
Observer
Copyright © 2002-2020 Ericsson AB. All Rights Reserved.

Observer 2.9.5
September 22, 2020

Copyright © 2002-2020 Ericsson AB. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance
with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless
required by applicable law or agreed to in writing, software distributed under the License is distributed on an
"AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See
the License for the specific language governing permissions and limitations under the License. Ericsson AB. All
Rights Reserved..

September 22, 2020

1.1 Introduction

1 Observer User's Guide

1.1 Introduction
1.1.1 Scope
The Observer application is a container including the following tools for tracing and investigation of distributed
systems:

• Observer

• Trace Tool Builder

• Erlang Top

• Crashdump Viewer

1.1.2 Prerequisites
It is assumed that the reader is familiar with the Erlang programming language.

1.2 Observer
1.2.1 Introduction
Observer is a graphical tool for observing the characteristics of Erlang systems. Observer displays system information,
application supervisor trees, process information, ETS tables, Mnesia tables and contains a front end for Erlang tracing.

1.2.2 Getting Started
Run Observer from a standalone node to minimize the impact of the system being observed.

Example:

% erl -sname observer -hidden -setcookie MyCookie -run observer

Select the node to observe with menu Nodes. Menu View > Refresh interval controls how often the view is to be
updated. The refresh interval is set per viewer so you can have different settings for each viewer. To minimize the
system impact, only the active viewer is updated. Other views are updated when activated.

The mouse buttons behave as expected. Use left-click to select objects, right-click to get a menu with the most used
options, and double-click to display information about the selected object. In most viewers with many columns, you
can change the sort order by left-clicking the column header.

1.2.3 System Tab
Tab System displays general information about the active Erlang node and its runtime system, such as build
configuration, system capabilities, and overall use statistics.

1.2.4 Load Charts Tab
Tab Load Charts displays graphs of the current resource use on the active Erlang node.

Ericsson AB. All Rights Reserved.: Observer | 1

1.2 Observer

Graph Scheduler Utilization shows scheduler use per scheduler, where each scheduler use has a unique color.

Graph Memory Usage shows the total memory use and per memory category use, where each category has a unique
color. The categories are as follows:

Total

The sum of all memory categories.

Processes

The sum of all process memory used.

Atom

The size used by the atom table.

Binary

The sum of all off-heap binaries allocated.

Code

The memory allocated for code storage.

Ets

The used memory for all ETS tables.

Graph IO Usage shows the current I/O load on the system.

1.2.5 Memory Allocators Tab
Tab Memory Allocators displays detailed information of the carrier size and current memory carriers. For details
about memory carriers, see module erts_alloc in application ERTS.

The Max Carrier size column shows the maximum value seen by observer since the last node change or since
the start of the application, i.e. switching nodes will reset the max column. Values are sampled so higher values may
have existed than what is shown.

1.2.6 Applications Tab
Tab Applications presents application information. Select an application in the left list to display its supervisor tree.
The right-click options in the tree are as follows:

Process info

Opens a detailed information window on the selected process, including the following:

Process Information

Shows the process information.

Messages

Shows the process messages.

Dictionary

Shows the process dictionary.

Stack Trace

Shows the process current stack trace.

State

Shows the process state.

2 | Ericsson AB. All Rights Reserved.: Observer

1.2 Observer

Log

If enabled and available, shows the process SASL log entries.

Trace process

Adds the selected process identifier to tab Trace Overview plus the node that the process resides on.

Trace named process

Adds the registered name of the process. This can be useful when tracing on many nodes, as processes with that
name are then traced on all traced nodes.

Trace process tree

Adds the selected process and all processes below, right of it, to tab Trace Overview.

Trace named process tree

Adds the selected process and all processes below, right of it, to tab Trace Overview.

1.2.7 Processes Tab
Tab Processes lists process information in columns. For each process the following information is displayed:

Pid

The process identifier.

Reds

The number of reductions executed on the process. This can be presented as accumulated values or as values
since the last update.

Memory

The size of the process, in bytes, obtained by a call to process_info(Pid,memory).

MsgQ

The length of the message queue for the process.

Option Process info opens a detailed information window on the process under the mouse pointer, including the
following:

Process Information

Shows the process information.

Messages

Shows the process messages.

Dictionary

Shows the process dictionary.

Stack Trace

Shows the process current stack trace.

State

Shows the process state.

Log

If enabled and available, shows the process SASL log entries.

Ericsson AB. All Rights Reserved.: Observer | 3

1.2 Observer

Note:

Log requires application SASL to be started on the observed node, with log_mf_h as log handler. The Observed
node must be Erlang/OTP R16B02 or higher. The rb server must not be started on the observed node when clicking
menu Log > Toggle log view. The rb server is stopped on the observed node when exiting or changing the observed
node.

Option Trace selected processes adds the selected process identifiers to tab Trace Overview plus the node that the
processes reside on.

Option Trace selected processes by name adds the registered name of the processes. This can be useful when tracing
is done on many nodes, as processes with that name are then traced on all traced nodes.

Option Kill process brutally kills the processes under the mouse pointer by sending an exit signal with reason kill.

1.2.8 Ports Tab
Tab Ports lists port information in columns. For each port the following information is displayed:

Id

The port identifier.

Connected

The process identifier for the process that owns the port.

Name

The registered name of the port, if any.

Controls

The name of the command set by erlang:open_port/2.

Slot

The internal index of the port.

Option Port info opens a detailed information window for the port under the mouse pointer. In addition to the
information above, it also shows links and monitors.

Option Trace selected ports adds the selected port identifiers, and the nodes that the ports reside on, to tab Trace
Overview.

Option Trace selected ports by name adds the registered name of the port to tab Trace Overview. This can be useful
when tracing is done on many nodes, as ports with that name are then traced on all traced nodes.

Option Close executes erlang:port_close/1 on the port under the mouse pointer.

1.2.9 Table Viewer Tab
Tab Table Viewer lists tables. By default, ETS tables are displayed whereas unreadable private ETS tables and tables
created by OTP applications are not diplayed. Use menu View to view "system" ETS tables, unreadable ETS tables,
or Mnesia tables.

Double-click to view the table content, or right-click and select option Show Table Content. To view table
information, select the table and activate menu View > Table information, or right-click and select option Table info.

You can use regular expressions and search for objects, and edit or delete them.

4 | Ericsson AB. All Rights Reserved.: Observer

1.3 Trace Tool Builder

1.2.10 Trace Overview Tab
Tab Trace Overview handles tracing. Trace by selecting the processes or ports to be traced and how to trace them. For
processes, you can trace messages, function calls, scheduling, garbage collections, and process-related events such as
spawn, exit, and many others. For ports, you can trace messages, scheduling and port-related events.

To trace function calls, you also need to set up trace patterns. Trace patterns select the function calls to be traced.
The number of traced function calls can be further reduced with match specifications. Match specifications can also
be used to trigger more information in the trace messages.

You can also set match specifications on messages. By default, if tracing messages, all messages sent and/or received
by the process or port are traced. Match specifications can be used to reduce the number of traced messages and/or
to trigger more information in the trace messages.

Note:

Trace patterns only apply to the traced processes and ports.

Processes are added from the Applications or Processes tabs. Ports are added from the Ports tab. A special new
identifier, meaning all processes, or ports, started after trace start, can be added with buttons Add 'new' Processes
and Add 'new' Ports, respecively.

When adding processes or ports, a window with trace options is displayed. The chosen options are set for the selected
processes/ports. To change the options, right-click the process or port and select Edit process options. To remove a
process or port from the list, right-click and select Remove process or Remove port, respectively.

Processes and ports added by process/port identifiers add the nodes these processes/ports reside on in the node list.
More nodes can be added by clicking button Add Nodes, or by right-clicking in the Nodes list and select Add Nodes.
To remove nodes, select them, then right-click and choose Remove nodes.

If function calls are traced, trace patterns must be added by clicking button Add Trace Pattern. Select a module,
function(s), and a match specification. If no functions are selected, all functions in the module are traced.

Trace patterns can also be added for traced messages. Click button Add Trace Pattern and select Messages sent or
Messages received, and a match specification.

A few basic match specifications are provided in the tool, and you can provide your own match specifications. The
syntax of match specifications is described in the ERTS User's Guide. To simplify the writing of a match
specification, they can also be written as fun/1. For details, see module ms_transform in application STDLIB.

Click button Start Trace to start the trace. By default, trace output is written to a new window. Tracing is stopped
when the window is closed, or when clicking button Stop Trace. Trace output can be changed with menu Options >
Output. The trace settings, including match specifications, can be saved to, or loaded from, a file.

For details about tracing, see module dbg in application Runtime_Tools and in section "Match specifications in Erlang"
in ERTS User's Guide and in module ms_transform in application STDLIB.

1.3 Trace Tool Builder
1.3.1 Introduction
Trace Tool Builder is a base for building trace tools for single node or distributed Erlang systems. It requires the
Runtime_Tools application to be available on the traced node.

The following are the main features of Trace Tool Builder:

• Start tracing to file ports on many nodes with one function call.

• Write more information to a trace information file, which is read during formatting.

Ericsson AB. All Rights Reserved.: Observer | 5

1.3 Trace Tool Builder

• Restore previous configuration by maintaining a history buffer and handling configuration files.

• Provide some simple support for sequential tracing.

• Format binary trace logs and merge logs from multiple nodes.

The intention of Trace Tool Builder is to serve as a base for tailor-made trace tools, but it can also be used directly
from the Erlang shell (it can mimic dbg behaviour while still providing useful additions, such as match specification
shortcuts). Trace Tool Builder only allows the use of file port tracer, so to use other types of trace clients it is better
to use dbg directly.

1.3.2 Getting Started
Module ttb is the interface to all functions in Trace Tool Builder.

To get started, the least you need to do is to start a tracer with ttb:tracer/0,1,2, and set the required trace flags
on the processes you want to trace with ttb:p/2.

