ERLANG

TFTP

Copyright © 1997-2020 Ericsson AB. All Rights Reserved.
TFTP 1.0.2
September 22, 2020

Copyright © 1997-2020 Ericsson AB. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance
with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless
required by applicable law or agreed to in writing, software distributed under the License is distributed on an
"AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See

the License for the specific language governing permissions and limitations under the License. Ericsson AB. All
Rights Reserved..

September 22, 2020

1.1 Introduction

1 TFTP User's Guide

The TFTP application provides a TFTP client and server.

1.1 Introduction

1.1.1 Purpose
The Trivial File Transfer Protocol or TFTP is avery simple protocol used to transfer files.

It has been implemented on top of the User Datagram protocol (UDP) so it may be used to movefiles between machines
on different networks implementing UDP. It is designed to be small and easy to implement. Therefore, it lacks most
of the features of aregular FTP. The only thing it can do is read and write files (or mail) from/to a remote server. It
cannot list directories, and currently has no provisions for user authentication.

Thet f t p application implements the following |ETF standards:

 RFC 1350, The TFTP Protocol (revision 2)

e RFC 2347, TFTP Option Extension

* RFC 2348, TFTP Blocksize Option

e RFC 2349, TFTP Timeout Interval and Transfer Size Options

The only feature that not isimplemented isthenet asci i transfer mode.

1.1.2 Prerequisites

It is assumed that the reader is familiar with the Erlang programming language, concepts of OTP, and has a basic
understanding of the TFTP protocol.

1.2 Getting Started

1.2.1 General Information

The start/1 function starts a daemon process listening for UDP packets on a port. When it receives a request for read
or write, it spawns atemporary server process handling the transfer.

On the client side, function read_file/3 and write file/3 spawn atemporary client process establishing contact with a
TFTP daemon and perform the file transfer.

t f t p uses a callback module to handle the file transfer. Two such callback modules are provided, t f t p_bi nary
andtftp_file.Seeread file/3 and write file/3 for details. You can also implement your own callback modules,
see CALLBACK FUNCTIONS. A callback module provided by the user is registered using option cal | back, see
DATA TYPES.

1.2.2 Using the TFTP client and server

Thisisasimple example of starting the TFTP server and reading the content of a sample file using the TFTP client.
Step 1. Create a sample file to be used for the transfer:

$ echo "Erlang/0TP 21" > file.txt

Ericsson AB. All Rights Reserved.: TFTP | 1

1.2 Getting Started

Step 2. Start the TFTP server:

1> {ok, Pid} = tftp:start([{port, 19999}]).
{ok,<0.65.0>}

Step 3. Start the TFTP client (in another shell):

1> tftp:read file("file.txt", binary, [{port, 19999}]).
{ok,<<"Erlang/0TP 21\n">>}

2 | Ericsson AB. All Rights Reserved.: TFTP

1.2 Getting Started

2 Reference Manual

The TFTP application.

Ericsson AB. All Rights Reserved.: TFTP | 3

tftp

tftp

Erlang module

Interface module for thet f t p application.

DATA TYPES
ServiceConfig = Options
Options = [option()]

Most of the options are common for both the client and the server side, but some of them differsalittle. The available
option() sareasfollows:

{debug, Level}

Level = none | error | warning | brief | normal | verbose | all

Controlsthe level of debug printouts. Default isnone.

{host, Host}

Host = host nane(), seeinet(3).
The name or IP address of the host where the TFTP daemon resides. This option is only used by the client.

{port, Port}

Port = int()

The TFTP port where the daemon listens. Defaults is the standardized number 69. On the server side, it can
sometimes make sense to set it to 0, meaning that the daemon just picks a free port (which one is returned by
functioni nf o/ 1).

If a socket is connected already, option {udp, [{fd, integer()}]} can be used to passthe open file
descriptor to gen_udp. This can be automated by using a command-line argument stating the prebound file
descriptor number. For example, if the port is 69 and file descriptor 22 is opened by set ui d_socket _wr ap,
the command-line argument "-tftpd_69 22" triggers the prebound file descriptor 22 to be used instead of opening
port 69. The UDPoption{udp, [{fd, 22}]} isautomaticaly added. Seei ni t: get _ar gunment/ about
command-line arguments and gen_udp: open/ 2 about UDP options.

