSH, Server, Name, Info) -> Result
Types:

SSH = connection()

Result = ssh_sftp_return() | {error, Reason}

Reason = term()

For information and other types, see ssh_sftp(3).
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ct_netconfc
Erlang module

NETCONF client module compliant with RFC 6241, NETCONF Configuration Protocol, and RFC 6242, Using the
NETCONF Configuration Protocol over Secure SHell (SSH), and with support for RFC 5277, NETCONF Event
Notifications.

Connecting to a NETCONF server

Call connect/1,2 to establish a connection to a server, then pass the returned handle to session/1-3 to establish
a NETCONF session on a new SSH channel. Each call to session/1-3 establishes a new session on the same
connection, and results in a hello message to the server.

Alternately, open/1,2 can be used to establish a single session on a dedicated connection. (Or, equivalently,
only_open/1,2 followed by hello/1-3.)

Connect/session options can be specified in a configuration file with entries like the following.

 {server_id(), [option()]}.

The server_id() or an associated ct:target_name() can then be passed to the aforementioned functions to
use the referenced configuration.

Signaling

Protocol operations in the NETCONF protocol are realized as remote procedure calls (RPCs) from client to server and
a corresponding reply from server to client. RPCs are sent using like-named functions (eg. edit_config/3-5 to
send an edit-config RPC), with the server reply as return value. There are functions for each RPC defined in RFC 6241
and the create-subscription RPC from RFC 5277, all of which are wrappers on send_rpc/2,3, that can be used to
send an arbitrary RPC not defined in RFC 6241 or RFC 5277.

All of the signaling functions have one variant with a Timeout argument and one without, corresponding to an
infinite timeout. The latter is inappropriate in most cases since a non-response by the server or a missing message-
id causes the call to hang indefinitely.

Logging

The NETCONF server uses error_logger for logging of NETCONF traffic. A special purpose error handler is
implemented in ct_conn_log_h. To use this error handler, add the cth_conn_log hook in the test suite, for
example:

 suite() ->
    [{ct_hooks, [{cth_conn_log, [{ct:conn_log_mod(), ct:conn_log_options()}]}]}].

conn_log_mod() is the name of the Common Test module implementing the connection protocol, for example,
ct_netconfc.

Hook option log_type specifies the type of logging:

raw

The sent and received NETCONF data is logged to a separate text file "as is" without any formatting. A link to
the file is added to the test case HTML log.

pretty

The sent and received NETCONF data is logged to a separate text file with XML data nicely indented. A link
to the file is added to the test case HTML log.
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html (default)

The sent and received NETCONF traffic is pretty printed directly in the test case HTML log.

silent

NETCONF traffic is not logged.

By default, all NETCONF traffic is logged in one single log file. However, different connections can be logged in
separate files. To do this, use hook option hosts and list the names of the servers/connections to be used in the suite.
The connections must be named for this to work, that is, they must be opened with open/2.

Option hosts has no effect if log_type is set to html or silent.

The hook options can also be specified in a configuration file with configuration variable ct_conn_log:

 {ct_conn_log,[{ct:conn_log_mod(), ct:conn_log_options()}]}.

For example:

 {ct_conn_log,[{ct_netconfc,[{log_type,pretty},
                             {hosts,[ct:key_or_name()]}]}]}

Note:

Hook options specified in a configuration file overwrite the hard-coded hook options in the test suite.

Logging Example 1:

The following ct_hooks statement causes pretty printing of NETCONF traffic to separate logs for the connections
named nc_server1 and nc_server2. Any other connections are logged to default NETCONF log.

 suite() ->
    [{ct_hooks, [{cth_conn_log, [{ct_netconfc,[{log_type,pretty}},
                                               {hosts,[nc_server1,nc_server2]}]}
                                ]}]}].

Connections must be opened as follows:

 open(nc_server1,[...]),
 open(nc_server2,[...]).

Logging Example 2:

The following configuration file causes raw logging of all NETCONF traffic in to one single text file:

 {ct_conn_log,[{ct_netconfc,[{log_type,raw}]}]}.

The ct_hooks statement must look as follows:

 suite() ->
    [{ct_hooks, [{cth_conn_log, []}]}].

The same ct_hooks statement without the configuration file would cause HTML logging of all NETCONF
connections in to the test case HTML log.
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Data Types
client() = handle() | server_id() | ct:target_name()
Handle to a NETCONF session, as required by signaling functions.

handle()
Handle to a connection to a NETCONF server as returned by connect/1,2, or to a session as returned by
session/1-3, open/1,2, or only_open/1,2.

xs_datetime() = string()
Date and time of a startTime/stopTime element in an RFC 5277 create-subscription request. Of XML primitive type
dateTime, which has the (informal) form

 [-]YYYY-MM-DDThh:mm:ss[.s][Z|(+|-)hh:mm]

where T and Z are literal and .s is one or more fractional seconds.

event_time() = {eventTime, xml_attributes(), [xs_datetime()]}
notification_content() = [event_time() | simple_xml()]
notification() =
    {notification, xml_attributes(), notification_content()}
Event notification messages sent as a result of calls to create_subscription/2,3.

option() =
    {host | ssh, host()} |
    {port, inet:port_number()} |
    {timeout, timeout()} |
    {capability, string() | [string()]} |
    ssh:client_option()
Options host and port specify the server endpoint to which to connect, and are passed directly to
ssh:connect/4, as are arbitrary ssh options. Common options are user, password and user_dir.

Option timeout specifies the number of milliseconds to allow for connection establishment and, if the function in
question results in an outgoing hello message, reception of the server hello. The timeout applies to connection and
hello independently; one timeout for connection establishment, another for hello reception.

Option capability specifies the content of a corresponding element in an outgoing hello message, each option
specifying the content of a single element. If no base NETCONF capability is configured then the RFC 4741 1.0
capability, "urn:ietf:params:netconf:base:1.0", is added, otherwise not. In particular, the RFC 6241 1.1 capability
must be explicitly configured. NETCONF capabilities can be specified using the shorthand notation defined
in RFC 6241, any capability string starting with a colon being prefixed by either "urn:ietf:params:netconf" or
"urn:ietf:params:netconf:capability", as appropriate.

Capability options are ignored by connect/1-3 and only_open/1-2, which don't result in an outgoing hello message.

server_id() = atom()
Identity of connection or session configuration in a configuration file.

stream_data() =
    {description, string()} |
    {replaySupport, string()} |
    {replayLogCreationTime, string()} |
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    {replayLogAgedTime, string()}
stream_name() = string()
streams() = [{stream_name(), [stream_data()]}]
Stream information as returned by get_event_streams/1-3. See RFC 5277, "XML Schema for Event
Notifications", for detail on the format of the string values.

xml_attribute_tag() = atom()
xml_attribute_value() = string()
xml_attributes() =
    [{xml_attribute_tag(), xml_attribute_value()}]
xml_content() = [simple_xml() | iolist()]
xml_tag() = atom()
simple_xml() =
    {xml_tag(), xml_attributes(), xml_content()} |
    {xml_tag(), xml_content()} |
    xml_tag()
Representation of XML, as described in application xmerl.

xpath() = {xpath, string()}
error_reason() = term()
host() = inet:hostname() | inet:ip_address()
netconf_db() = running | startup | candidate

Exports

action(Client, Action) -> Result
action(Client, Action, Timeout) -> Result
Types:

Client = client()
Action = simple_xml()
Timeout = timeout()
Result = ok | {ok, [simple_xml()]} | {error, error_reason()}

Executes an action. If the return type is void, ok is returned instead of {ok,[simple_xml()]}.

close_session(Client) -> Result
close_session(Client, Timeout) -> Result
Types:

Client = client()
Timeout = timeout()
Result = ok | {error, error_reason()}

Requests graceful termination of the session associated with the client.

When a NETCONF server receives a close-session request, it gracefully closes the session. The server releases
any locks and resources associated with the session and gracefully closes any associated connections. Any NETCONF
requests received after a close-session request are ignored.
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connect(Options) -> Result
Types:

Options = [option()]
Result = {ok, handle()} | {error, error_reason()}

Opens an SSH connection to a NETCONF server.

If the server options are specified in a configuration file, use connect/2 instead.

The opaque handle() reference returned from this function is required as connection identifier when opening
sessions over this connection, see session/1-3.

connect(KeyOrName, ExtraOptions) -> Result
Types:

KeyOrName = ct:key_or_name()
ExtraOptions = [option()]
Result = {ok, handle()} | {error, error_reason()}

Open an SSH connection to a named NETCONF server.

If KeyOrName is a configured server_id() or a target_name() associated with such an Id, then the options
for this server are fetched from the configuration file.

The options list is added to those of the configuration file. If an option is specified in both lists, the configuration
file takes precedence.

If the server is not specified in a configuration file, use connect/1 instead.

The opaque handle() reference returned from this function can be used as connection identifier when opening
sessions over this connection, see session/1-3. However, if KeyOrName is a target_name(), that is, if the
server is named through a call to ct:require/2 or a require statement in the test suite, then this name can be
used instead of handle().

copy_config(Client, Target, Source) -> Result
copy_config(Client, Target, Source, Timeout) -> Result
Types:

Client = client()
Target = Source = netconf_db()
Timeout = timeout()
Result = ok | {error, error_reason()}

Copies configuration data.

Which source and target options that can be issued depends on the capabilities supported by the server. That is,
:candidate and/or :startup are required.

create_subscription(Client, Values) -> Result
create_subscription(Client, Values, Timeout) -> Result
Types:

Client = client()
Values =
    #{stream => Stream,
      filter => Filter,
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      start => StartTime,
      stop => StopTime}
Stream = stream_name()
Filter = simple_xml() | [simple_xml()]
StartTime = StopTime = xs_datetime()
Timeout = timeout()
Result = ok | {error, error_reason()}

Creates a subscription for event notifications by sending an RFC 5277 create-subscription RPC to the server. The
calling process receives events as messages of type notification().