When the tracing is completed, stop the tracer with ttb:stop/0,1 and format the trace log with
ttb:format/1,2 (if there is anything to format).

Useful functions:

ttb:tracer/0,1,2

Opens a trace port on each node to be traced. By default, trace messages are written to binary files on remote
nodes (the binary trace log).

ttb:p/2

Specifies the processes to be traced. Trace flags specified in this call specify what to trace on each process. This
function can be called many times if you like different trace flags to be set on different processes.

ttb:tp/2,3,4 or ttb:tpl/2,3,4

If you want to trace function calls (that is, if you have trace flag call set on any process), you must also set trace
patterns on the required function(s) with ttb:tp/2,3,4 or ttb:tpl/2,3,4. A function is only traced if
it has a trace pattern. The trace pattern specifies how to trace the function by using match specifications. Match
specifications are described in the ERTS User's Guide.

ttb:stop/0,1

Stops tracing on all nodes, deletes all trace patterns, and flushes the trace port buffer.

ttb:format/1/2

Translates the binary trace logs into something readable. By default, ttb presents each trace message as a line
of text, but you can also write your own handler to make more complex interpretations of the trace information.
A trace log can also be presented graphically with application Event Tracer (ET).

If option format is specified to ttb:stop/1, the formatting is automatically done when stopping ttb.

Tracing Local Node from Erlang Shell
The following small module is used in the subsequent example:

-module(m).
-export([f/0]).
f() ->
 receive
 From when is_pid(From) ->
 Now = erlang:now(),
 From ! {self(),Now}
 end.

6 | Ericsson AB. All Rights Reserved.: Observer

1.3 Trace Tool Builder

The following example shows the basic use of ttb from the Erlang shell. Default options are used both for starting
the tracer and for formatting (the custom fetch directory is however provided). This gives a trace log named Node-
ttb in the newly created directory, where Node is the node name. The default handler prints the formatted trace
messages in the shell:

(tiger@durin)47> %% First I spawn a process running my test function
(tiger@durin)47> Pid = spawn(m,f,[]).
<0.125.0>
(tiger@durin)48>
(tiger@durin)48> %% Then I start a tracer...
(tiger@durin)48> ttb:tracer().
{ok,[tiger@durin]}
(tiger@durin)49>
(tiger@durin)49> %% and activate the new process for tracing
(tiger@durin)49> %% function calls and sent messages.
(tiger@durin)49> ttb:p(Pid,[call,send]).
{ok,[{<0.125.0>,[{matched,tiger@durin,1}]}]}
(tiger@durin)50>
(tiger@durin)50> %% Here I set a trace pattern on erlang:now/0
(tiger@durin)50> %% The trace pattern is a simple match spec
(tiger@durin)50> %% indicating that the return value should be
(tiger@durin)50> %% traced. Refer to the reference_manual for
(tiger@durin)50> %% the full list of match spec shortcuts
(tiger@durin)50> %% available.
(tiger@durin)51> ttb:tp(erlang,now,return).
{ok,[{matched,tiger@durin,1},{saved,1}]}
(tiger@durin)52>
(tiger@durin)52> %% I run my test (i.e. send a message to
(tiger@durin)52> %% my new process)
(tiger@durin)52> Pid ! self().
<0.72.0>
(tiger@durin)53>
(tiger@durin)53> %% And then I have to stop ttb in order to flush
(tiger@durin)53> %% the trace port buffer
(tiger@durin)53> ttb:stop([return, {fetch_dir, "fetch"}]).
{stopped, "fetch"}
(tiger@durin)54>
(tiger@durin)54> %% Finally I format my trace log
(tiger@durin)54> ttb:format("fetch").
({<0.125.0>,{m,f,0},tiger@durin}) call erlang:now()
({<0.125.0>,{m,f,0},tiger@durin}) returned from erlang:now/0 ->
{1031,133451,667611}
({<0.125.0>,{m,f,0},tiger@durin}) <0.72.0> !
{<0.125.0>,{1031,133451,667611}}
ok

Build Your Own Tool
The following example shows a simple tool for "debug tracing", that is, tracing of function calls with return values:

Ericsson AB. All Rights Reserved.: Observer | 7

1.3 Trace Tool Builder

-module(mydebug).
-export([start/0,trc/1,stop/0,format/1]).
-export([print/4]).
%% Include ms_transform.hrl so that I can use dbg:fun2ms/2 to
%% generate match specifications.
-include_lib("stdlib/include/ms_transform.hrl").
%%% -------------Tool API-------------
%%% ----------------------------------
%%% Star the "mydebug" tool
start() ->
 %% The options specify that the binary log shall be named
 %% <Node>-debug_log and that the print/4 function in this
 %% module shall be used as format handler
 ttb:tracer(all,[{file,"debug_log"},{handler,{{?MODULE,print},0}}]),
 %% All processes (existing and new) shall trace function calls
 %% We want trace messages to be sorted upon format, which requires
 %% timestamp flag. The flag is however enabled by default in ttb.
 ttb:p(all,call).

%%% Set trace pattern on function(s)
trc(M) when is_atom(M) ->
 trc({M,'_','_'});
trc({M,F}) when is_atom(M), is_atom(F) ->
 trc({M,F,'_'});
trc({M,F,_A}=MFA) when is_atom(M), is_atom(F) ->
 %% This match spec shortcut specifies that return values shall
 %% be traced.
 MatchSpec = dbg:fun2ms(fun(_) -> return_trace() end),
 ttb:tpl(MFA,MatchSpec).

%%% Format a binary trace log
format(Dir) ->
 ttb:format(Dir).

%%% Stop the "mydebug" tool
stop() ->
 ttb:stop(return).

%%% --------Internal functions--------
%%% ----------------------------------
%%% Format handler
print(_Out,end_of_trace,_TI,N) ->
 N;
print(Out,Trace,_TI,N) ->
 do_print(Out,Trace,N),
 N+1.

do_print(Out,{trace_ts,P,call,{M,F,A},Ts},N) ->
 io:format(Out,
 "~w: ~w, ~w:~n"
 "Call : ~w:~w/~w~n"
 "Arguments :~p~n~n",
 [N,Ts,P,M,F,length(A),A]);
do_print(Out,{trace_ts,P,return_from,{M,F,A},R,Ts},N) ->
 io:format(Out,
 "~w: ~w, ~w:~n"
 "Return from : ~w:~w/~w~n"
 "Return value :~p~n~n",
 [N,Ts,P,M,F,A,R]).

To distinguish trace logs produced with this tool from other logs, option file is used in tracer/2. The logs are
therefore fetched to a directory named ttb_upload_debug_log-YYYYMMDD-HHMMSS

8 | Ericsson AB. All Rights Reserved.: Observer

1.3 Trace Tool Builder

By using option handler when starting the tracer, the information about how to format the file is stored in the trace
information file (.ti). This is not necessary, as it can be specified when formatting instead. However, It can be useful
if you, for example, want to format trace logs automatically using option format in ttb:stop/1. Also, you do not
need any knowledge of the content of a binary log to format it the way it is intended. If option handler is specified
both when starting the tracer and when formatting, the one specified when formatting is used.

Trace flag call is set on all processes. This means that any function activated with command trc/1 is traced on
all existing and new processes.

1.3.3 Running Trace Tool Builder against Remote Node
The Observer application might not always be available on the node to be traced (in the following called the "traced
node"). However, Trace Tool Builder can still be run from another node (in the following called the "trace control
node") as long as the following is fulfilled:

• The Observer application is available on the trace control node.

• The Runtime_Tools application is available on both the trace control node and the traced node.

If Trace Tool Builder is to be used against a remote node, it is highly recommended to start the trace control node as
hidden. This way it can connect to the traced node without being "seen" by it, that is, if the nodes() BIF is called
on the traced node, the trace control node does not show. To start a hidden node, add option -hidden to the erl
command, for example:

% erl -sname trace_control -hidden

Diskless Node
If the traced node is diskless, ttb must be started from a trace control node with disk access, and option file must
be specified to function tracer/2 with value {local, File}, for example:

(trace_control@durin)1> ttb:tracer(mynode@diskless,
 {file,{local,{wrap,"mytrace"}}}).
{ok,[mynode@diskless]}

1.3.4 More Tracing Options
When setting up a trace, the following features can also be activated:

• Time-constrained tracing

• Overload protection

• Autoresume

• dbg mode

Time-Constrained Tracing
It can sometimes be helpful to enable trace for a specified period of time (for example, to monitor a system for 24
hours or half a second). This can be done with option {timer, TimerSpec}. If TimerSpec has the form of
MSec, the trace is stopped after MSec milliseconds using ttb:stop/0. If more options are provided (TimerSpec
= {MSec, Opts}), ttb:stop/1 is called instead with Opts as argument.

The timer is started with ttb:p/2, so any trace patterns must be set up in advance. ttb:start_trace/4 always
sets up all patterns before invoking ttb:p/2.

The following example shows how to set up a trace that is automatically stopped and formatted after 5 seconds:

Ericsson AB. All Rights Reserved.: Observer | 9

1.3 Trace Tool Builder

(tiger@durin)1> ttb:start_trace([node()],
 [{erlang, now,[]}],
 {all, call},
 [{timer, {5000, format}}]).

Note:

Because of network and processing delays, the period of tracing is approximate.

Overload Protection
When tracing live systems, always take special care to not overload a node with too heavy tracing. ttb provides
option overload to address this problem.

{overload, MSec, Module, Function} instructs the ttb back end (a part of the Runtime_Tools application)
to perform overload check every MSec millisecond. If the check (named Module:Function(check)) returns
true, tracing is disabled on the selected node.

Overload protection activated on one node does not affect other nodes, where the tracing continues as normal.
ttb:stop/0,1 fetches data from all clients, including everything collected before the activation of overload
protection.