{port_policy, Policy}

Policy = random | Port | {range, M nPort, MaxPort}
Port = MnPort = MaxPort = int()

Policy for the selection of the temporary port that is used by the server/client during the file transfer. Default is
r andom which is the standardized policy. With this policy a randomized free port is used. A single port or a
range of ports can be useful if the protocol passes through a firewall.

{udp, Options}

Options = [Opt], seegen_udp:open/2.

{use_tsize, Bool}

Bool = bool ()

Flag for automated use of option t si ze. With thissettotrue, thewrite_fil e/ 3 client determines the
filesize and sends it to the server as the standardized t si ze option. Aread_fi |l e/ 3 client acquires only a
filesize from the server by sending azerot si ze.

4 | Ericsson AB. All Rights Reserved.: TFTP

tftp

{max_tsize, MaxTsize}

MaxTsize = int() | infinity

Threshold for the maximal filesizein bytes. Thetransfer isaborted if thelimitisexceeded. Defaultisi nfinity.
{max_conn, MaxConn}

MaxConn = int() | infinity

Threshold for the maximal number of active connections. The daemon rejects the setup of new connections if
the limit is exceeded. Defaultisi nfinity.

{TftpKey, TftpVal}

Tf t pKey string()
Tf t pVal string()

Name and value of a TFTP option.

{reject, Feature}

Feature = Mode | Tft pKey
Mode = read | wite
TftpKey = string()

Controls which features to reject. Thisis mostly useful for the server as it can restrict the use of certain TFTP
options or read/write access.

{cal | back, {RegExp, Module, State}}

RegExp string()
Modul e atom()
State = term)

Registration of a callback module. When afile is to be transferred, its local filename is matched to the regular
expressions of the registered callbacks. The first matching callback is used during the transfer. See read file/3
and write file/3.

The callback module must implement thet f t p behavior, see CALLBACK FUNCTIONS.
{l ogger, Modul e}
Modul e = nodul e()

Callback module for customized logging of errors, warnings, and info messages. The callback module must
implement thet f t p_I| ogger behavior, see LOGGER FUNCTIONS. The default moduleist ft p_I ogger.

{max_retries, MaxRetries}
MaxRetries = int()

Threshold for the maximal number of retries. By default the server/client tries to resend a message up to five
times when the time-out expires.

Exports

change config(daemons, Options) -> [{Pid, Result}]

Types:
Options = [option()]
Pid = pid()

Result = ok | {error, Reason}
Reason = term()

Ericsson AB. All Rights Reserved.: TFTP | 5

tftp

Changes configuration for all TFTP daemon processes.

change config(servers, Options) -> [{Pid, Result}]

Types:
Options = [option()]
Pid = pid()

Result = ok | {error, Reason}
Reason = term()

Changes configuration for all TFTP server processes.

change config(Pid, Options) -> Result
Types.
Pid = pid()
Options = [option()]
Result = ok | {error, Reason}
Reason = term()

Changes configuration for a TFTP daemon, server, or client process.

info(daemons) -> [{Pid, Options}]
Types:

Pid = [pid()]

Options = [option()]

Reason = term()

Returns information about all TFTP daemon processes.

info(servers) -> [{Pid, Options}]
Types:

Pid = [pid()]

Options = [option()]

Reason = term()

Returnsinformation about all TFTP server processes.

info(Pid) -> {ok, Options} | {error, Reason}
Types:

Options = [option()]

Reason = term()
Returns information about a TFTP daemon, server, or client process.

read file(RemoteFilename, LocalFilename, Options) -> {ok, LastCallbackState}
| {error, Reason}

Types.
Renot eFi | enane = string()
Local Fil ename = binary | string()

6 | Ericsson AB. All Rights Reserved.: TFTP

tftp

Options = [option()]
Last Cal | backState = term))
Reason = term)
Reads a (virtual) file Renot eFi | enane from a TFTP server.