From RFC 5722, 2.1 Subscribing to Receive Event Notifications:

Stream

Indicates which stream of event is of interest. If not present, events in the default NETCONF stream are sent.

Filter

Indicates which subset of all possible events is of interest. The parameter format is the same as that of the filter
parameter in the NETCONF protocol operations. If not present, all events not precluded by other parameters
are sent.

StartTime

Used to trigger the replay feature and indicate that the replay is to start at the time specified. If StartTime is not
present, this is not a replay subscription. It is not valid to specify start times that are later than the current time. If
StartTime is specified earlier than the log can support, the replay begins with the earliest available notification.
This parameter is of type dateTime and compliant to RFC 3339. Implementations must support time zones.

StopTime

Used with the optional replay feature to indicate the newest notifications of interest. If StopTime is not present,
the notifications continues until the subscription is terminated. Must be used with and be later than StartTime.
Values of StopTime in the future are valid. This parameter is of type dateTime and compliant to RFC 3339.
Implementations must support time zones.

See RFC 5277 for more details. The requirement that StopTime must only be used with StartTime is not enforced,
to allow an invalid request to be sent to the server.

Prior to OTP 22.1, this function was documented as having 15 variants in 6 arities. These are still exported for
backwards compatibility, but no longer documented. The map-based variants documented above provide the same
functionality with simpler arguments.

delete_config(Client, Target) -> Result
delete_config(Client, Target, Timeout) -> Result
Types:

Client = client()
Target = startup | candidate
Timeout = timeout()
Result = ok | {error, error_reason()}

Deletes configuration data.

The running configuration cannot be deleted and :candidate or :startup must be advertised by the server.
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disconnect(Conn) -> ok | {error, error_reason()}
Types:

Conn = handle()
Closes the given SSH connection.

If there are open NETCONF sessions on the connection, these will be brutally aborted. To avoid this, close each
session with close_session/1,2

edit_config(Client, Target, Config) -> Result
edit_config(Client, Target, Config, OptParams) -> Result
edit_config(Client, Target, Config, Timeout) -> Result
edit_config(Client, Target, Config, OptParams, Timeout) -> Result
Types:

Client = client()
Target = netconf_db()
Config = simple_xml() | [simple_xml()]
OptParams = [simple_xml()]
Timeout = timeout()
Result = ok | {error, error_reason()}

Edits configuration data.

By default only the running target is available, unless the server includes :candidate or :startup in its list of
capabilities.

OptParams can be used for specifying optional parameters (default-operation, test-option, or error-
option) to be added to the edit-config request. The value must be a list containing valid simple XML, for
example:

 [{'default-operation', ["none"]},
  {'error-option', ["rollback-on-error"]}]

If OptParams is not given, the default value [] is used.

get(Client, Filter) -> Result
get(Client, Filter, Timeout) -> Result
Types:

Client = client()
Filter = simple_xml() | xpath()
Timeout = timeout()
Result = {ok, [simple_xml()]} | {error, error_reason()}

Gets data.

This operation returns both configuration and state data from the server.

Filter type xpath can be used only if the server supports :xpath.

get_capabilities(Client) -> Result
get_capabilities(Client, Timeout) -> Result
Types:
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Client = client()
Timeout = timeout()
Result = [string()] | {error, error_reason()}

Returns the server capabilities as received in its hello message.

get_config(Client, Source, Filter) -> Result
get_config(Client, Source, Filter, Timeout) -> Result
Types:

Client = client()
Source = netconf_db()
Filter = simple_xml() | xpath()
Timeout = timeout()
Result = {ok, [simple_xml()]} | {error, error_reason()}

Gets configuration data.

To be able to access another source than running, the server must advertise :candidate and/or :startup.

Filter type xpath can be used only if the server supports :xpath.

get_event_streams(Client) -> Result
get_event_streams(Client, Timeout) -> Result
get_event_streams(Client, Streams) -> Result
get_event_streams(Client, Streams, Timeout) -> Result
Types:

Client = client()
Streams = [stream_name()]
Timeout = timeout()
Result = {ok, streams()} | {error, error_reason()}

Sends a request to get the specified event streams.

Streams is a list of stream names. The following filter is sent to the NETCONF server in a get request:

 <netconf xmlns="urn:ietf:params:xml:ns:netmod:notification">
   <streams>
     <stream>
       <name>StreamName1</name>
     </stream>
     <stream>
       <name>StreamName2</name>
     </stream>
     ...
   </streams>
 </netconf>

If Streams is an empty list, all streams are requested by sending the following filter:

 <netconf xmlns="urn:ietf:params:xml:ns:netmod:notification">
   <streams/>
 </netconf>
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If more complex filtering is needed, use ct_netconfc:get/2,3 and specify the exact filter according to "XML
Schema for Event Notifications" in RFC 5277.

get_session_id(Client) -> Result
get_session_id(Client, Timeout) -> Result
Types:

Client = client()
Timeout = timeout()
Result = integer() >= 1 | {error, error_reason()}

Returns the session Id associated with the specified client.

hello(Client) -> Result
hello(Client, Timeout) -> Result
hello(Client, Options, Timeout) -> Result
Types:

Client = handle()
Options = [{capability, [string()]}]
Timeout = timeout()
Result = ok | {error, error_reason()}

Exchanges hello messages with the server. Returns when the server hello has been received or after the specified
timeout.

Note that capabilities for an outgoing hello can be passed directly to open/2.

kill_session(Client, SessionId) -> Result
kill_session(Client, SessionId, Timeout) -> Result
Types:

Client = client()
SessionId = integer() >= 1
Timeout = timeout()
Result = ok | {error, error_reason()}

Forces termination of the session associated with the supplied session Id.

The server side must abort any ongoing operations, release any locks and resources associated with the session, and
close any associated connections.

Only if the server is in the confirmed commit phase, the configuration is restored to its state before entering the
confirmed commit phase. Otherwise, no configuration rollback is performed.

If the specified SessionId is equal to the current session Id, an error is returned.

lock(Client, Target) -> Result
lock(Client, Target, Timeout) -> Result
Types:
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Client = client()
Target = netconf_db()
Timeout = timeout()
Result = ok | {error, error_reason()}

Locks the configuration target.

Which target parameters that can be used depends on if :candidate and/or :startup are supported by the server.
If successfull, the configuration system of the device is unavailable to other clients (NETCONF, CORBA, SNMP, and
so on). Locks are intended to be short-lived.

Operation kill_session/2,3 can be used to force the release of a lock owned by another NETCONF session.
How this is achieved by the server side is implementation-specific.

only_open(Options) -> Result
Types:

Options = [option()]
Result = {ok, handle()} | {error, error_reason()}

Opens a NETCONF session, but does not send hello.

As open/1, but does not send a hello message.

only_open(KeyOrName, ExtraOptions) -> Result
Types:

KeyOrName = ct:key_or_name()
ExtraOptions = [option()]
Result = {ok, handle()} | {error, error_reason()}

Opens a named NETCONF session, but does not send hello.

As open/2, but does not send a hello message.

open(Options) -> Result
Types:

Options = [option()]
Result = {ok, handle()} | {error, error_reason()}

Opens a NETCONF session and exchanges hello messages.

If the server options are specified in a configuration file, or if a named client is needed for logging purposes (see
section Logging in this module), use open/2 instead.

The opaque handle() reference returned from this function is required as client identifier when calling any other
function in this module.

open(KeyOrName, ExtraOption) -> Result
Types:

KeyOrName = ct:key_or_name()
ExtraOption = [option()]
Result = {ok, handle()} | {error, error_reason()}

Opens a named NETCONF session and exchanges hello messages.
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If KeyOrName is a configured server_id() or a target_name() associated with such an Id, then the options
for this server are fetched from the configuration file.

The options list is added to those of the configuration file. If an option is specified in both lists, the configuration
file take precedence.

If the server is not specified in a configuration file, use open/1 instead.

The opaque handle() reference returned from this function can be used as client identifier when calling any other
function in this module. However, if KeyOrName is a target_name(), that is, if the server is named through a
call to ct:require/2 or a require statement in the test suite, then this name can be used instead of handle().

See also ct:require/2.

send(Client, SimpleXml) -> Result
send(Client, SimpleXml, Timeout) -> Result
Types:

Client = client()
SimpleXml = simple_xml()
Timeout = timeout()
Result = simple_xml() | {error, error_reason()}

Sends an XML document to the server.

The specified XML document is sent "as is" to the server. This function can be used for sending XML documents that
cannot be expressed by other interface functions in this module.

send_rpc(Client, SimpleXml) -> Result
send_rpc(Client, SimpleXml, Timeout) -> Result
Types:

Client = client()
SimpleXml = simple_xml()
Timeout = timeout()
Result = [simple_xml()] | {error, error_reason()}

Sends a NETCONF rpc request to the server.

The specified XML document is wrapped in a valid NETCONF rpc request and sent to the server. The message-
id and namespace attributes are added to element rpc.

This function can be used for sending rpc requests that cannot be expressed by other interface functions in this module.

session(Conn) -> Result
session(Conn, Options) -> Result
session(KeyOrName, Conn) -> Result
session(KeyOrName, Conn, Options) -> Result
Types:

Conn = handle()
Options = [session_option()]
KeyOrName = ct:key_or_name()
Result = {ok, handle()} | {error, error_reason()}
session_option() =
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    {timeout, timeout()} | {capability, string() | [string()]}
Opens a NETCONF session as a channel on the given SSH connection, and exchanges hello messages with the server.