Note:

It is not allowed to change trace details (with ttb:p and ttb:tp/tpl...) once overload protection is activated
in one of the traced nodes. This is to avoid trace setup being inconsistent between nodes.

Module:Function provided with option overload must handle three calls: init, check, and stop. init
and stop allow some setup and teardown required by the check. An overload check module can look as follows:

-module(overload).
-export([check/1]).

check(init) ->
 Pid = sophisticated_module:start(),
 put(pid, Pid);
check(check) ->
 get(pid) ! is_overloaded,
 receive
 Reply ->
 Reply
 after 5000 ->
 true
 end;
check(stop) ->
 get(pid) ! stop.

Note:

check is always called by the same process, so put and get are possible.

Autoresume
A node can crash (probably a buggy one, hence traced). Use resume to resume tracing on the node automatically
when it gets back. The failing node then tries to reconnect to trace control node when Runtime_Tools is started.

10 | Ericsson AB. All Rights Reserved.: Observer

1.3 Trace Tool Builder

This implies that Runtime_Tools must be included in the startup chain of other nodes (if not, you can still resume
tracing by starting Runtime_Tools manually, that is, by an RPC call).

To not lose the data that the failing node stored up to the point of crash, the control node tries to fetch it before restarting
trace. This must occur within the allowed time frame, otherwise it is aborted (default is 10 seconds, but it can be
changed with {resume, MSec}). The data fetched this way is then merged with all other traces.

The autostart feature requires more data to be stored on traced nodes. By default, the data is stored automatically
to the file named "ttb_autostart.bin" in the currect working directory (cwd) of the traced node. Users can change
this behaviour (that is, on diskless nodes) by specifying their own module to handle autostart data storage and
retrieval (ttb_autostart_module environment variable of runtime_tools). For information about the API,
see module ttb. The following example shows the default handler:

-module(ttb_autostart).
-export([read_config/0,
 write_config/1,
 delete_config/0]).

-define(AUTOSTART_FILENAME, "ttb_autostart.bin").

delete_config() ->
 file:delete(?AUTOSTART_FILENAME).

read_config() ->
 case file:read_file(?AUTOSTART_FILENAME) of
 {ok, Data} -> {ok, binary_to_term(Data)};
 Error -> Error
 end.

write_config(Data) ->
 file:write_file(?AUTOSTART_FILENAME, term_to_binary(Data)).

Note:

Remember that file trace ports buffer the data by default. If the node crashes, trace messages are not flushed to the
binary log. If the risk of failure is high, it can be a good idea to flush the buffers every now and then automatically.
Passing {flush, MSec} as an option of ttb:tracer/2 flushes all buffers every MSec millisecond.

dbg Mode
Option {shell, ShellType} allows making ttb operation similar to dbg. Using {shell, true} displays
all trace messages in the shell before storing them. {shell, only} additionally disables message storage (making
the tool to behave exactly like dbg). This is allowed only with IP trace ports ({trace, {local, File}}).

Command ttb:tracer(dbg) is a shortcut for the pure dbg mode ({shell, only}).

1.3.5 Trace Information and File .ti
In addition to the trace log file(s), a file with extension .ti is created when Trace Tool Builder is started. This is the
trace information file. It is a binary file, which contains the process information, trace flags used, the name of the node
to which it belongs, and all information written with function ttb:write_trace_info/2. .ti files are always
fetched with other logs when the trace is stopped.

Except for the process information, everything in the trace information file is passed on to the handler function when
formatting. Parameter TI is a list of {Key,ValueList} tuples. The keys flags, handler, file, and node
are used for information written directly by ttb.

Ericsson AB. All Rights Reserved.: Observer | 11

1.3 Trace Tool Builder

Information to the trace information file by can be added by calling ttb:write_trace_info/2. Notice that
ValueList always is a list, and if you call write_trace_info/2 many times with the same Key, the
ValueList is extended with a new value each time.

Example:

ttb:write_trace_info(mykey,1) gives the entry {mykey,[1]} in TI. Another call,
ttb:write_trace_info(mykey,2), changes this entry to {mykey,[1,2]}.

1.3.6 Wrap Logs
If you want to limit the size of the trace logs, you can use wrap logs. This works almost like a circular buffer. You can
specify the maximum number of binary logs and the maximum size of each log. ttb then creates a new binary log
each time a log reaches the maximum size. When the maximum number of logs are reached, the oldest log is deleted
before a new one is created.

Note:

The overall size of data generated by ttb can be greater than the wrap specification suggests. If a traced node
restarts and autoresume is enabled, the old wrap log is always stored and a new one is created.

Wrap logs can be formatted one by one or all at once. See Formatting.

1.3.7 Formatting
Formatting can be done automatically when stopping ttb (see section Automatically Collect and Format Logs from
All Nodes), or explicitly by calling function ttb:format/1,2.

Formatting means to read a binary log and present it in a readable format. You can use the default format handler in
ttb to present each trace message as a line of text, or write your own handler to make more complex interpretations
of the trace information. You can also use application ET to present the trace log graphically (see section Presenting
Trace Logs with Event Tracer).

The first argument to ttb:format/1,2 specifies which binary log(s) to format. This is usually the name of a
directory that ttb created during log fetch. Unless option disable_sort is provided, the logs from different files
are always sorted according to time-stamp in traces.

The second argument to ttb:format/2 is a list of options as follows:

out

Specifies the destination to write the formatted text. Default destination is standard_io, but a filename can
also be specified.

handler

Specifies the format handler to use. If this option is not specified, option handler that is specified when starting
the tracer is used. If option handler is not specified when starting the tracer either, a default handler is used,
which prints each trace message as a text line.

disable_sort

Indicates that the logs are not to be merged according to time-stamp, but processed one file after another (this
can be a bit faster).

A format handler is a fun taking four arguments. This fun is called for each trace message in the binary log(s). A simple
example that only prints each trace message can be as follows:

12 | Ericsson AB. All Rights Reserved.: Observer

1.3 Trace Tool Builder

fun(Fd, Trace, _TraceInfo, State) ->
 io:format(Fd, "Trace: ~p~n", [Trace]),
 State
end.

Here, Fd is the file descriptor for the destination file, or the atom standard_io. _TraceInfo contains information
from the trace information file (see section Trace Information and File .ti). State is a state variable for the format
handler fun. The initial value of variable State is specified with the handler option, for example:

ttb:format("tiger@durin-ttb", [{handler, {{Mod,Fun}, initial_state}}])
 ^^^^^^^^^^^^^

Another format handler can be used to calculate the time spent by the garbage collector:

fun(_Fd,{trace_ts,P,gc_start,_Info,StartTs},_TraceInfo,State) ->
 [{P,StartTs}|State];
 (Fd,{trace_ts,P,gc_end,_Info,EndTs},_TraceInfo,State) ->
 {value,{P,StartTs}} = lists:keysearch(P,1,State),
 Time = diff(StartTs,EndTs),
 io:format("GC in process ~w: ~w milliseconds~n", [P,Time]),
 State -- [{P,StartTs}]
end

A more refined version of this format handler is function handle_gc/4 in module multitrace.erl included
in directory src of the Observer application.

The trace message is passed as the second argument (Trace). The possible values of Trace are the following:

• All trace messages described in erlang:trace/3

• {drop, N} if IP tracer is used (see dbg:trace_port/2)

• end_of_trace received once when all trace messages are processed

By giving the format handler ttb:get_et_handler(), you can have the trace log presented graphically with
et_viewer in the ET application (see section Presenting Trace Logs with Event Tracer).

You can always decide not to format the whole trace data contained in the fetch directory, but analyze single files
instead. To do so, a single file (or list of files) must be passed as the first argument to format/1,2.

Wrap logs can be formatted one by one or all at once. To format one of the wrap logs in a set, specify the exact file
name. To format the whole set of wrap logs, specify the name with * instead of the wrap count.

Example:

Start tracing:

(tiger@durin)1> ttb:tracer(node(),{file,{wrap,"trace"}}).
{ok,[tiger@durin]}
(tiger@durin)2> ttb:p(...)
...

This gives a set of binary logs, for example:

tiger@durin-trace.0.wrp
tiger@durin-trace.1.wrp
tiger@durin-trace.2.wrp
...

Format the whole set of logs:

Ericsson AB. All Rights Reserved.: Observer | 13

1.3 Trace Tool Builder

1> ttb:format("tiger@durin-trace.*.wrp").
....
ok
2>

Format only the first log:

1> ttb:format("tiger@durin-trace.0.wrp").
....
ok
2>

To merge all wrap logs from two nodes:

1> ttb:format(["tiger@durin-trace.*.wrp","lion@durin-trace.*.wrp"]).
....
ok
2>

Presenting Trace Logs with Event Tracer
For detailed information about the Event Tracer, see the ET application.

By giving the format handler ttb:get_et_handler(), you can have the trace log presented graphically with
et_viewer in the ET application. ttb provides filters that can be selected from the menu Filter in the et_viewer
window. The filters are names according to the type of actors they present (that is, what each vertical line in the
sequence diagram represents). Interaction between actors is shown as red arrows between two vertical lines, and
activities within an actor are shown as blue text to the right of the actors line.

The processes filter is the only filter showing all trace messages from a trace log. Each vertical line in the sequence
diagram represents a process. Erlang messages, spawn, and link/unlink are typical interactions between processes.
Function calls, scheduling, and garbage collection, are typical activities within a process. processes is the default
filter.

The remaining filters only show function calls and function returns. All other trace message are discarded. To get
the most out of these filters, et_viewer must know the caller of each function and the time of return. This can be
obtained using both the call and return_to flags when tracing. Notice that flag return_to only works with
local call trace, that is, when trace patterns are set with ttb:tpl.

The same result can be obtained by using the flag call only and setting a match specification on local or global
function calls as follows:

1> dbg:fun2ms(fun(_) -> return_trace(),message(caller()) end).
[{'_',[],[{return_trace},{message,{caller}}]}]

This must however be done with care, as function {return_trace} in the match specification destroys tail
recursiveness.