If Local Fi | enane istheatombi nary,tftp_bi nary isusedascallback module. It concatenatesall transferred
blocks and returnsthem asone single binary in Last Cal | backSt at e.

If Local Fi | enaneisastring andtherearenoregistered callback modules,t ft p_f i | e isused ascallback module.
It writes each transferred block to the file named Local Fi | enane and returns the number of transferred bytesin
Last Cal | backSt at e.

If Local Fi | enane isastring and there are registered callback modules, Local Fi | enane istested against the
regexps of these and the callback module corresponding to the first match is used, or an error tuple is returned if no
matching regexp is found.

start(Options) -> {ok, Pid} | {error, Reason}

Types:
Options = [option()]
Pid = pid()

Reason = term()

Starts a daemon process listening for UDP packets on a port. When it receives a request for read or write, it spawns
atemporary server process handling the actual transfer of the (virtual) file.

write file(RemoteFilename, LocalFilename, Options) -> {ok, LastCallbackState}
| {error, Reason}

Types:
Renmot eFi | ename = string()
Local Fil enanme = binary() | string()
Options = [option()]
Last Cal | backState = term)
Reason = term()

Writesa (virtual) file Renot eFi | enane to a TFTP server.

If Local Fi | enameisabinary,t ft p_bi nary isused ascallback module. The binary istransferred block by block
and the number of transferred bytesisreturned in Last Cal | backSt at e.

If Local Fi | enane is a string and there are no registered callback modules, t ftp_fil e is used as callback
module. It reads the file named Local Fi | ename block by block and returns the number of transferred bytes in
Last Cal | backSt at e.

If Local Fi | enane isastring and there are registered callback modules, Local Fi | enane istested against the
regexps of these and the callback module corresponding to the first match is used, or an error tuple is returned if no
matching regexp is found.

CALLBACK FUNCTIONS

At ft p calback moduleisto beimplemented asat f t p behavior and export the functions listed in the following.

On the server side, the callback interaction starts with a call to open/ 5 with the registered initial callback state.
open/ 5 isexpected to open the (virtua) file. Then either functionr ead/ 1 orwr i t e/ 2 isinvoked repeatedly, once
per transferred block. At each function call, the state returned from the previous call is obtained. When the last block

Ericsson AB. All Rights Reserved.: TFTP | 7

tftp

is encountered, functionr ead/ 1 orwri t e/ 2 isexpected to close the (virtual) file and return itslast state. Function
abort/ 3 isonly used in error situations. Function pr epar e/ 5 is not used on the server side.

On the client side, the callback interaction is the same, but it starts and ends a bit differently. It starts with a call
to pr epar e/ 5 with the same arguments as open/ 5 takes. pr epar e/ 5 is expected to validate the TFTP options
suggested by the user and to return the subset of them that it accepts. Then the options are sent to the server, which
performs the same TFTP option negotiation procedure. The options that are accepted by the server are forwarded to
function open/ 5 on the client side. On the client side, function open/ 5 must accept al option as-is or reject the
transfer. Then the callback interaction follows the same pattern as described for the server side. When the last block
isencounteredinr ead/ 1 orwr i t e/ 2, thereturned state isforwarded to the user and returned fromread_fi |l e/3
oowite filel3.

If acallback (performing thefile accessin the TFTP server) takestoo long time (more than the double TFTP time-out),
the server aborts the connection and sends an error reply to the client. Thisimplies that the server releases resources
attached to the connection faster than before. The server simply assumes that the client has given up.

If the TFTP server receives yet another request from the same client (same host and port) whileit already has an active
connection to the client, it ignores the new request if the request is equal to the first one (same filename and options).
Thisimplies that the (new) client will be served by the already ongoing connection on the server side. By not setting
up yet another connection, in parallel with the ongoing one, the server consumes less resources.