The opaque handle() reference returned from this function can be used as client identifier when calling any other
function in this module. However, if KeyOrName is used and it is a target_name(), that is, if the server is named
through a call to ct:require/2 or a require statement in the test suite, then this name can be used instead of
handle().

unlock(Client, Target) -> Result
unlock(Client, Target, Timeout) -> Result
Types:

Client = client()
Target = netconf_db()
Timeout = timeout()
Result = ok | {error, error_reason()}

Unlocks the configuration target.

If the client earlier has acquired a lock through lock/2,3, this operation releases the associated lock. To access
another target than running, the server must support :candidate and/or :startup.
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ct_rpc
Erlang module

Common Test specific layer on Erlang/OTP rpc.

Exports

app_node(App, Candidates) -> NodeName
Types:

App = atom()

Candidates = [NodeName]

NodeName = atom()

From a set of candidate nodes determines which of them is running the application App. If none of the candidate
nodes is running App, the function makes the test case calling this function to fail. This function is the same as calling
app_node(App, Candidates, true).

app_node(App, Candidates, FailOnBadRPC) -> NodeName
Types:

App = atom()

Candidates = [NodeName]

NodeName = atom()

FailOnBadRPC = true | false

Same as ct_rpc:app_node/2, except that argument FailOnBadRPC determines if the search for a candidate
node is to stop if badrpc is received at some point.

app_node(App, Candidates, FailOnBadRPC, Cookie) -> NodeName
Types:

App = atom()

Candidates = [NodeName]

NodeName = atom()

FailOnBadRPC = true | false

Cookie = atom()

Same as ct_rpc:app_node/2, except that argument FailOnBadRPC determines if the search for a candidate
node is to stop if badrpc is received at some point.

The cookie on the client node is set to Cookie for this rpc operation (used to match the server node cookie).

call(Node, Module, Function, Args) -> term() | {badrpc, Reason}
Same as call(Node, Module, Function, Args, infinity).

call(Node, Module, Function, Args, TimeOut) -> term() | {badrpc, Reason}
Types:

Node = NodeName | {Fun, FunArgs}

Fun = function()
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FunArgs = term()

NodeName = atom()

Module = atom()

Function = atom()

Args = [term()]

Reason = timeout | term()

Evaluates apply(Module, Function, Args) on the node Node. Returns either whatever Function returns,
or {badrpc, Reason} if the remote procedure call fails. If Node is {Fun, FunArgs}, applying Fun to
FunArgs is to return a node name.

call(Node, Module, Function, Args, TimeOut, Cookie) -> term() | {badrpc,
Reason}
Types:

Node = NodeName | {Fun, FunArgs}

Fun = function()

FunArgs = term()

NodeName = atom()

Module = atom()

Function = atom()

Args = [term()]

Reason = timeout | term()

Cookie = atom()

Evaluates apply(Module, Function, Args) on the node Node. Returns either whatever Function returns,
or {badrpc, Reason} if the remote procedure call fails. If Node is {Fun, FunArgs}, applying Fun to
FunArgs is to return a node name.

The cookie on the client node is set to Cookie for this rpc operation (used to match the server node cookie).

cast(Node, Module, Function, Args) -> ok
Types:

Node = NodeName | {Fun, FunArgs}

Fun = function()

FunArgs = term()

NodeName = atom()

Module = atom()

Function = atom()

Args = [term()]

Reason = timeout | term()

Evaluates apply(Module, Function, Args) on the node Node. No response is delivered and the process
that makes the call is not suspended until the evaluation is completed as in the case of call/3,4. If Node is {Fun,
FunArgs}, applying Fun to FunArgs is to return a node name.

cast(Node, Module, Function, Args, Cookie) -> ok
Types:

Node = NodeName | {Fun, FunArgs}
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Fun = function()

FunArgs = term()

NodeName = atom()

Module = atom()

Function = atom()

Args = [term()]

Reason = timeout | term()

Cookie = atom()

Evaluates apply(Module, Function, Args) on the node Node. No response is delivered and the process
that makes the call is not suspended until the evaluation is completed as in the case of call/3,4. If Node is {Fun,
FunArgs}, applying Fun to FunArgs is to return a node name.

The cookie on the client node is set to Cookie for this rpc operation (used to match the server node cookie).

Ericsson AB. All Rights Reserved.: Common Test | 157



ct_snmp

ct_snmp
Erlang module

Common Test user interface module for the SNMP application.

The purpose of this module is to simplify SNMP configuration for the test case writer. Many test cases can use
default values for common operations and then no SNMP configuration files need to be supplied. When it is necessary
to change particular configuration parameters, a subset of the relevant SNMP configuration files can be passed to
ct_snmp by Common Test configuration files. For more specialized configuration parameters, a simple SNMP
configuration file can be placed in the test suite data directory. To simplify the test suite, Common Test keeps track
of some of the SNMP manager information. This way the test suite does not have to handle as many input parameters
as if it had to interface wthe OTP SNMP manager directly.

Configurable SNMP Manager and Agent Parameters:

Manager configuration:

[{start_manager, boolean()}

Optional. Default is true.

{users, [{user_name(), [call_back_module(), user_data()]}]}

Optional.

{usm_users, [{usm_user_name(), [usm_config()]}]}

Optional. SNMPv3 only.

{managed_agents,[{agent_name(), [user_name(), agent_ip(), agent_port(),
[agent_config()]]}]}

managed_agents is optional.

{max_msg_size, integer()}

Optional. Default is 484.

{mgr_port, integer()}

Optional. Default is 5000.

{engine _id, string()}

Optional. Default is "mgrEngine".

Agent configuration:

{start_agent, boolean()}

Optional. Default is false.

{agent_sysname, string()}

Optional. Default is "ct_test".

{agent_manager_ip, manager_ip()}

Optional. Default is localhost.

{agent_vsns, list()}

Optional. Default is [v2].
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{agent_trap_udp, integer()}

Optional. Default is 5000.

{agent_udp, integer()}

Optional. Default is 4000.

{agent_notify_type, atom()}

Optional. Default is trap.

{agent_sec_type, sec_type()}

Optional. Default is none.

{agent_passwd, string()}

Optional. Default is "".

{agent_engine_id, string()}

Optional. Default is "agentEngine".

{agent_max_msg_size, string()}

Optional. Default is 484.

The following parameters represents the SNMP configuration files context.conf,
standard.conf, community.conf, vacm.conf, usm.conf, notify.conf, target_addr.conf, and
target_params.conf. Notice that all values in agent.conf can be modified by the parameters listed above.
All these configuration files have default values set by the SNMP application. These values can be overridden by
suppling a list of valid configuration values or a file located in the test suites data directory, which can produce a list
of valid configuration values if you apply function file:consult/1 to the file.

{agent_contexts, [term()] | {data_dir_file, rel_path()}}

Optional.

{agent_community, [term()] | {data_dir_file, rel_path()}}

Optional.

{agent_sysinfo, [term()] | {data_dir_file, rel_path()}}

Optional.

{agent_vacm, [term()] | {data_dir_file, rel_path()}}

Optional.

{agent_usm, [term()] | {data_dir_file, rel_path()}}

Optional.

{agent_notify_def, [term()] | {data_dir_file, rel_path()}}

Optional.

{agent_target_address_def, [term()] | {data_dir_file, rel_path()}}

Optional.

{agent_target_param_def, [term()] | {data_dir_file, rel_path()}}

Optional.

Parameter MgrAgentConfName in the functions is to be a name you allocate in your test suite using a require
statement. Example (where MgrAgentConfName = snmp_mgr_agent):
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 suite() -> [{require, snmp_mgr_agent, snmp}].

or

 ct:require(snmp_mgr_agent, snmp).

Notice that USM users are needed for SNMPv3 configuration and are not to be confused with users.

SNMP traps, inform, and report messages are handled by the user callback module. For details, see the SNMP
application.

It is recommended to use the .hrl files created by the Erlang/OTP MIB compiler to define the Object Identifiers
(OIDs). For example, to get the Erlang node name from erlNodeTable in the OTP-MIB:

 Oid = ?erlNodeEntry ++ [?erlNodeName, 1]

Furthermore, values can be set for SNMP application configuration parameters, config, server, net_if, and so
on (for a list of valid parameters and types, see the User's Guide for the SNMP application). This is
done by defining a configuration data variable on the following form:

 {snmp_app, [{manager, [snmp_app_manager_params()]},
             {agent, [snmp_app_agent_params()]}]}.

A name for the data must be allocated in the suite using require (see the example above). Pass this name
as argument SnmpAppConfName to ct_snmp:start/3. ct_snmp specifies default values for some SNMP
application configuration parameters (such as {verbosity,trace} for parameter config). This set of defaults
is merged with the parameters specified by the user. The user values override ct_snmp defaults.

Data Types
agent_config() = {Item, Value}agent_ip() = ip()agent_name() =
atom()agent_port() = integer()call_back_module() = atom()error_index()
= integer()error_status() = noError | atom()ip() = string() |
{integer(), integer(), integer(), integer()}manager_ip() = ip()oid()
= [byte()]oids() = [oid()]rel_path() = string()sec_type() = none |
minimum | semisnmp_app_agent_params() = term()snmp_app_manager_params() =
term()snmpreply() = {error_status(), error_index(), varbinds()}user_data()
= term()user_name() = atom()usm_config() = {Item, Value}usm_user_name()
= string()value_type() = o('OBJECT IDENTIFIER') | i('INTEGER') |
u('Unsigned32') | g('Unsigned32') | s('OCTET STRING')var_and_val() = {oid(),
value_type(), value()}varbind() = term()varbinds() = [varbind()]varsandvals()
= [var_and_val()]
These data types are described in the documentation for the SNMP application.