The modules filter shows each module as a vertical line in the sequence diagram. External function calls/returns are
shown as interactions between modules, and internal function calls/returns are shown as activities within a module.

The functions filter shows each function as a vertical line in the sequence diagram. A function calling itself is
shown as an activity within a function, and all other function calls are shown as interactions between functions.

The mods_and_procs and funcs_and_procs filters are equivalent to the modules and functions filters
respectively, except that each module or function can have many vertical lines, one for each process it resides on.

In the following example, modules foo and bar are used:

14 | Ericsson AB. All Rights Reserved.: Observer

1.3 Trace Tool Builder

-module(foo).
-export([start/0,go/0]).

start() ->
 spawn(?MODULE, go, []).

go() ->
 receive
 stop ->
 ok;
 go ->
 bar:f1(),
 go()
 end.

-module(bar).
-export([f1/0,f3/0]).
f1() ->
 f2(),
 ok.
f2() ->
 spawn(?MODULE,f3,[]).
f3() ->
 ok.

Setting up the trace:

(tiger@durin)1> %%First we retrieve the Pid to limit traced processes set
(tiger@durin)1> Pid = foo:start().
(tiger@durin)2> %%Now we set up tracing
(tiger@durin)2> ttb:tracer().
(tiger@durin)3> ttb:p(Pid, [call, return_to, procs, set_on_spawn]).
(tiger@durin)4> ttb:tpl(bar, []).
(tiger@durin)5> %%Invoke our test function and see output with et viewer
(tiger@durin)5> Pid ! go.
(tiger@durin)6> ttb:stop({format, {handler, ttb:get_et_handler()}}).

This renders a result similar to the following:

Ericsson AB. All Rights Reserved.: Observer | 15

1.3 Trace Tool Builder

Figure 3.1: Filter: "processes"

16 | Ericsson AB. All Rights Reserved.: Observer

1.3 Trace Tool Builder

Figure 3.2: Filter: "mods_and_procs"

Notice that function ttb:start_trace/4 can be used as help as follows:

(tiger@durin)1> Pid = foo:start().
(tiger@durin)2> ttb:start_trace([node()],
 [{bar,[]}],
 {Pid, [call, return_to, procs, set_on_spawn]}
 {handler, ttb:get_et_handler()}).
(tiger@durin)3> Pid ! go.
(tiger@durin)4> ttb:stop(format).

1.3.8 Automatically Collect and Format Logs from All Nodes
By default, ttb:stop/1 fetches trace logs and trace information files from all nodes. The logs are stored in a new
directory named ttb_upload-Filename-Timestamp under the working directory of the trace control node.

Ericsson AB. All Rights Reserved.: Observer | 17

1.3 Trace Tool Builder

Fetching can be disabled by providing option nofetch to ttb:stop/1. The user can specify a fetch directory by
passing option {fetch_dir, Dir}.

If option format is specified to ttb:stop/1, the trace logs are automatically formatted after tracing is stopped.

1.3.9 History and Configuration Files
For the tracing functionality, dbg can be used instead of ttb for setting trace flags on processes and trace patterns
for call trace, that is, the functions p, tp, tpl, ctp, ctpl, and ctpg. Only the following two things are added by
ttb for these functions:

• All calls are stored in the history buffer and can be recalled and stored in a configuration file. This makes it
easy to set up the same trace environment, for example, if you want to compare two test runs. It also reduces the
amount of typing when using ttb from the Erlang shell.

• Shortcuts are provided for the most common match specifications (to not force you to use dbg:fun2ms
continually).

Use ttb:list_history/0 to see the content of the history buffer and ttb:run_history/1 to re-execute
one of the entries.

The main purpose of the history buffer is the possibility to create configuration files. Any function stored in the history
buffer can be written to a configuration file and used for creating a specific configuration at any time with a single
function call.

A configuration file is created or extended with ttb:write_config/2,3. Configuration files are binary files and
can therefore only be read and written with functions provided by ttb.

The complete content of the history buffer can be written to a configuration file by calling
ttb:write_config(ConfigFile,all). Selected entries from the history can be written by calling
ttb:write_config(ConfigFile,NumList), where NumList is a list of integers pointing out the history
entries to write. Moreover, the history buffer is always dumped to ttb_last_config when ttb:stop/0,1 is
called.

User-defined entries can also be written to a configuration file by calling
function ttb:write_config(ConfigFile,ConfigList), where ConfigList is a list of
{Module,Function,Args}.

Any existing file ConfigFile is deleted and a new file is created when write_config/2 is called.
Option append can be used to add something at the end of an existing configuration file, for example,
ttb:write_config(ConfigFile,What,[append]).

Example:

See the content of the history buffer:

(tiger@durin)191> ttb:tracer().
{ok,[tiger@durin]}
(tiger@durin)192> ttb:p(self(),[garbage_collection,call]).
{ok,{[<0.1244.0>],[garbage_collection,call]}}
(tiger@durin)193> ttb:tp(ets,new,2,[]).
{ok,[{matched,1}]}
(tiger@durin)194> ttb:list_history().
[{1,{ttb,tracer,[tiger@durin,[]]}},
 {2,{ttb,p,[<0.1244.0>,[garbage_collection,call]]}},
 {3,{ttb,tp,[ets,new,2,[]]}}]

Execute an entry from the history buffer:

18 | Ericsson AB. All Rights Reserved.: Observer

1.3 Trace Tool Builder

(tiger@durin)195> ttb:ctp(ets,new,2).
{ok,[{matched,1}]}
(tiger@durin)196> ttb:list_history().
[{1,{ttb,tracer,[tiger@durin,[]]}},
 {2,{ttb,p,[<0.1244.0>,[garbage_collection,call]]}},
 {3,{ttb,tp,[ets,new,2,[]]}},
 {4,{ttb,ctp,[ets,new,2]}}]
(tiger@durin)197> ttb:run_history(3).
ttb:tp(ets,new,2,[]) ->
{ok,[{matched,1}]}

Write the content of the history buffer to a configuration file:

(tiger@durin)198> ttb:write_config("myconfig",all).
ok
(tiger@durin)199> ttb:list_config("myconfig").
[{1,{ttb,tracer,[tiger@durin,[]]}},
 {2,{ttb,p,[<0.1244.0>,[garbage_collection,call]]}},
 {3,{ttb,tp,[ets,new,2,[]]}},
 {4,{ttb,ctp,[ets,new,2]}},
 {5,{ttb,tp,[ets,new,2,[]]}}]

Extend an existing configuration:

(tiger@durin)200> ttb:write_config("myconfig",[{ttb,tp,[ets,delete,1,[]]}],
[append]).
ok
(tiger@durin)201> ttb:list_config("myconfig").
[{1,{ttb,tracer,[tiger@durin,[]]}},
 {2,{ttb,p,[<0.1244.0>,[garbage_collection,call]]}},
 {3,{ttb,tp,[ets,new,2,[]]}},
 {4,{ttb,ctp,[ets,new,2]}},
 {5,{ttb,tp,[ets,new,2,[]]}},
 {6,{ttb,tp,[ets,delete,1,[]]}}]

Go back to a previous configuration after stopping Trace Tool Builder:

(tiger@durin)202> ttb:stop().
ok
(tiger@durin)203> ttb:run_config("myconfig").
ttb:tracer(tiger@durin,[]) ->
{ok,[tiger@durin]}

ttb:p(<0.1244.0>,[garbage_collection,call]) ->
{ok,{[<0.1244.0>],[garbage_collection,call]}}

ttb:tp(ets,new,2,[]) ->
{ok,[{matched,1}]}

ttb:ctp(ets,new,2) ->
{ok,[{matched,1}]}

ttb:tp(ets,new,2,[]) ->
{ok,[{matched,1}]}

ttb:tp(ets,delete,1,[]) ->
{ok,[{matched,1}]}

ok

Ericsson AB. All Rights Reserved.: Observer | 19

1.3 Trace Tool Builder

Write selected entries from the history buffer to a configuration file:

(tiger@durin)204> ttb:list_history().
[{1,{ttb,tracer,[tiger@durin,[]]}},
 {2,{ttb,p,[<0.1244.0>,[garbage_collection,call]]}},
 {3,{ttb,tp,[ets,new,2,[]]}},
 {4,{ttb,ctp,[ets,new,2]}},
 {5,{ttb,tp,[ets,new,2,[]]}},
 {6,{ttb,tp,[ets,delete,1,[]]}}]
(tiger@durin)205> ttb:write_config("myconfig",[1,2,3,6]).
ok
(tiger@durin)206> ttb:list_config("myconfig").
[{1,{ttb,tracer,[tiger@durin,[]]}},
 {2,{ttb,p,[<0.1244.0>,[garbage_collection,call]]}},
 {3,{ttb,tp,[ets,new,2,[]]}},
 {4,{ttb,tp,[ets,delete,1,[]]}}]
(tiger@durin)207>

1.3.10 Sequential Tracing
To learn what sequential tracing is and how it can be used, see the Reference Manual for seq_trace.

The support for sequential tracing provided by Trace Tool Builder includes the following:

• Initiation of the system tracer. This is automatically done when a trace port is started with
ttb:tracer/0,1,2.

• Creation of match specifications that activates sequential tracing.

Starting sequential tracing requires that a tracer is started with function ttb:tracer/0,1,2. Sequential tracing
can then be started in either of the following ways:

• Through a trigger function with a match specification created with ttb:seq_trigger_ms/0,1.

• Directly by using module seq_trace.