Exports

get_next_values(Agent, Oids, MgrAgentConfName) -> SnmpReply
Types:

Agent = agent_name()

Oids = oids()

MgrAgentConfName = atom()
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SnmpReply = snmpreply()

Issues a synchronous SNMP get next request.

get_values(Agent, Oids, MgrAgentConfName) -> SnmpReply
Types:

Agent = agent_name()

Oids = oids()

MgrAgentConfName = atom()

SnmpReply = snmpreply()

Issues a synchronous SNMP get request.

load_mibs(Mibs) -> ok | {error, Reason}
Types:

Mibs = [MibName]

MibName = string()

Reason = term()

Loads the MIBs into agent snmp_master_agent.

register_agents(MgrAgentConfName, ManagedAgents) -> ok | {error, Reason}
Types:

MgrAgentConfName = atom()

ManagedAgents = [agent()]

Reason = term()

Explicitly instructs the manager to handle this agent. Corresponds to making an entry in agents.conf.

This function tries to register the specified managed agents, without checking if any of them exist. To change a
registered managed agent, the agent must first be unregistered.

register_users(MgrAgentConfName, Users) -> ok | {error, Reason}
Types:

MgrAgentConfName = atom()

Users = [user()]

Reason = term()

Registers the manager entity (=user) responsible for specific agent(s). Corresponds to making an entry in
users.conf.

This function tries to register the specified users, without checking if any of them exist. To change a registered user,
the user must first be unregistered.

register_usm_users(MgrAgentConfName, UsmUsers) -> ok | {error, Reason}
Types:

MgrAgentConfName = atom()

UsmUsers = [usm_user()]

Reason = term()

Explicitly instructs the manager to handle this USM user. Corresponds to making an entry in usm.conf.
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This function tries to register the specified users, without checking if any of them exist. To change a registered user,
the user must first be unregistered.

set_info(Config) -> [{Agent, OldVarsAndVals, NewVarsAndVals}]
Types:

Config = [{Key, Value}]

Agent = agent_name()

OldVarsAndVals = varsandvals()

NewVarsAndVals = varsandvals()

Returns a list of all successful set requests performed in the test case in reverse order. The list contains the involved
user and agent, the value before set, and the new value. This is intended to simplify the cleanup in function
end_per_testcase, that is, the undoing of the set requests and their possible side-effects.

set_values(Agent, VarsAndVals, MgrAgentConfName, Config) -> SnmpReply
Types:

Agent = agent_name()

Oids = oids()

MgrAgentConfName = atom()

Config = [{Key, Value}]

SnmpReply = snmpreply()

Issues a synchronous SNMP set request.

start(Config, MgrAgentConfName) -> ok
Equivalent to ct_snmp:start(Config, MgrAgentConfName, undefined).

start(Config, MgrAgentConfName, SnmpAppConfName) -> ok
Types:

Config = [{Key, Value}]

Key = atom()

Value = term()

MgrAgentConfName = atom()

SnmpConfName = atom()

Starts an SNMP manager and/or agent. In the manager case, registrations of users and agents, as specified by the
configuration MgrAgentConfName, are performed. When using SNMPv3, called USM users are also registered.
Users, usm_users, and managed agents can also be registered later using ct_snmp:register_users/2,
ct_snmp:register_agents/2, and ct_snmp:register_usm_users/2.

The agent started is called snmp_master_agent. Use ct_snmp:load_mibs/1 to load MIBs into the agent.

With SnmpAppConfName SNMP applications can be configured with parameters config, mibs, net_if, and
so on. The values are merged with (and possibly override) default values set by ct_snmp.

stop(Config) -> ok
Types:

Config = [{Key, Value}]

Key = atom()
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Value = term()

Stops the SNMP manager and/or agent, and removes all files created.

unload_mibs(Mibs) -> ok | {error, Reason}
Types:

Mibs = [MibName]

MibName = string()

Reason = term()

Unloads the MIBs from agent snmp_master_agent.

unregister_agents(MgrAgentConfName) -> ok
Types:

MgrAgentConfName = atom()

Reason = term()

Unregisters all managed agents.

unregister_agents(MgrAgentConfName, ManagedAgents) -> ok
Types:

MgrAgentConfName = atom()

ManagedAgents = [agent_name()]

Reason = term()

Unregisters the specified managed agents.

unregister_users(MgrAgentConfName) -> ok
Types:

MgrAgentConfName = atom()

Reason = term()

Unregisters all users.

unregister_users(MgrAgentConfName, Users) -> ok
Types:

MgrAgentConfName = atom()

Users = [user_name()]

Reason = term()

Unregisters the specified users.

unregister_usm_users(MgrAgentConfName) -> ok
Types:

MgrAgentConfName = atom()

Reason = term()

Unregisters all USM users.
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unregister_usm_users(MgrAgentConfName, UsmUsers) -> ok
Types:

MgrAgentConfName = atom()

UsmUsers = [usm_user_name()]

Reason = term()

Unregisters the specified USM users.
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ct_telnet
Erlang module

Common Test specific layer on top of Telnet client ct_telnet_client.erl.

Use this module to set up Telnet connections, send commands, and perform string matching on the result. For
information about how to use ct_telnet and configure connections, specifically for UNIX hosts, see the
unix_telnet manual page.

Default values defined in ct_telnet:

• Connection timeout (time to wait for connection) = 10 seconds

• Command timeout (time to wait for a command to return) = 10 seconds

• Max number of reconnection attempts = 3

• Reconnection interval (time to wait in between reconnection attempts) = 5 seconds

• Keep alive (sends NOP to the server every 8 sec if connection is idle) = true

• Polling limit (max number of times to poll to get a remaining string terminated) = 0

• Polling interval (sleep time between polls) = 1 second

• The TCP_NODELAY option for the telnet socket is disabled (set to false) per default

These parameters can be modified by the user with the following configuration term:

 {telnet_settings, [{connect_timeout,Millisec},
                    {command_timeout,Millisec},
                    {reconnection_attempts,N},
                    {reconnection_interval,Millisec},
                    {keep_alive,Bool},
                    {poll_limit,N},
                    {poll_interval,Millisec},
                    {tcp_nodelay,Bool}]}.

Millisec = integer(), N = integer()

Enter the telnet_settings term in a configuration file included in the test and ct_telnet retrieves the
information automatically.

keep_alive can be specified per connection, if necessary. For details, see unix_telnet.

Logging
The default logging behavior of ct_telnet is to print information about performed operations, commands, and
their corresponding results to the test case HTML log. The following is not printed to the HTML log: text strings
sent from the Telnet server that are not explicitly received by a ct_telnet function, such as expect/3. However,
ct_telnet can be configured to use a special purpose event handler, implemented in ct_conn_log_h, for logging
all Telnet traffic. To use this handler, install a Common Test hook named cth_conn_log. Example (using the
test suite information function):

 suite() ->
     [{ct_hooks, [{cth_conn_log, [{conn_mod(),hook_options()}]}]}].

conn_mod() is the name of the Common Test module implementing the connection protocol, that is, ct_telnet.
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The cth_conn_log hook performs unformatted logging of Telnet data to a separate text file. All Telnet
communication is captured and printed, including any data sent from the server. The link to this text file is located
at the top of the test case HTML log.

By default, data for all Telnet connections is logged in one common file (named default), which can get messy,
for example, if multiple Telnet sessions are running in parallel. Therefore a separate log file can be created for each
connection. To configure this, use hook option hosts and list the names of the servers/connections to be used in the
suite. The connections must be named for this to work (see ct_telnet:open/1,2,3,4).

Hook option log_type can be used to change the cth_conn_log behavior. The default value of this option is
raw, which results in the behavior described above. If the value is set to html, all Telnet communication is printed
to the test case HTML log instead.

All cth_conn_log hook options described can also be specified in a configuration file with configuration variable
ct_conn_log.

Example:

 {ct_conn_log, [{ct_telnet,[{log_type,raw},
                            {hosts,[key_or_name()]}]}]}

Note:

Hook options specified in a configuration file overwrite any hard-coded hook options in the test suite.

Logging Example:

The following ct_hooks statement causes printing of Telnet traffic to separate logs for the connections server1
and server2. Traffic for any other connections is logged in the default Telnet log.

 suite() ->
     [{ct_hooks,
       [{cth_conn_log, [{ct_telnet,[{hosts,[server1,server2]}]}]}]}].

As previously explained, this specification can also be provided by an entry like the following in a configuration file:

 {ct_conn_log, [{ct_telnet,[{hosts,[server1,server2]}]}]}.

In this case the ct_hooks statement in the test suite can look as follows:

 suite() ->
     [{ct_hooks, [{cth_conn_log, []}]}].

Data Types
connection() = handle() | {target_name(), connection_type()} | target_name()
For target_name(), see module ct.

connection_type() = telnet | ts1 | ts2
handle() = handle()
Handle for a specific Telnet connection, see module ct.
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prompt_regexp() = string()
Regular expression matching all possible prompts for a specific target type. regexp must not have any groups, that
is, when matching, re:run/3 (in STDLIB) must return a list with one single element.

Exports

close(Connection) -> ok | {error, Reason}
Types:

Connection = connection()

Reason = term()

Closes the Telnet connection and stops the process managing it.

A connection can be associated with a target name and/or a handle. If Connection has no associated target name,
it can only be closed with the handle value (see ct_telnet:open/4).

cmd(Connection, Cmd) -> {ok, Data} | {error, Reason}
Equivalent to ct_telnet:cmd(Connection, Cmd, []).

cmd(Connection, Cmd, Opts) -> {ok, Data} | {error, Reason}
Types:

Connection = connection()

Cmd = string()

Opts = [Opt]

Opt = {timeout, timeout()} | {newline, boolean() | string()}

Data = [string()]

Reason = term()

Sends a command through Telnet and waits for prompt.