Example 1:

In the following example, function dbg:get_tracer/0 is used as trigger for sequential tracing:

(tiger@durin)110> ttb:tracer().
{ok,[tiger@durin]}
(tiger@durin)111> ttb:p(self(),call).
{ok,{[<0.158.0>],[call]}}
(tiger@durin)112> ttb:tp(dbg,get_tracer,0,ttb:seq_trigger_ms(send)).
{ok,[{matched,1},{saved,1}]}
(tiger@durin)113> dbg:get_tracer(), seq_trace:reset_trace().
true
(tiger@durin)114> ttb:stop(format).
({<0.158.0>,{shell,evaluator,3},tiger@durin}) call dbg:get_tracer()
SeqTrace [0]: ({<0.158.0>,{shell,evaluator,3},tiger@durin})
{<0.237.0>,dbg,tiger@durin} ! {<0.158.0>,{get_tracer,tiger@durin}}
[Serial: {0,1}]
SeqTrace [0]: ({<0.237.0>,dbg,tiger@durin})
{<0.158.0>,{shell,evaluator,3},tiger@durin} ! {dbg,{ok,#Port<0.222>}}
[Serial: {1,2}]
ok
(tiger@durin)116>

Example 2:

20 | Ericsson AB. All Rights Reserved.: Observer

1.4 Erlang Top

Starting sequential tracing with a trigger is more useful if the trigger function is not called directly from the shell, but
rather implicitly within a larger system. When calling a function from the shell, it is simpler to start sequential tracing
directly, for example, as follows:

(tiger@durin)116> ttb:tracer().
{ok,[tiger@durin]}
(tiger@durin)117> seq_trace:set_token(send,true), dbg:get_tracer(),
seq_trace:reset_trace().
true
(tiger@durin)118> ttb:stop(format).
SeqTrace [0]: ({<0.158.0>,{shell,evaluator,3},tiger@durin})
{<0.246.0>,dbg,tiger@durin} ! {<0.158.0>,{get_tracer,tiger@durin}}
[Serial: {0,1}]
SeqTrace [0]: ({<0.246.0>,dbg,tiger@durin})
{<0.158.0>,{shell,evaluator,3},tiger@durin} ! {dbg,{ok,#Port<0.229>}}
[Serial: {1,2}]
ok
(tiger@durin)120>

In both previous examples, seq_trace:reset_trace/0 resets the trace token immediately after the traced
function to avoid many trace messages because of the printouts in the Erlang shell.

All functions in module seq_trace, except set_system_tracer/1, can be used after the trace port is started
with ttb:tracer/0,1,2.

1.3.11 Multipurpose Trace Tool
Module multitrace in directory src of the Observer application provides a small tool with three
possible trace settings. The trace messages are written to binary files, which can be formatted with function
multitrace:format/1,2:

multitrace:debug(What)

Start calltrace on all processes and trace the specified function(s). The format handler used is
multitrace:handle_debug/4 that prints each call and returns. What must be an item or a list of items to
trace, specified on the format {Module,Function,Arity}, {Module,Function}, or only Module.

multitrace:gc(Procs)

Trace garbage collection on the specified process(es). The format handler used is
multitrace:handle_gc/4 that prints start, stop, and the time spent for each garbage collection.

multitrace:schedule(Procs)

Trace in-scheduling and out-scheduling on the specified process(es). The format handler used is
multitrace:handle_schedule/4 that prints each in-scheduling and out-scheduling with process, time-
stamp, and current function. It also prints the total time each traced process was scheduled in.

1.4 Erlang Top
1.4.1 Introduction
Erlang Top, etop, is a tool for presenting information about Erlang processes similar to the information presented
by top in UNIX.

1.4.2 Getting Started
Start Erlang Top in either of the following ways:

Ericsson AB. All Rights Reserved.: Observer | 21

1.4 Erlang Top

• Use script etop.

• Use batch file etop.bat, for example, etop -node tiger@durin.

1.4.3 Output
The output from Erlang Top is as follows:

==
 tiger@durin 13:40:32
 Load: cpu 0 Memory: total 1997 binary 33
 procs 197 processes 0 code 173
 runq 135 atom 1002 ets 95

Pid Name or Initial Func Time Reds Memory MsgQ Current Function
--
<127.23.0> code_server 0 59585 78064 0 gen_server:loop/6
<127.21.0> file_server_2 0 36380 44276 0 gen_server:loop/6
<127.2.0> erl_prim_loader 0 27962 3740 0 erl_prim_loader:loop
<127.9.0> kernel_sup 0 6998 4676 0 gen_server:loop/6
<127.17.0> net_kernel 62 6018 3136 0 gen_server:loop/6
<127.0.0> init 0 4156 4352 0 init:loop/1
<127.16.0> auth 0 1765 1264 0 gen_server:loop/6
<127.18.0> inet_tcp_dist:accept 0 660 1416 0 prim_inet:accept0/2
<127.5.0> application_controll 0 569 6756 0 gen_server:loop/6
<127.137.0> net_kernel:do_spawn_ 0 553 5840 0 dbg:do_relay_1/1
==

The header includes some system information:

Load

cpu

Runtime/Wallclock, that is, the percentage of time where the node has been active.

procs

The number of processes on the node.

runq

The number of processes that are ready to run.

Memory

The memory allocated by the node in kilobytes.

For each process the following information is presented:

Time

The runtime for the process, that is, the time that the process has been scheduled in.

Reds

The number of reductions executed on the process.

Memory

The size of the process in bytes, obtained by a call to process_info(Pid,memory).

MsgQ

The length of the message queue for the process.

22 | Ericsson AB. All Rights Reserved.: Observer

1.4 Erlang Top

Note:

Time and Reds can be presented as accumulated values or as values since the last update.

1.4.4 Configuration
All configuration parameters can be set at start by adding -OptName Value to the command line, for example:

% etop -node tiger@durin -setcookie mycookie -lines 15

A list of all valid Erlang Top configuration parameters is available in module etop.

The parameters lines, interval, accumulate, and sort can be changed during runtime with function
etop:config/2.

Example:

Change configuration parameter lines with text-based presentation. Before the change, 10 lines are presented as
follows:

==
 tiger@durin 10:12:39
 Load: cpu 0 Memory: total 1858 binary 33
 procs 191 processes 0 code 173
 runq 2 atom 1002 ets 95

Pid Name or Initial Func Time Reds Memory MsgQ Current Function
--
<127.23.0> code_server 0 60350 71176 0 gen_server:loop/6
<127.21.0> file_server_2 0 36380 44276 0 gen_server:loop/6
<127.2.0> erl_prim_loader 0 27962 3740 0 erl_prim_loader:loop
<127.17.0> net_kernel 0 13808 3916 0 gen_server:loop/6
<127.9.0> kernel_sup 0 6998 4676 0 gen_server:loop/6
<127.0.0> init 0 4156 4352 0 init:loop/1
<127.18.0> inet_tcp_dist:accept 0 2196 1416 0 prim_inet:accept0/2
<127.16.0> auth 0 1893 1264 0 gen_server:loop/6
<127.43.0> ddll_server 0 582 3744 0 gen_server:loop/6
<127.5.0> application_controll 0 569 6756 0 gen_server:loop/6
==

Function etop:config/2 is called to change the number of showed lines to 5:

> etop:config(lines,5).
ok

After the change, 5 lines are presented as follows:

Ericsson AB. All Rights Reserved.: Observer | 23

1.5 Crashdump Viewer

(etop@durin)2>
==
 tiger@durin 10:12:44
 Load: cpu 0 Memory: total 1859 binary 33
 procs 192 processes 0 code 173
 runq 2 atom 1002 ets 95

Pid Name or Initial Func Time Reds Memory MsgQ Current Function
--
<127.17.0> net_kernel 183 70 4092 0 gen_server:loop/6
<127.335.0> inet_tcp_dist:do_acc 141 22 1856 0 dist_util:con_loop/9
<127.19.0> net_kernel:ticker/2 155 6 1244 0 net_kernel:ticker1/2
<127.341.0> net_kernel:do_spawn_ 0 0 5840 0 dbg:do_relay_1/1
<127.43.0> ddll_server 0 0 3744 0 gen_server:loop/6
==

1.4.5 Print to File
At any time, the current Erlang Top display can be dumped to a text file with function etop:dump/1.

1.4.6 Stop
To stop Erlang Top, use function etop:stop/0.

1.5 Crashdump Viewer
1.5.1 Introduction
The Crashdump Viewer is a WxWidgets based tool for browsing Erlang crashdumps.

1.5.2 Getting Started
The easiest way to start Crashdump Viewer is to use shell script cdv with the full path to the Erlang crashdump as
argument. The script is located in directory priv of the Observer application. This starts the Crashdump Viewer GUI
and loads the specified file. If no filename is specified, a file dialog is opened where the file can be selected.

Under Windows, the batch file cdv.bat can be used.

Crashdump Viewer can also be started from an Erlang node by calling crashdump_viewer:start/0 or
crashdump_viewer:start/1.

1.5.3 GUI
The GUI main window is opened when Crashdump Viewer has loaded a crashdump. It contains a title bar, a menu
bar, information tabs, and a status bar.

The title bar shows the name of the currently loaded crashdump.

The menu bar contains a File menu and a Help menu. From the File menu, a new crashdump can be loaded or the
tool can be terminated. From the Help menu, this User's Guide and section "How to interpret the Erlang crash dumps"
from the ERTS application can be opened. "How to interpret the Erlang crash dumps" describes the raw crashdumps
in detail and includes information about each field in the information pages."How to interpret the Erlang crash dumps"
is also available in the OTP online documentation.

The status bar at the bottom of the window shows a warning if the currently loaded dump is truncated.

The center area of the main window contains the information tabs. Each tab displays information about a specific item
or a list of items. Select a tab by clicking the tab title.

24 | Ericsson AB. All Rights Reserved.: Observer

1.5 Crashdump Viewer

From tabs displaying lists of items, for example, the Processes tab or the Ports tab, a new window with more
information can be opened by double-clicking a row or by right- clicking the row and selecting an item from the drop-
down menu. The new window is called a detail window. Detail windows can be opened for processes, ports, nodes,
and modules.

The information shown in a detail window can contain links to processes or ports. Clicking one of these links opens
the detail window for the process or port in question. If the process or port resides on a remote node, no information is
available. Clicking the link then displays a dialog where you can choose to open the detail window for the remote node.

Some tabs contain a left-hand menu where subitems of the information area can be selected. Click one of the rows,
and the information is displayed in the right-hand information area.

1.5.4 Tab Content
Each tab in the main window contains an information page. If no information is found for an item, the page is empty.
The reason for not finding information about an item can be the following:

• It is a dump from an old OTP release in which this item was not written.

• The item was not present in the system at the point of failure.

• The dump is truncated. In this case, a warning is displayed in the status bar of the main window.

Even if some information about an item exists, there can be empty fields if the dump originates from an old OTP release.

The value -1 in any field means "unknown", and in most cases it means that the dump was truncated somewhere
around this field.

The following sections describe some of the fields in the information tabs. These are fields that do not exist in the
raw crashdump, or in some way differ from the fields in the raw crashdump. For details about other fields, see the
ERTS User's Guide, section "How to interpret the Erlang crash dumps". That section can also be opened from the
Help menu in the main window. There are also links from the following sections to related information in "How to
interpret the Erlang crash dumps".

1.5.5 General Tab
Tab General shows a short overview of the dump.

The following fields are not described in the ERTS User's Guide:

Crashdump created on

Time of failure.

Memory allocated

The total number of bytes allocated, equivalent to c:memory(total).

Memory maximum

The maximum number of bytes that has been allocated during the lifetime of the originating node. This is only
shown if the Erlang runtime system is run instrumented.

Atoms

If available in the dump, this is the total number of atoms in the atom table. If the size of the atom table is
unavailable, the number of atoms visible in the dump is displayed.

Processes

The number of processes visible in the dump.

ETS tables

The number of ETS tables visible in the dump.

Ericsson AB. All Rights Reserved.: Observer | 25

1.5 Crashdump Viewer

Funs

The number of funs visible in the dump.

For details, see General Information in section "How to Interpret the Erlang Crash Dumps" in ERTS.

1.5.6 Processes Tab
Tab Processes shows a list of all processes found in the crashdump, including brief information about each process.
By default, the processes are sorted by their pids. To sort by another topic, click the desired column heading.

Column Memory shows the 'Memory' field that was added to crashdumps in Erlang/OTP R16B01. This is the total
amount of memory used by the process. For crashdumps from earlier releases, this column shows the 'Stack+heap'
field. The value is always in bytes.

To view detailed information about a specific process, double- click the row in the list, or right-click the row and
select Properties for <pid>.

For details, see Process Information in section "How to Interpret the Erlang Crash Dumps" in ERTS.

1.5.7 Ports Tab
Tab Ports is similar to the Processes tab, except it lists all ports found in the crashdump.

To view more details about a specific port, double-click the row or right-click it and select Properties for <port>. From
the right-click menu, you can also select Properties for <pid>, where <pid> is the process connected to the port.

For details, see Port Information in section "How to Interpret the Erlang Crash Dumps" in ERTS.

1.5.8 ETS Tables Tab
Tab ETS Tables shows all ETS table information found in the dump. Id is the same as the 'Table' field in the raw
crashdump. Memory is the 'Words' field from the raw crashdump translated into bytes. For tree tables, there is no
value in the 'Objects' field.

To open the detailed information page about the table, double- click, or right-click the row and select Properties for
'Identifier'.

To open the detailed information page about the owner process of an ETS table, right-click the row and select
Properties for <pid>.

For details, see ETS Tables in section "How to Interpret the Erlang Crash Dumps" in ERTS.

1.5.9 Timers Tab
Tab Timers shows all timer information found in the dump.

To open the detailed information page about the owner process of a timer, right-click the row and select Properties
for <pid>.

Double-clicking a row in the Timers tab has no effect.

For details, see Timers in section "How to Interpret the Erlang Crash Dumps" in ERTS.

1.5.10 Schedulers Tab
Tab Schedulers shows all scheduler information found in the dump.

To open the detailed information page about the scheduler, double-click, or right-click the row and select Properties
for 'Identifier'.

For details, see Scheduler Information in section "How to Interpret the Erlang Crash Dumps" in ERTS.

26 | Ericsson AB. All Rights Reserved.: Observer

1.5 Crashdump Viewer

1.5.11 Funs Tab
Tab Funs shows all fun information found in the dump.

To open the detailed information page about the module to which the fun belongs, right-click the row and select
Properties for <mod>.

Double-clicking a row in the Funs tab has no effect.

For details, see Fun Information in section "How to Interpret the Erlang Crash Dumps" in ERTS.

1.5.12 Atoms Tab
Tab Atoms lists all atoms found in the dump. By default the atoms are sorted in creation order from first to last. This
is opposite of the raw crashdump where atoms are listed from last to first, meaning that if the dump was truncated in
the middle of the atom list, only the last created atoms are visible in the Atoms tab.

For details, see Atoms in section "How to Interpret the Erlang Crash Dumps" in ERTS.

1.5.13 Nodes Tab
Tab Nodes shows a list of all external Erlang nodes that are referenced from the crashdump.

If the page is empty, it means either of the following:

• The crashed node is not distributed.

• The crashed node is distributed but has no references to other nodes.

• The dump is truncated.

If the node is distributed, all referenced nodes are visible. Column Connection type shows if the node is visible,
hidden, or not connected. Visible nodes are alive nodes with a living connection to the originating node. Hidden nodes
are the same as visible nodes, except they are started with flag -hidden. Not connected nodes are nodes that are not
connected to the originating node anymore, but references (that is, process or port identifiers) exist.

To see more detailed information about a node, double-click the row, or right-click the row and select Properties for
node <node>. From the right-click menu, you can also select Properties for <port>, to open the detailed information
window for the controlling port.

In the detailed information window for a node, any existing links and monitors between processes on the originating
node and the connected node are displayed. Extra Info can contain debug information (that is, special information
written if the emulator is debug-compiled) or error information.

For details, see Distribution Information in section "How to Interpret the Erlang Crash Dumps" in ERTS.

1.5.14 Modules Tab
Tab Modules lists all modules loaded on the originating node, and the current code size. If old code exists, the old
size is also shown.

To view detailed information about a specific module, double- click the row, or right-click it and select Properties
for <mod>.

For details, see Loaded Module Information in section "How to Interpret the Erlang Crash Dumps" in ERTS.

1.5.15 Memory Tab
Tab Memory shows memory and allocator information. From the left-hand menu you can select the following:

Memory

See Memory Information in section "How to Interpret the Erlang Crash Dumps" in ERTS.

Ericsson AB. All Rights Reserved.: Observer | 27

1.5 Crashdump Viewer

Allocator Summary

This page presents a summary of values from all allocators underneath it.

<Allocator>

One entry per allocator. See Allocator in section "How to Interpret the Erlang Crash Dumps" in ERTS.

Allocated Areas

See Allocated Areas in section "How to Interpret the Erlang Crash Dumps" in ERTS.

1.5.16 Internal Tables Tab
On tab Internal Tables you can from the left-hand menu select Hash Tables, Index Tables, or Internal ETS Tables.

For details, see Internal Table Information in section "How to Interpret the Erlang Crash Dumps" in ERTS.

28 | Ericsson AB. All Rights Reserved.: Observer

1.5 Crashdump Viewer

2 Reference Manual

Ericsson AB. All Rights Reserved.: Observer | 29

Observer

Observer
Application

The Observer application contains tools for tracing and investigation of distributed systems.

Configuration
No configuration parameters are available for this application.

30 | Ericsson AB. All Rights Reserved.: Observer

observer

observer
Erlang module

Observer is a graphical tool for observing the characteristics of Erlang systems. The tool Observer displays system
information, application supervisor trees, process information, ETS tables, Mnesia tables, and contains a front end for
Erlang tracing with module ttb.

For details about how to get started, see the User's Guide.

Exports

start() -> ok
Starts the Observer GUI. To stop the tool, close the window.

Ericsson AB. All Rights Reserved.: Observer | 31

ttb

ttb
Erlang module

The Trace Tool Builder, ttb, is a base for building trace tools for distributed systems.

When using ttb, do not use module dbg in application Runtime_Tools in parallel.

Exports

start_trace(Nodes, Patterns, FlagSpec, Opts) -> Result
Types:

Result = see p/2

Nodes = see tracer/2

Patterns = [tuple()]

FlagSpec = {Procs, Flags}

Proc = see p/2

Flags = see p/2

Opts = see tracer/2

This function is a shortcut allowing to start a trace with one command. Each tuple in Patterns is converted to a
list, which in turn is passed to ttb:tpl/2,3,4.

The call:

> ttb:start_trace([Node, OtherNode],
 [{mod, foo, []}, {mod, bar, 2}],
 {all, call},
 [{file, File}, {handler,{fun myhandler/4, S}}]).

is equivalent to:

> ttb:start_trace([Node, OtherNode],
 [{file, File}, {handler,{fun myhandler/4, S}}]),
ttb:tpl(mod, foo, []),
ttb:tpl(mod, bar, 2, []),
ttb:p(all, call).

tracer() -> Result
Equivalent to tracer(node()).

tracer(Shortcut) -> Result
Types:

Shortcut = shell | dbg

Handy shortcuts for common tracing settings.

shell is equivalent to tracer(node(),[{file, {local, "ttb"}}, shell]).

dbg is equivalent to tracer(node(),[{shell, only}]).