By default, this function adds "\n" to the end of the specified command. If this is not desired, use option
{newline,false}. This is necessary, for example, when sending Telnet command sequences prefixed with
character Interpret As Command (IAC). Option {newline,string()} can also be used if a different line end than
"\n" is required, for instance {newline,"\r\n"}, to add both carriage return and newline characters.

Option timeout specifies how long the client must wait for prompt. If the time expires, the function returns
{error,timeout}. For information about the default value for the command timeout, see the list of default values
in the beginning of this module.

cmdf(Connection, CmdFormat, Args) -> {ok, Data} | {error, Reason}
Equivalent to ct_telnet:cmdf(Connection, CmdFormat, Args, []).

cmdf(Connection, CmdFormat, Args, Opts) -> {ok, Data} | {error, Reason}
Types:

Connection = connection()

CmdFormat = string()

Args = list()

Opts = [Opt]

Opt = {timeout, timeout()} | {newline, boolean() | string()}

Ericsson AB. All Rights Reserved.: Common Test | 167



ct_telnet

Data = [string()]

Reason = term()

Sends a Telnet command and waits for prompt (uses a format string and a list of arguments to build the command).

For details, see ct_telnet:cmd/3.

expect(Connection, Patterns) -> term()
Equivalent to ct_telnet:expect(Connections, Patterns, []).

expect(Connection, Patterns, Opts) -> {ok, Match} | {ok, MatchList,
HaltReason} | {error, Reason}
Types:

Connection = connection()

Patterns = Pattern | [Pattern]

Pattern = string() | {Tag, string()} | prompt | {prompt, Prompt}

Prompt = string()

Tag = term()

Opts = [Opt]

Opt = {idle_timeout, IdleTimeout} | {total_timeout, TotalTimeout} |
repeat | {repeat, N} | sequence | {halt, HaltPatterns} | ignore_prompt |
no_prompt_check | wait_for_prompt | {wait_for_prompt, Prompt}

IdleTimeout = infinity | integer()

TotalTimeout = infinity | integer()

N = integer()

HaltPatterns = Patterns

MatchList = [Match]

Match = RxMatch | {Tag, RxMatch} | {prompt, Prompt}

RxMatch = [string()]

HaltReason = done | Match

Reason = timeout | {prompt, Prompt}

Gets data from Telnet and waits for the expected pattern.

Pattern can be a POSIX regular expression. The function returns when a pattern is successfully matched (at least
one, in the case of multiple patterns).

RxMatch is a list of matched strings. It looks as follows [FullMatch, SubMatch1, SubMatch2, ...],
where FullMatch is the string matched by the whole regular expression, and SubMatchN is the string that matched
subexpression number N. Subexpressions are denoted with '(' ')' in the regular expression.

If a Tag is specified, the returned Match also includes the matched Tag. Otherwise, only RxMatch is returned.

Options:

idle_timeout

Indicates that the function must return if the Telnet client is idle (that is, if no data is received) for more than
IdleTimeout milliseconds. Default time-out is 10 seconds.

total_timeout

Sets a time limit for the complete expect operation. After TotalTimeout milliseconds,
{error,timeout} is returned. Default is infinity (that is, no time limit).
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ignore_prompt | no_prompt_check

>The function returns when a prompt is received, even if no pattern has yet been matched, and {error,
{prompt,Prompt}} is returned. However, this behavior can be modified with option ignore_prompt or
option no_prompt_check, which tells expect to return only when a match is found or after a time-out.

ignore_prompt

ct_telnet ignores any prompt found. This option is useful if data sent by the server can include a pattern
matching prompt regexp (as returned by TargedMod:get_prompt_regexp/0), but is not to not cause
the function to return.

no_prompt_check

ct_telnet does not search for a prompt at all. This is useful if, for example, Pattern itself matches the
prompt.

wait_for_prompt

Forces ct_telnet to wait until the prompt string is received before returning (even if a pattern has already been
matched). This is equal to calling expect(Conn, Patterns++[{prompt,Prompt}], [sequence|
Opts]). Notice that option idle_timeout and total_timeout can abort the operation of waiting for
prompt.

repeat | repeat, N

The pattern(s) must be matched multiple times. If N is specified, the pattern(s) are matched N times, and the
function returns HaltReason = done. This option can be interrupted by one or more HaltPatterns.
MatchList is always returned, that is, a list of Match instead of only one Match. Also HaltReason is
returned.

sequence

All patterns must be matched in a sequence. A match is not concluded until all patterns are matched. This option
can be interrupted by one or more HaltPatterns. MatchList is always returned, that is, a list of Match
instead of only one Match. Also HaltReason is returned.

Example 1:

 expect(Connection,[{abc,"ABC"},{xyz,"XYZ"}],[sequence,{halt,[{nnn,"NNN"}]}])

First this tries to match "ABC", and then "XYZ", but if "NNN" appears, the function returns {error,{nnn,
["NNN"]}}. If both "ABC" and "XYZ" are matched, the function returns {ok,[AbcMatch,XyzMatch]}.

Example 2:

 expect(Connection,[{abc,"ABC"},{xyz,"XYZ"}],[{repeat,2},{halt,[{nnn,"NNN"}]}])

This tries to match "ABC" or "XYZ" twice. If "NNN" appears, the function returns HaltReason = {nnn,
["NNN"]}.

Options repeat and sequence can be combined to match a sequence multiple times.

get_data(Connection) -> {ok, Data} | {error, Reason}
Types:

Connection = connection()

Data = [string()]

Reason = term()
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Gets all data received by the Telnet client since the last command was sent. Only newline-terminated strings are
returned. If the last received string has not yet been terminated, the connection can be polled automatically until the
string is complete.

The polling feature is controlled by the configuration values poll_limit and poll_interval and is by default
disabled. This means that the function immediately returns all complete strings received and saves a remaining non-
terminated string for a later get_data call.

open(Name) -> {ok, Handle} | {error, Reason}
Equivalent to ct_telnet:open(Name, telnet).

open(Name, ConnType) -> {ok, Handle} | {error, Reason}
Types:

Name = target_name()

ConnType = connection_type()

Handle = handle()

Reason = term()

Opens a Telnet connection to the specified target host.

open(KeyOrName, ConnType, TargetMod) -> {ok, Handle} | {error, Reason}
Equivalent to ct_telnet:ct_telnet:open(KeyOrName, ConnType, TargetMod, []).

open(KeyOrName, ConnType, TargetMod, Extra) -> {ok, Handle} | {error, Reason}
Types:

KeyOrName = Key | Name

Key = atom()

Name = target_name()

ConnType = connection_type()

TargetMod = atom()

Extra = term()

Handle = handle()

Reason = term()

Opens a Telnet connection to the specified target host.

The target data must exist in a configuration file. The connection can be associated with Name and/or the returned
Handle. To allocate a name for the target, use one of the following alternatives:

• ct:require/2 in a test case

• A require statement in the suite information function (suite/0)

• A require statement in a test case information function

If you want the connection to be associated with Handle only (if you, for example, need to open multiple connections
to a host), use Key, the configuration variable name, to specify the target. Notice that a connection without an
associated target name can only be closed with the Handle value.

TargetMod is a module that exports the functions connect(Ip, Port, KeepAlive, Extra) and
get_prompt_regexp() for the specified TargetType (for example, unix_telnet).

For target_name(), see module ct.
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See also ct:require/2.

send(Connection, Cmd) -> ok | {error, Reason}
Equivalent to ct_telnet:send(Connection, Cmd, []).

send(Connection, Cmd, Opts) -> ok | {error, Reason}
Types:

Connection = connection()

Cmd = string()

Opts = [Opt]

Opt = {newline, boolean() | string()}

Reason = term()

Sends a Telnet command and returns immediately.

By default, this function adds "\n" to the end of the specified command. If this is not desired, option
{newline,false} can be used. This is necessary, for example, when sending Telnet command sequences prefixed
with character Interpret As Command (IAC). Option {newline,string()} can also be used if a different line
end than "\n" is required, for instance {newline,"\r\n"}, to add both carriage return and newline characters.

The resulting output from the command can be read with ct_telnet:get_data/2 or
ct_telnet:expect/2,3.

sendf(Connection, CmdFormat, Args) -> ok | {error, Reason}
Equivalent to ct_telnet:sendf(Connection, CmdFormat, Args, []).

sendf(Connection, CmdFormat, Args, Opts) -> ok | {error, Reason}
Types:

Connection = connection()

CmdFormat = string()

Args = list()

Opts = [Opt]

Opt = {newline, boolean() | string()}

Reason = term()

Sends a Telnet command and returns immediately (uses a format string and a list of arguments to build the command).

For details, see ct_telnet:send/3.

See Also
unix_telnet
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unix_telnet
Erlang module

Callback module for ct_telnet, for connecting to a Telnet server on a UNIX host.

It requires the following entry in the configuration file:

 {unix,[{telnet,HostNameOrIpAddress},
        {port,PortNum},                 % optional
        {username,UserName},
        {password,Password},
        {keep_alive,Bool}]}.            % optional

To communicate through Telnet to the host specified by HostNameOrIpAddress, use the interface functions in
ct_telnet, for example, open(Name) and cmd(Name,Cmd).

Name is the name you allocated to the Unix host in your require statement, for example:

 suite() -> [{require,Name,{unix,[telnet]}}].

or

 ct:require(Name,{unix,[telnet]}).

The "keep alive" activity (that is, that Common Test sends NOP to the server every 10 seconds if the connection is
idle) can be enabled or disabled for one particular connection as described here. It can be disabled for all connections
using telnet_settings (see ct_telnet).

The {port,PortNum} tuple is optional and if omitted, default Telnet port 23 is used. Also the keep_alive tuple
is optional, and the value defauls to true (enabled).

Exports

connect(ConnName, Ip, Port, Timeout, KeepAlive, TCPNoDelay, Extra) -> {ok,
Handle} | {error, Reason}
Types:

ConnName = target_name()

Ip = string() | {integer(), integer(), integer(), integer()}

Port = integer()

Timeout = integer()

KeepAlive = bool()

TCPNoDelay = bool()

Extra = target_name() | {Username, Password}

Username = string()

Password = string()

Handle = handle()

Reason = term()

Callback for ct_telnet.erl.
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Setup Telnet connection to a Unix host.

For target_name(), see ct. For handle(), see ct_telnet.

get_prompt_regexp() -> PromptRegexp
Types:

PromptRegexp = prompt_regexp()

Callback for ct_telnet.erl.

Returns a suitable regexp string matching common prompts for users on Unix hosts.

For prompt_regexp(), see ct_telnet.

See Also
ct, ct_telnet
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ct_slave
Erlang module

Common Test framework functions for starting and stopping nodes for Large-Scale Testing.

This module exports functions used by the Common Test Master to start and stop "slave" nodes. It is the default
callback module for the {init, node_start} term in the Test Specification.

Exports

start(Node) -> Result
Types:

Node = atom()

Result = {ok, NodeName} | {error, Reason, NodeName}

Reason = already_started | started_not_connected | boot_timeout |
init_timeout | startup_timeout | not_alive

NodeName = atom()

Starts an Erlang node with name Node on the local host.

See also ct_slave:start/3.

start(HostOrNode, NodeOrOpts) -> Result
Types:

HostOrNode = atom()

NodeOrOpts = atom() | list()

Result = {ok, NodeName} | {error, Reason, NodeName}

Reason = already_started | started_not_connected | boot_timeout |
init_timeout | startup_timeout | not_alive

NodeName = atom()

Starts an Erlang node with default options on a specified host, or on the local host with specified options. That is,
the call is interpreted as start(Host, Node) when the second argument is atom-valued and start(Node,
Opts) when it is list-valued.

See also ct_slave:start/3.

start(Host, Node, Opts) -> Result
Types:

Node = atom()

Host = atom()

Opts = [OptTuples]

OptTuples = {username, Username} | {password, Password} | {boot_timeout,
BootTimeout} | {init_timeout, InitTimeout} | {startup_timeout,
StartupTimeout} | {startup_functions, StartupFunctions} | {monitor_master,
Monitor} | {kill_if_fail, KillIfFail} | {erl_flags, ErlangFlags} | {env,
[{EnvVar, Value}]}

Username = string()
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Password = string()

BootTimeout = integer()

InitTimeout = integer()

StartupTimeout = integer()

StartupFunctions = [StartupFunctionSpec]

StartupFunctionSpec = {Module, Function, Arguments}

Module = atom()

Function = atom()

Arguments = [term]

Monitor = bool()

KillIfFail = bool()

ErlangFlags = string()

EnvVar = string()

Value = string()

Result = {ok, NodeName} | {error, Reason, NodeName}

Reason = already_started | started_not_connected | boot_timeout |
init_timeout | startup_timeout | not_alive

NodeName = atom()

Starts an Erlang node with name Node on host Host as specified by the combination of options in Opts.

Options Username and Password are used to log on to the remote host Host. Username, if omitted, defaults to
the current username. Password is empty by default.

A list of functions specified in option Startup are executed after startup of the node. Notice that all used modules
are to be present in the code path on Host.

The time-outs are applied as follows:

BootTimeout

The time to start the Erlang node, in seconds. Defaults to 3 seconds. If the node is not pingable within this time,
the result {error, boot_timeout, NodeName} is returned.

InitTimeout

The time to wait for the node until it calls the internal callback function informing master about a successful
startup. Defaults to 1 second. In case of a timed out message, the result {error, init_timeout,
NodeName} is returned.

StartupTimeout

The time to wait until the node stops to run StartupFunctions. Defaults to 1 second. If this time-out occurs,
the result {error, startup_timeout, NodeName} is returned.

Options:

monitor_master

Specifies if the slave node is to be stopped if the master node stops. Defaults to false.

kill_if_fail

Specifies if the slave node is to be killed if a time-out occurs during initialization or startup. Defaults to true.
Notice that the node can also be still alive it the boot time-out occurred, but it is not killed in this case.

erl_flags

Specifies which flags are added to the parameters of the executable erl.
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env

Specifies a list of environment variables that will extend the environment.

Special return values:

• {error, already_started, NodeName} if the node with the specified name is already started on a
specified host.

• {error, started_not_connected, NodeName} if the node is started, but not connected to the master
node.

• {error, not_alive, NodeName} if the node on which ct_slave:start/3 is called, is not alive.
Notice that NodeName is the name of the current node in this case.

stop(Node) -> Result
Types:

Node = atom()

Result = {ok, NodeName} | {error, Reason, NodeName}

Reason = not_started | not_connected | stop_timeout

Stops the running Erlang node with name Node on the local host.

stop(Host, Node) -> Result
Types:

Host = atom()

Node = atom()

Result = {ok, NodeName} | {error, Reason, NodeName}

Reason = not_started | not_connected | stop_timeout

NodeName = atom()

Stops the running Erlang node with name Node on host Host.
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ct_hooks
Erlang module

The Common Test Hook (CTH) framework allows extensions of the default behavior of Common Test by callbacks
before and after all test suite calls. It is intended for advanced users of Common Test who want to abstract out
behavior that is common to multiple test suites.

In brief, CTH allows you to:

• Manipulate the runtime configuration before each suite configuration call.

• Manipulate the return of all suite configuration calls and by extension the result of the test themselves.

The following sections describe the mandatory and optional CTH functions that Common Test calls during test
execution. For more details, see section Common Test Hooks in the User's Guide.

For information about how to add a CTH to your suite, see section Installing a CTH in the User's Guide.

Note:

For a minimal example of a CTH, see section Example CTH in the User's Guide.

The following functions define the callback interface for a CTH.

Exports

Module:init(Id, Opts) -> {ok, State} | {ok, State, Priority}
Types:

Id = reference() | term()

Opts = term()

State = term()

Priority = integer()

MANDATORY

This function is always called before any other callback function. Use it to initiate any common state. It is to return
a state for this CTH.

Id is either the return value of ct_hooks:id/1, or a reference (created using erlang:make_ref/0 in ERTS) if
ct_hooks:id/1 is not implemented.

Priority is the relative priority of this hook. Hooks with a lower priority are executed first. If no priority is specified,
it is set to 0.

For details about when init is called, see section CTH Scope in the User's Guide.

Module:post_groups(SuiteName, GroupDefs) -> NewGroupDefs
Types:

SuiteName = atom()

GroupDefs = NewGroupDefs = [Group]

Group = {GroupName,Properties,GroupsAndTestCases}

GroupName = atom()

Properties = [parallel | sequence | Shuffle | {GroupRepeatType,N}]

Ericsson AB. All Rights Reserved.: Common Test | 177



ct_hooks

GroupsAndTestCases = [Group | {group,GroupName} | TestCase |
{testcase,TestCase,TCRepeatProps}]

TestCase = atom()

TCRepeatProps = [{repeat,N} | {repeat_until_ok,N} | {repeat_until_fail,N}]

Shuffle = shuffle | {shuffle,Seed}

Seed = {integer(),integer(),integer()}

GroupRepeatType = repeat | repeat_until_all_ok | repeat_until_all_fail |
repeat_until_any_ok | repeat_until_any_fail

N = integer() | forever

OPTIONAL

This function is called after groups/0. It is used to modify the test group definitions, for instance to add or remove
groups or change group properties.

GroupDefs is what groups/0 returned, that is, a list of group definitions.

NewGroupDefs is the possibly modified version of this list.

This function is called only if the CTH is added before init_per_suite is run. For details, see section CTH Scope
in the User's Guide.

Notice that for CTHs that are installed by means of the suite/0 function, post_groups/2 is called before the
init/2 hook function. However, for CTHs that are installed by means of the CT start flag, the init/2 function
is called first.

Note:

Prior to each test execution, Common Test does a simulated test run in order to count test suites, groups and cases
for logging purposes. This causes the post_groups/2 hook function to always be called twice. For this reason,
side effects are best avoided in this callback.

Module:post_all(SuiteName, Return, GroupDefs) -> NewReturn
Types:

SuiteName = atom()

Return = NewReturn = Tests | {skip,Reason}

Tests = [TestCase | {testcase,TestCase,TCRepeatProps} | {group,GroupName}
| {group,GroupName,Properties} | {group,GroupName,Properties,SubGroups}]

TestCase = atom()

TCRepeatProps = [{repeat,N} | {repeat_until_ok,N} | {repeat_until_fail,N}]

GroupName = atom()

Properties = GroupProperties | default

SubGroups = [{GroupName,Properties} | {GroupName,Properties,SubGroups}]

Shuffle = shuffle | {shuffle,Seed}

Seed = {integer(),integer(),integer()}

GroupRepeatType = repeat | repeat_until_all_ok | repeat_until_all_fail |
repeat_until_any_ok | repeat_until_any_fail

N = integer() | forever

GroupDefs = NewGroupDefs = [Group]

Group = {GroupName,GroupProperties,GroupsAndTestCases}
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GroupProperties = [parallel | sequence | Shuffle | {GroupRepeatType,N}]

GroupsAndTestCases = [Group | {group,GroupName} | TestCase]

Reason = term()

OPTIONAL

This function is called after all/0. It is used to modify the set of test cases and test group to be executed, for instance
to add or remove test cases and groups, change group properties, or even skip all tests in the suite.

Return is what all/0 returned, that is, a list of test cases and groups to be executed, or a tuple {skip,Reason}.

GroupDefs is what groups/0 or the post_groups/2 hook returned, that is, a list of group definitions.

NewReturn is the possibly modified version of Return.

This function is called only if the CTH is added before init_per_suite is run. For details, see section CTH Scope
in the User's Guide.