32 | Ericsson AB. All Rights Reserved.: Observer

ttb

tracer(Nodes) -> Result
Equivalent to tracer(Nodes,[]).

tracer(Nodes,Opts) -> Result
Types:

Result = {ok, ActivatedNodes} | {error,Reason}

Nodes = atom() | [atom()] | all | existing | new

Opts = Opt | [Opt]

Opt = {file,Client} | {handler, FormatHandler} | {process_info,PI} |
shell | {shell, ShellSpec} | {timer, TimerSpec} | {overload_check, {MSec,
Module, Function}} | {flush, MSec} | resume | {resume, FetchTimeout} |
{queue_size, QueueSize}

TimerSpec = MSec | {MSec, StopOpts}

MSec = FetchTimeout = integer()

Module = Function = atom()

StopOpts = see stop/2

Client = File | {local, File}

File = Filename | Wrap

Filename = string()

Wrap = {wrap,Filename} | {wrap,Filename,Size,Count}

FormatHandler = See format/2

PI = true | false

ShellSpec = true | false | only

QueueSize = non_neg_integer()

Starts a file trace port on all specified nodes and points the system tracer for sequential tracing to the same port.

Options:

Filename

The specified Filename is prefixed with the node name. Default Filename is ttb.

File={wrap,Filename,Size,Count}

Can be used if the size of the trace logs must be limited. Default values are Size=128*1024 and Count=8.

Client

When tracing diskless nodes, ttb must be started from an external "trace control node" with disk access, and
Client must be {local, File}. All trace information is then sent to the trace control node where it is
written to file.

queue_size

When tracing to shell or {local,File}, an ip trace driver is used internally. The ip trace driver has a queue of
maximum QueueSize messages waiting to be delivered. If the driver cannot deliver messages as fast as they
are produced, the queue size might be exceeded and messages are dropped. This parameter is optional, and is
only useful if many {drop,N} trace messages are received by the trace handler. It has no meaning if shell or
{local,File} is not used. See dbg:trace_port/2 for more information about the ip trace driver.

Ericsson AB. All Rights Reserved.: Observer | 33

ttb

process_info

Indicates if process information is to be collected. If PI = true (which is default), each process identifier Pid
is replaced by a tuple {Pid,ProcessInfo,Node}, where ProcessInfo is the registered process name,
its globally registered name, or its initial function. To turn off this functionality, set PI = false.

{shell, ShellSpec}

Indicates that trace messages are to be printed on the console as they are received by the tracing process. This
implies trace client {local, File}. If ShellSpec is only (instead of true), no trace logs are stored.

shell

Shortcut for {shell, true}.

timer

Indicates that the trace is to be automatically stopped after MSec milliseconds. StopOpts are passed to
command ttb:stop/2 if specified (default is []). Notice that the timing is approximate, as delays related to
network communication are always present. The timer starts after ttb:p/2 is issued, so you can set up your
trace patterns before.

overload_check

Allows to enable overload checking on the nodes under trace. Module:Function(check) is performed each
MSec millisecond. If the check returns true, the tracing is disabled on a specified node.

Module:Function must be able to handle at least three atoms: init, check, and stop. init and stop
allows you to initialize and clean up the check environment.

When a node gets overloaded, it is not possible to issue ttb:p/2 or any command from the ttb:tp/2,3,4
family, as it would lead to inconsistent tracing state (different trace specifications on different nodes).

flush

Periodically flushes all file trace port clients (see dbg:flush_trace_port/1). When enabled, the buffers
are freed each MSec millisecond. This option is not allowed with {file, {local, File}} tracing.

{resume, FetchTimeout}

Enables the autoresume feature. When enabled, remote nodes try to reconnect to the controlling node if they are
restarted. The feature requires application Runtime_Tools to be started (so it has to be present in the .boot
scripts if the traced nodes run with embedded Erlang). If this is not possible, resume can be performed manually
by starting Runtime_Tools remotely using rpc:call/4.

ttb tries to fetch all logs from a reconnecting node before reinitializing the trace. This must finish within
FetchTimeout milliseconds or is aborted.

By default, autostart information is stored in a file named ttb_autostart.bin on each node. If this is
not desired (for example, on diskless nodes), a custom module handling autostart information storage and
retrieval can be provided by specifying environment variable ttb_autostart_module for the application
Runtime_Tools. The module must respond to the following API:

write_config(Data) -> ok

Stores the provided data for further retrieval. It is important to realize that the data storage used must not
be affected by the node crash.

read_config() -> {ok, Data} | {error, Error}

Retrieves configuration stored with write_config(Data).

34 | Ericsson AB. All Rights Reserved.: Observer

ttb

delete_config() -> ok

Deletes configuration stored with write_config(Data). Notice that after this call any subsequent calls
to read_config must return {error, Error}.

resume implies the default FetchTimeout, which is 10 seconds

p(Item,Flags) -> Return
Types:

Return = {ok,[{Item,MatchDesc}]}

Items = Item | [Item]

Item = pid() | port() | RegName | {global,GlobalRegName} | all | processes
| ports | existing | existing_processes | existing_ports | new |
new_processes | new_ports

RegName = atom()

GlobalRegName = term()

Flags = Flag | [Flag]

Sets the specified trace flags on the specified processes or ports. Flag timestamp is always turned on.

See the Reference Manual for module dbg for the possible trace flags. Parameter MatchDesc is the same as returned
from dbg:p/2.

Processes can be specified as registered names, globally registered names, or process identifiers. Ports can be specified
as registered names or port identifiers. If a registered name is specified, the flags are set on processes/ports with this
name on all active nodes.

Issuing this command starts the timer for this trace if option timer is specified with tracer/2.

tp(Module [, Function [, Arity]], MatchSpec)
tp({Module, Function , Arity}, MatchSpec)
tpl(Module [, Function [, Arity]], MatchSpec)
tpl({Module, Function , Arity}, MatchSpec)
ctp()
ctp(Module [, Function [, Arity]])
ctp({Module, Function, Arity})
ctpl()
ctpl(Module [, Function [, Arity]])
ctpl({Module, Function, Arity})
ctpg()
ctpg(Module [, Function [, Arity]])
ctpg({Module, Function, Arity})
tpe(Event,MatchSpec)
ctpe(Event)
These functions are to be used with trace flag call, send, and 'receive' for setting and clearing trace patterns.

When trace flag call is set on a process, function calls are traced on that process if a trace pattern is set for the
called function.

The send and 'receive' flags enable tracing of all messages sent and received by the process/port. Trace patterns
set with tpe may limit traced messages based on the message content, the sender, and/or the receiver.

Ericsson AB. All Rights Reserved.: Observer | 35

ttb

Trace patterns specify how to trace a function or a message by using match specifications. Match specifications are
described in the ERTS User's Guide.

These functions are equivalent to the corresponding functions in module dbg, but all calls are stored in the history.
The history buffer makes it easy to create configuration files; the same trace environment can be set up many times,
for example, to compare two test runs. It also reduces the amount of typing when using ttb from the Erlang shell.

tp

Sets trace patterns on global function calls.

tpl

Sets trace patterns on local and global function calls.

tpe

Sets trace patterns on messages.

ctp

Clears trace patterns on local and global function calls.

ctpl

Clears trace patterns on local function calls.

ctpg

Clears trace patterns on global function calls.

ctpe

Clears trace patterns on messages.

With tp and tpl, one of the match specification shortcuts can be used (for example, ttb:tp(foo_module,
caller)).

The shortcuts are as follows:

• return - for [{'_',[],[{return_trace}]}] (report the return value from a traced function)

• caller - for [{'_',[],[{message,{caller}}]}] (report the calling function)

• {codestr, Str} - for dbg:fun2ms/1 arguments passed as strings (example: "fun(_) ->
return_trace() end")

list_history() -> History
Types:

History = [{N,Func,Args}]

All calls to ttb is stored in the history. This function returns the current content of the history. Any entry can be
reexecuted with run_history/1 or stored in a configuration file with write_config/2,3.

run_history(N) -> ok | {error, Reason}
Types:

N = integer() | [integer()]

Executes the specified entry or entries from the history list. To list history, use list_history/0.

write_config(ConfigFile,Config)
Equivalent to write_config(ConfigFile,Config,[]).

36 | Ericsson AB. All Rights Reserved.: Observer

ttb

write_config(ConfigFile,Config,Opts) -> ok | {error,Reason}
Types:

ConfigFile = string()

Config = all | [integer()] | [{Mod,Func,Args}]

Mod = atom()

Func = atom()

Args = [term()]

Opts = Opt | [Opt]

Opt = append

Creates or extends a configuration file, which can be used for restoring a specific configuration later.

The contents of the configuration file can either be fetched from the history or specified directly as a list of
{Mod,Func,Args}.

If the complete history is to be stored in the configuration file, Config must be all. If only a selected number of
entries from the history are to be stored, Config must be a list of integers pointing out the entries to be stored.

If Opts is not specified or if it is [], ConfigFile is deleted and a new file is created. If Opts = [append],
ConfigFile is not deleted. The new information is appended at the end of the file.

run_config(ConfigFile) -> ok | {error,Reason}
Types:

ConfigFile = string()

Executes all entries in the specified configuration file. Notice that the history of the last trace is always available in
file ttb_last_config.

run_config(ConfigFile,NumList) -> ok | {error,Reason}
Types:

ConfigFile = string()

NumList = [integer()]

Executes selected entries from the specified configuration file. NumList is a list of integers pointing out the entries
to be executed.

To list the contents of a configuration file, use list_config/1.

Notice that the history of the last trace is always available in file ttb_last_config.

list_config(ConfigFile) -> Config | {error,Reason}
Types:

ConfigFile = string()

Config = [{N,Func,Args}]

Lists all entries in the specified configuration file.

write_trace_info(Key,Info) -> ok
Types:

Key = term()

Info = Data | fun() -> Data

Data = term()

Ericsson AB. All Rights Reserved.: Observer | 37

ttb

File .ti contains {Key,ValueList} tuples. This function adds Data to the ValueList associated with Key.
All information written with this function is included in the call to the format handler.

seq_trigger_ms() -> MatchSpec
Equivalent to seq_trigger_ms(all).

seq_trigger_ms(Flags) -> MatchSpec
Types:

MatchSpec = match_spec()

Flags = all | SeqTraceFlag | [SeqTraceFlag]

SeqTraceFlag = atom()

A match specification can turn on or off sequential tracing. This function returns a match specification, which turns
on sequential tracing with the specified Flags.