Notice that for CTHs that are installed by means of the suite/0 function, post_all/2 is called before the init/2
hook function. However, for CTHs that are installed by means of the CT start flag, the init/2 function is called first.

Note:

Prior to each test execution, Common Test does a simulated test run in order to count test suites, groups and cases
for logging purposes. This causes the post_all/3 hook function to always be called twice. For this reason, side
effects are best avoided in this callback.

Module:pre_init_per_suite(SuiteName, InitData, CTHState) -> Result
Types:

SuiteName = atom()

InitData = Config | SkipOrFail

Config = NewConfig = [{Key,Value}]

CTHState = NewCTHState = term()

Result = {Return, NewCTHState}

Return = NewConfig | SkipOrFail

SkipOrFail = {fail, Reason} | {skip, Reason}

Key = atom()

Value = term()

Reason = term()

OPTIONAL

This function is called before init_per_suite if it exists. It typically contains initialization/logging that
must be done before init_per_suite is called. If {skip,Reason} or {fail,Reason} is returned,
init_per_suite and all test cases of the suite are skipped and Reason printed in the overview log of the suite.

SuiteName is the name of the suite to be run.

InitData is the original configuration list of the test suite, or a SkipOrFail tuple if a previous CTH has returned
this.

CTHState is the current internal state of the CTH.

Return is the result of the init_per_suite function. If it is {skip,Reason} or {fail,Reason},
init_per_suite is never called, instead the initiation is considered to be skipped or failed, respectively. If a
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NewConfig list is returned, init_per_suite is called with that NewConfig list. For more details, see section
Pre Hooks in the User's Guide.

This function is called only if the CTH is added before init_per_suite is run. For details, see section CTH
Scope in the User's Guide.

Module:post_init_per_suite(SuiteName, Config, Return, CTHState) -> Result
Types:

SuiteName = atom()

Config = [{Key,Value}]

Return = NewReturn = Config | SkipOrFail | term()

SkipOrFail = {fail, Reason} | {skip, Reason} | term()

CTHState = NewCTHState = term()

Result = {NewReturn, NewCTHState}

Key = atom()

Value = term()

Reason = term()

OPTIONAL

This function is called after init_per_suite if it exists. It typically contains extra checks to ensure that all the
correct dependencies are started correctly.

Return is what init_per_suite returned, that is, {fail,Reason}, {skip,Reason}, a Config list, or a
term describing how init_per_suite failed.

NewReturn is the possibly modified return value of init_per_suite. To recover from a failure in
init_per_suite, return ConfigList with the tc_status element removed. For more details, see Post Hooks
in section "Manipulating Tests" in the User's Guide.

CTHState is the current internal state of the CTH.

This function is called only if the CTH is added before or in init_per_suite. For details, see section CTH Scope
in the User's Guide.

Module:pre_init_per_group(SuiteName, GroupName, InitData, CTHState) -> Result
Types:

SuiteName = atom()

GroupName = atom()

InitData = Config | SkipOrFail

Config = NewConfig = [{Key,Value}]

CTHState = NewCTHState = term()

Result = {NewConfig | SkipOrFail, NewCTHState}

SkipOrFail = {fail,Reason} | {skip, Reason}

Key = atom()

Value = term()

Reason = term()

OPTIONAL

This function is called before init_per_group if it exists. It behaves the same way as pre_init_per_suite,
but for function init_per_group instead.
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If Module:pre_init_per_group/4 is not exported, common_test will attempt to call
Module:pre_init_per_group(GroupName, InitData, CTHState) instead. This is for backwards
compatibility.

Module:post_init_per_group(SuiteName, GroupName, Config, Return, CTHState) ->
Result
Types:

SuiteName = atom()

GroupName = atom()

Config = [{Key,Value}]

Return = NewReturn = Config | SkipOrFail | term()

SkipOrFail = {fail,Reason} | {skip, Reason}

CTHState = NewCTHState = term()

Result = {NewReturn, NewCTHState}

Key = atom()

Value = term()

Reason = term()

OPTIONAL

This function is called after init_per_group if it exists. It behaves the same way as post_init_per_suite,
but for function init_per_group instead.

If Module:post_init_per_group/5 is not exported, common_test will attempt to call
Module:post_init_per_group(GroupName, Config, Return, CTHState) instead. This is for
backwards compatibility.

Module:pre_init_per_testcase(SuiteName, TestcaseName, InitData, CTHState) ->
Result
Types:

SuiteName = atom()

TestcaseName = atom()

InitData = Config | SkipOrFail

Config = NewConfig = [{Key,Value}]

CTHState = NewCTHState = term()

Result = {NewConfig | SkipOrFail, NewCTHState}

SkipOrFail = {fail,Reason} | {skip, Reason}

Key = atom()

Value = term()

Reason = term()

OPTIONAL

This function is called before init_per_testcase if it exists. It behaves the same way as
pre_init_per_suite, but for function init_per_testcase instead.

If Module:pre_init_per_testcase/4 is not exported, common_test will attempt to call
Module:pre_init_per_testcase(TestcaseName, InitData, CTHState) instead. This is for
backwards compatibility.
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CTHs cannot be added here right now. That feature may be added in a later release, but it would right now break
backwards compatibility.

Module:post_init_per_testcase(SuiteName, TestcaseName, Config, Return,
CTHState) -> Result
Types:

SuiteName = atom()

TestcaseName = atom()

Config = [{Key,Value}]

Return = NewReturn = Config | SkipOrFail | term()

SkipOrFail = {fail,Reason} | {skip, Reason}

CTHState = NewCTHState = term()

Result = {NewReturn, NewCTHState}

Key = atom()

Value = term()

Reason = term()

OPTIONAL

This function is called after init_per_testcase if it exists. It behaves the same way as
post_init_per_suite, but for function init_per_testcase instead.

If Module:post_init_per_testcase/5 is not exported, common_test will attempt to call
Module:post_init_per_testcase(TestcaseName, Config, Return, CTHState) instead. This
is for backwards compatibility.

Module:pre_end_per_testcase(SuiteName, TestcaseName, EndData, CTHState) ->
Result
Types:

SuiteName = atom()

TestcaseName = atom()

EndData = Config

Config = NewConfig = [{Key,Value}]

CTHState = NewCTHState = term()

Result = {NewConfig, NewCTHState}

Key = atom()

Value = term()

Reason = term()

OPTIONAL

This function is called before end_per_testcase if it exists. It behaves the same way as pre_end_per_suite,
but for function end_per_testcase instead.

This function cannot change the result of the test case by returning skip or fail tuples, but it may insert items in Config
that can be read in end_per_testcase/2 or in post_end_per_testcase/5.

If Module:pre_end_per_testcase/4 is not exported, common_test will attempt to call
Module:pre_end_per_testcase(TestcaseName, EndData, CTHState) instead. This is for
backwards compatibility.

182 | Ericsson AB. All Rights Reserved.: Common Test



ct_hooks

Module:post_end_per_testcase(SuiteName, TestcaseName, Config, Return,
CTHState) -> Result
Types:

SuiteName = atom()

TestcaseName = atom()

Config = [{Key,Value}]

Return = NewReturn = Config | SkipOrFail | term()

SkipOrFail = {fail,Reason} | {skip, Reason}

CTHState = NewCTHState = term()

Result = {NewReturn, NewCTHState}

Key = atom()

Value = term()

Reason = term()

OPTIONAL

This function is called after end_per_testcase if it exists. It behaves the same way as post_end_per_suite,
but for function end_per_testcase instead.

If Module:post_end_per_testcase/5 is not exported, common_test will attempt to call
Module:post_end_per_testcase(TestcaseName, Config, Return, CTHState) instead. This
is for backwards compatibility.

Module:pre_end_per_group(SuiteName, GroupName, EndData, CTHState) -> Result
Types:

SuiteName = atom()

GroupName = atom()

EndData = Config | SkipOrFail

Config = NewConfig = [{Key,Value}]

CTHState = NewCTHState = term()

Result = {NewConfig | SkipOrFail, NewCTHState}

SkipOrFail = {fail,Reason} | {skip, Reason}

Key = atom()

Value = term()

Reason = term()

OPTIONAL

This function is called before end_per_group if it exists. It behaves the same way as pre_init_per_suite,
but for function end_per_group instead.

If Module:pre_end_per_group/4 is not exported, common_test will attempt to call
Module:pre_end_per_group(GroupName, EndData, CTHState) instead. This is for backwards
compatibility.

Module:post_end_per_group(SuiteName, GroupName, Config, Return, CTHState) ->
Result
Types:

SuiteName = atom()

GroupName = atom()
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Config = [{Key,Value}]

Return = NewReturn = Config | SkipOrFail | term()

SkipOrFail = {fail,Reason} | {skip, Reason}

CTHState = NewCTHState = term()

Result = {NewReturn, NewCTHState}

Key = atom()

Value = term()

Reason = term()

OPTIONAL

This function is called after end_per_group if it exists. It behaves the same way as post_init_per_suite,
but for function end_per_group instead.

If Module:post_end_per_group/5 is not exported, common_test will attempt to call
Module:post_end_per_group(GroupName, Config, Return, CTHState) instead. This is for
backwards compatibility.

Module:pre_end_per_suite(SuiteName, EndData, CTHState) -> Result
Types:

SuiteName = atom()

EndData = Config | SkipOrFail

Config = NewConfig = [{Key,Value}]

CTHState = NewCTHState = term()

Result = {NewConfig | SkipOrFail, NewCTHState}

SkipOrFail = {fail,Reason} | {skip, Reason}

Key = atom()

Value = term()

Reason = term()

OPTIONAL

This function is called before end_per_suite if it exists. It behaves the same way as pre_init_per_suite,
but for function end_per_suite instead.