This match specification can be specified as the last argument to tp or tpl. The activated Item then becomes a
trigger for sequential tracing. This means that if the item is called on a process with trace flag call set, the process
is "contaminated" with token seq_trace.

If Flags = all, all possible flags are set.

The possible values for SeqTraceFlag are available in seq_trace.

For a description of the match_spec() syntax, see section Match Specifications in Erlang in ERTS,
which explains the general match specification "language".

Note:

The system tracer for sequential tracing is automatically initiated by ttb when a trace port is started with
ttb:tracer/0,1,2.

An example of how to use function seq_trigger_ms/0,1 follows:

(tiger@durin)5> ttb:tracer().
{ok,[tiger@durin]}
(tiger@durin)6> ttb:p(all,call).
{ok,{[all],[call]}}
(tiger@durin)7> ttb:tp(mod,func,ttb:seq_trigger_ms()).
{ok,[{matched,1},{saved,1}]}
(tiger@durin)8>

Whenever mod:func(...) is called after this, token seq_trace is set on the executing process.

stop()
Equivalent to stop([]).

stop(Opts) -> stopped | {stopped, Dir}
Types:

Opts = Opt | [Opt]

Opt = nofetch | {fetch_dir, Dir} | format | {format, FormatOpts} |
return_fetch_dir

Dir = string()

38 | Ericsson AB. All Rights Reserved.: Observer

ttb

FormatOpts = see format/2

Stops tracing on all nodes. Logs and trace information files are sent to the trace control node and stored in a directory
named ttb_upload_FileName-Timestamp, where Filename is the one provided with {file, File}
during trace setup and Timestamp is of the form yyyymmdd-hhmmss. Even logs from nodes on the same machine
as the trace control node are moved to this directory. The history list is saved to a file named ttb_last_config
for further reference (as it is no longer accessible through history and configuration management functions, like
ttb:list_history/0).

Options:

nofetch

Indicates that trace logs are not to be collected after tracing is stopped.

{fetch, Dir}

Allows specification of the directory to fetch the data to. If the directory already exists, an error is thrown.

format

Indicates the trace logs to be formatted after tracing is stopped. All logs in the fetch directory are merged.

return_fetch_dir

Indicates the return value to be {stopped, Dir} and not just stopped. This implies fetch.

get_et_handler()
Returns the et handler, which can be used with format/2 or tracer/2.

Example: ttb:format(Dir, [{handler, ttb:get_et_handler()}]).

format(File)
Equivalent to format(File,[]).

format(File,Options) -> ok | {error, Reason}
Types:

File = string() | [string()]

This can be the name of a binary log, a list of such logs, or the name of a directory containing one or more
binary logs.

Options = Opt | [Opt]

Opt = {out,Out} | {handler,FormatHandler} | disable_sort

Out = standard_io | string()

FormatHandler = {Function, InitialState}

Function = fun(Fd,Trace,TraceInfo,State) -> State

Fd = standard_io | FileDescriptor

File descriptor of the destination file Out.

Trace = tuple()

The trace message. For details, see the Reference Manual for module erlang.

TraceInfo = [{Key,ValueList}]

Includes the keys flags, client, and node. If handler is specified as option to the tracer function, this is
also included. Also, all information written with function write_trace_info/2 is included.

Ericsson AB. All Rights Reserved.: Observer | 39

ttb

Reads the specified binary trace log(s). The logs are processed in the order of their time stamps as long as option
disable_sort is not specified.

If FormatHandler = {Function,InitialState}, Function is called for each trace message.

If FormatHandler = get_et_handler(), et_viewer in application ET is used for presenting the trace
log graphically. ttb provides a few different filters that can be selected from menu Filters and scaling in the
et_viewer.

If FormatHandler is not specified, a default handler is used presenting each trace message as a text line.

The state returned from each call of Function is passed to the next call, even if the next call is to format a message
from another log file.

If Out is specified, FormatHandler gets the file descriptor to Out as the first parameter.

Out is ignored if the et format handler is used.

Wrap logs can be formatted one by one or all at once. To format one of the wrap logs in a set, specify the exact file
name. To format the whole set of wrap logs, specify the name with * instead of the wrap count. For examples, see
the User's Guide.

40 | Ericsson AB. All Rights Reserved.: Observer

etop

etop
Erlang module

Start Erlang Top with the provided scripts etop. This starts a hidden Erlang node that connects to the node to be
measured. The measured node is specified with option -node. If the measured node has a different cookie than the
default cookie for the user who invokes the script, the cookie must be explicitly specified with option -setcookie.

Under Windows, batch file etop.bat can be used.

When executing the etop script, configuration parameters can be specified as command-line options, for example,
etop -node testnode@myhost -setcookie MyCookie. The following configuration parameters exist
for the tool:

node

The measured node.

Value: atom()

Mandatory

setcookie

Cookie to use for the etop node. Must be same as the cookie on the measured node.

Value: atom()

lines

Number of lines (processes) to display.

Value: integer()

Default: 10

interval

Time interval (in seconds) between each update of the display.

Value: integer()

Default: 5

accumulate

If true, the execution time and reductions are accumulated.

Value: boolean()

Default: false

sort

Identifies what information to sort by.

Value: runtime | reductions | memory | msg_q

Default: runtime (reductions if tracing=off)

tracing

etop uses the Erlang trace facility, and thus no other tracing is possible on the measured node while etop is
running, unless this option is set to off. Also helpful if the etop tracing causes too high load on the measured
node. With tracing off, runtime is not measured.

Value: on | off

Ericsson AB. All Rights Reserved.: Observer | 41

etop

Default: on

For details about Erlang Top, see the User's Guide.

Exports

start() -> ok
Starts etop. Notice that etop is preferably started with the etop script.

start(Options) -> ok
Types:

Options = [Option]

Option = {Key, Value}

Key = atom()

Value = term()

Starts etop. To view the possible options, use help/0.

help() -> ok
Displays the help of etop and its options.

config(Key,Value) -> Result
Types:

Result = ok | {error,Reason}

Key = lines | interval | accumulate | sort

Value = term()

Changes the configuration parameters of the tool during runtime. Allowed parameters are lines, interval,
accumulate, and sort.

dump(File) -> Result
Types:

Result = ok | {error,Reason}

File = string()

Dumps the current display to a text file.

stop() -> stop
Terminates etop.

42 | Ericsson AB. All Rights Reserved.: Observer

crashdump_viewer

crashdump_viewer
Erlang module

The Crashdump Viewer is a WxWidgets based tool for browsing Erlang crashdumps.

For details about how to get started with the Crashdump Viewer, see the User's Guide.

Exports

start() -> ok
start(File) -> ok
Types:

File = string()

The filename of the crashdump.

Starts the Crashdump Viewer GUI and loads the specified crashdump.

If File is not specified, a file dialog is opened where the crashdump can be selected.

stop() -> ok
Terminates the Crashdump Viewer and closes all GUI windows.

Ericsson AB. All Rights Reserved.: Observer | 43

cdv

cdv
Command

The cdv shell script is located in directory priv of the Observer application. The script is used for starting the
Crashdump Viewer tool from the OS command line.

For Windows users, cdv.bat is found in the same location.

Exports

cdv [file]
Argument file is optional. If not specified, a file dialog is displayed, allowing you to select a crashdump from the
file system.

44 | Ericsson AB. All Rights Reserved.: Observer

	Observer
	Observer User's Guide
	Introduction
	Scope
	Prerequisites

	Observer
	Introduction
	Getting Started
	System Tab
	Load Charts Tab
	Memory Allocators Tab
	Applications Tab
	Processes Tab
	Ports Tab
	Table Viewer Tab
	Trace Overview Tab

	Trace Tool Builder
	Introduction
	Getting Started
	Tracing Local Node from Erlang Shell
	Build Your Own Tool

	Running Trace Tool Builder against Remote Node
	Diskless Node

	More Tracing Options
	Time-Constrained Tracing
	Overload Protection
	Autoresume
	dbg Mode

	Trace Information and File .ti
	Wrap Logs
	Formatting
	Presenting Trace Logs with Event Tracer

	Automatically Collect and Format Logs from All Nodes
	History and Configuration Files
	Sequential Tracing
	Multipurpose Trace Tool

	Erlang Top
	Introduction
	Getting Started
	Output
	Configuration
	Print to File
	Stop

	Crashdump Viewer
	Introduction
	Getting Started
	GUI
	Tab Content
	General Tab
	Processes Tab
	Ports Tab
	ETS Tables Tab
	Timers Tab
	Schedulers Tab
	Funs Tab
	Atoms Tab
	Nodes Tab
	Modules Tab
	Memory Tab
	Internal Tables Tab

	Reference Manual
	Observer
	observer
	start/0

	ttb
	start_trace/4
	tracer/0
	tracer/1
	tracer/1
	tracer/2
	p/2
	tp/2
	tp/2
	tpl/2
	tpl/2
	ctp/0
	ctp/1
	ctp/1
	ctpl/0
	ctpl/1
	ctpl/1
	ctpg/0
	ctpg/1
	ctpg/1
	tpe/2
	ctpe/1
	list_history/0
	run_history/1
	write_config/2
	write_config/3
	run_config/1
	run_config/2
	list_config/1
	write_trace_info/2
	seq_trigger_ms/0
	seq_trigger_ms/1
	stop/0
	stop/1
	get_et_handler/0
	format/1
	format/2

	etop
	start/0
	start/1
	help/0
	config/2
	dump/1
	stop/0

	crashdump_viewer
	start/0
	start/1
	stop/0

	cdv