Module:post_end_per_suite(SuiteName, Config, Return, CTHState) -> Result
Types:

SuiteName = atom()

Config = [{Key,Value}]

Return = NewReturn = Config | SkipOrFail | term()

SkipOrFail = {fail,Reason} | {skip, Reason}

CTHState = NewCTHState = term()

Result = {NewReturn, NewCTHState}

Key = atom()

Value = term()

Reason = term()

OPTIONAL
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This function is called after end_per_suite if it exists. It behaves the same way as post_init_per_suite,
but for function end_per_suite instead.

Module:on_tc_fail(SuiteName, TestName, Reason, CTHState) -> NewCTHState
Types:

SuiteName = atom()

TestName = init_per_suite | end_per_suite | {init_per_group,GroupName} |
{end_per_group,GroupName} | {FuncName,GroupName} | FuncName

FuncName = atom()

GroupName = atom()

Reason = term()

CTHState = NewCTHState = term()

OPTIONAL

This function is called whenever a test case (or configuration function) fails. It is called after the post function is called
for the failed test case, that is:

• If init_per_suite fails, this function is called after post_init_per_suite.

• If a test case fails, this funcion is called after post_end_per_testcase.

If the failed test case belongs to a test case group, the first argument is a tuple {FuncName,GroupName}, otherwise
only the function name.

The data that comes with Reason follows the same format as FailReason in event tc_done. For details, see
section Event Handling in the User's Guide.

If Module:on_tc_fail/4 is not exported, common_test will attempt to call
Module:on_tc_fail(TestName, Reason, CTHState) instead. This is for backwards compatibility.

Module:on_tc_skip(SuiteName, TestName, Reason, CTHState) -> NewCTHState
Types:

SuiteName = atom()

TestName = init_per_suite | end_per_suite | {init_per_group,GroupName} |
{end_per_group,GroupName} | {FuncName,GroupName} | FuncName

FuncName = atom()

GroupName = atom()

Reason = {tc_auto_skip | tc_user_skip, term()}

CTHState = NewCTHState = term()

OPTIONAL

This function is called whenever a test case (or configuration function) is skipped. It is called after the post function
is called for the skipped test case, that is:

• If init_per_group is skipped, this function is called after post_init_per_group.

• If a test case is skipped, this function is called after post_end_per_testcase.

If the skipped test case belongs to a test case group, the first argument is a tuple {FuncName,GroupName},
otherwise only the function name.

The data that comes with Reason follows the same format as events tc_auto_skip and tc_user_skip For
details, see section Event Handling in the User's Guide.
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If Module:on_tc_skip/4 is not exported, common_test will attempt to call
Module:on_tc_skip(TestName, Reason, CTHState) instead. This is for backwards compatibility.

Module:terminate(CTHState)
Types:

CTHState = term()

OPTIONAL

This function is called at the end of a CTH scope.

Module:id(Opts) -> Id
Types:

Opts = term()

Id = term()

OPTIONAL

The Id identifies a CTH instance uniquely. If two CTHs return the same Id, the second CTH is ignored and subsequent
calls to the CTH are only made to the first instance. For details, see section Installing a CTH in the User's Guide.

This function is not to have any side effects, as it can be called multiple times by Common Test.

If not implemented, the CTH acts as if this function returned a call to make_ref/0.
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ct_property_test
Erlang module

This module helps running property-based tests in the Common Test framework. One (or more) of the property
testing tools

• QuickCheck,

• PropEr or

• Triq

is assumed to be installed.

The idea with this module is to have a Common Test test suite calling a property testing tool with special property
test suites as defined by that tool. The tests are collected in the test directory of the application. The test directory
has a subdirectory property_test, where everything needed for the property tests are collected. The usual Erlang
application directory structure is assumed.

A typical Common Test test suite using ct_property_test is organized as follows:

-module(my_prop_test_SUITE).
-compile(export_all).

-include_lib("common_test/include/ct.hrl").

 all() -> [prop_ftp_case].

 init_per_suite(Config) ->
     ct_property_test:init_per_suite(Config).

 %%%---- test case
 prop_ftp_case(Config) ->
     ct_property_test:quickcheck(
       ftp_simple_client_server:prop_ftp(),
       Config
      ).

and the the property test module (in this example ftp_simple_client_server.erl) as almost a usual property
testing module (More examples are in the User's Guide):

-module(ftp_simple_client_server). 
-export([prop_ftp/0...]).

-include_lib("common_test/include/ct_property_test.hrl").

prop_ftp() ->
    ?FORALL( ....

Exports

init_per_suite(Config) -> Config | {skip, Reason}
Initializes and extends Config for property based testing.

This function investigates if support is available for either QuickCheck, PropEr or Triq and compiles the properties
with the first tool found. It is supposed to be called in the init_per_suite/1 function in a CommonTest test suite.
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Which tools to check for, and in which order could be set with the option {prop_tools, list(eqc|proper|
triq)} in the CommonTest configuration Config. The default value is [eqc, proper, triq] with eqc
being the first one searched for.

If no support is found for any tool, this function returns {skip, Explanation}.

If support is found, the option {property_test_tool,ToolModule} with the selected tool main module name
(eqc, proper or triq) is added to the list Config which then is returned.

The property tests are assumed to be in a subdirectory named property_test. All found Erlang files in that
directory are compiled with one of the macros 'EQC', 'PROPER' or 'TRIQ' set, depending on which tool that
is first found. This could make parts of the Erlang property tests code to be included or excluded with the macro
directives -ifdef(Macro). or -ifndef(Macro)..

The file(s) in the property_test subdirectory could, or should, include the ct_property_test include file:

-include_lib("common_test/include/ct_property_test.hrl").

This included file will:

• Include the correct tool's include file

• Set the macro 'MOD_eqc' to the correct module name for the selected tool. That is, the macro 'MOD_eqc' is
set to either eqc, proper or triq.

quickcheck(Property, Config) -> true | {fail, Reason}
Calls the selected tool's function for running the Property. It is usually and by historical reasons called quickcheck,
and that is why that name is used in this module (ct_property_test).

The result is returned in a form suitable for Common Test test suites.

This function is intended to be called in test cases in test suites.

present_result(Module, Cmds, Triple, Config) -> Result
Same as present_result(Module, Cmds, Triple, Config, [])

present_result(Module, Cmds, Triple, Config, Options) -> Result
Types:

Module = module()
Cmds =

the list of commands generated by the property testing tool, for example by proper:commands/1 or by
proper:parallel_commands/1

Triple =

the output from for example proper:run_commands/2 or proper:run_parallel_commands/2

Config =

the Common Test Config in test cases.

Options = [present_option()]

present_option() = {print_fun, fun(Format,Args)}

                 | {spec, StatisticsSpec}

The print_fun defines which function to do the actual printout. The default is ct:log/2. The spec defines
what statistics are to be printed

Result = boolean()

Is false if the test failed and is true if the test passed
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Presents the result of stateful (statem) property testing using the aggregate function in PropEr, QuickCheck or other
similar property testing tool.

It is assumed to be called inside the property called by quickcheck/2:

...
RunResult = run_parallel_commands(?MODULE, Cmds),
ct_property_test:present_result(?MODULE, Cmds, RunResult, Config) 
...

See the User's Guide for an example of the usage and of the default printout.

The StatisticsSpec is a list of the tuples:

• {Title::string(), CollectFun::fun/1}

• {Title::string(), FrequencyFun::/0, CollectFun::fun/1}

Each tuple will produce one table in the order of their places in the list.

• Title will be the title of one result table

• CollectFun is called with one argument: the Cmds. It should return a list of the values to be counted. The
following pre-defined functions exist:

• ct_property_test:cmnd_names/1 returns a list of commands (function calls) generated in the
Cmnd sequence, without Module, Arguments and other details.

• ct_property_test:num_calls/1 returns a list of the length of commands lists

• ct_property_test:sequential_parallel/1 returns a list with information about sequential
and parallel parts from Tool:parallel_commands/1,2

• FrequencyFun/0 returns a fun/1 which is supposed to take a list of items as input, and return an iolist wich
will be printed as the table. Per default, the number of each item is counted and the percentage is printed for
each. The list [a,b,a,a,c] could for example return

 ["a 60%\n","b 20%\n","c 20%\n"]

which will be printed by the print_fun. The default print_fun will print it as:

 a 60%
 b 20%
 c 20%

The default StatisticsSpec is:

• For sequential commands:

[{"Function calls", fun cmnd_names/1},
 {"Length of command sequences", fun print_frequency_ranges/0,
                                                  fun num_calls/1}]

• For parallel commands:

[{"Distribution sequential/parallel", fun sequential_parallel/1},
 {"Function calls", fun cmnd_names/1},
 {"Length of command sequences", fun print_frequency_ranges/0,
                                                  fun num_calls/1}]
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ct_testspec
Erlang module

Parsing of test specifications for Common Test.

This module exports help functions for parsing of test specifications.

Exports

get_tests(SpecsIn) -> {ok, [{Specs,Tests}]} | {error, Reason}
Types:

SpecsIn = [string()] | [[string()]]

Specs = [string()]

Test = [{Node,Run,Skip}]

Node = atom()

Run = {Dir,Suites,Cases}

Skip = {Dir,Suites,Comment} | {Dir,Suites,Cases,Comment}

Dir = string()

Suites = atom | [atom()] | all

Cases = atom | [atom()] | all

Comment = string()

Reason = term()

Parse the given test specification files and return the tests to run and skip.

If SpecsIn=[Spec1,Spec2,...], separate tests will be created per specification. If
SpecsIn=[[Spec1,Spec2,...]], all specifications will be merge into one test.

For each test, a {Specs,Tests} element is returned, where Specs is a list of all included test specifications, and
Tests specifies actual tests to run/skip per node.
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