Exports

Module:abort(Code, Text, State) -> ok
Types:
Code = undef | enoent | eacces | enospc
| badop | eexist | baduser | badopt
| int()
Text = string()
State = term))

Invoked when the file transfer is aborted.

The callback function is expected to clean up its used resources after the aborted file transfer, such as closing open
file descriptors and so on. The function is not invoked if any of the other callback functions returns an error, asit is
expected that they already have cleaned up the necessary resources. However, it isinvoked if thefunctionsfail (crash).

Module:open(Peer, Access, Filename, Mode, SuggestedOptions, State) -> {ok,
AcceptedOptions, NewState} | {error, {Code, Text}}

Types:
Peer = {PeerType, PeerHost, PeerPort}
Peer Type = inet | inet6
Peer Host = i p_address()
PeerPort = integer()

Access = read | wite

Fil ename = string()

Mode = string()

Suggest edOpti ons = AcceptedOptions = [{Key, Val ue}]
Key = Value = string()

State = Initial State | term)

8 | Ericsson AB. All Rights Reserved.: TFTP

tftp

InitialState =[] | [{root_dir, string()}]
NewState = term()
Code = undef | enoent | eacces | enospc
| badop | eexist | baduser | badopt
| int()
Text = string()

Opens afile for read or write access.

On the client side, where the open/ 5 call has been preceded by acall to pr epar e/ 5, all options must be accepted
or rejected.

On the server side, where there is no preceding pr epar e/ 5 call, no new options can be added, but those present in
Suggest edOpt i ons can be omitted or replaced with new valuesin Accept edOpt i ons.

Module:prepare(Peer, Access, Filename, Mode, SuggestedOptions, InitialState)
-> {ok, AcceptedOptions, NewState} | {error, {Code, Text}}

Types.
Peer = {Peer Type, PeerHost, PeerPort}
Peer Type = inet | inet6
Peer Host = i p_address()
PeerPort = integer()

Access =read | wite
Fil ename = string()
Mode = string()
Suggest edOpti ons = AcceptedOptions = [{Key, Val ue}]
Key = Value = string()
Initial State [1 | [{root_dir, string()}]
NewState = term()
Code = undef | enoent | eacces | enospc
| badop | eexist | baduser | badopt
| int()
Text = string()

Prepares to open afile on the client side.

No new options can be added, but those present in Suggest edQpt i ons can be omitted or replaced with new values
inAccept edOpt i ons.

Thisisfollowed by acal to open/ 4 before any read/write accessis performed. Accept edOpt i ons issent to the
server, which replieswith the optionsthat it accepts. These are then forwarded to open/ 4 asSuggest edOpt i ons.

Module:read(State) -> {more, Bin, NewState} | {last, Bin, FileSize} | {error,
{Code, Text}}

Types:
State = NewState = term))
Bin = binary()
FileSize = int()
Code = undef | enoent | eacces | enospc

Ericsson AB. All Rights Reserved.: TFTP | 9

tftp

| badop | eexist | baduser | badopt

| int()
Text = string()

Reads a chunk from thefile.

Thecallback functionisexpected to closethefilewhen thelast file chunk isencountered. When an error isencountered,
the callback function is expected to clean up after the aborted file transfer, such as closing open file descriptors, and
so on. In both cases there will be no more calls to any of the callback functions.

Module:write(Bin, State) -> {more, NewState} | {last, FileSize} | {error,
{Code, Text}}

Types.

Bin = binary()

State = NewState = tern()

FileSize = int()

Code = undef | enoent | eacces | enospc
| badop | eexist | baduser | badopt
| int()

Text = string()

Writes a chunk to thefile.

The callback function isexpected to close thefilewhen thelast file chunk isencountered. When an error isencountered,
the callback function is expected to clean up after the aborted file transfer, such as closing open file descriptors, and
so on. In both cases there will be no more callsto any of the callback functions.

Atftp_l ogger calback moduleisto beimplemented asatft p_| ogger behavior and export the following
functions:

Exports

Logger:error msg(Format, Data) -> ok | exit(Reason)
Types.

Format = string()

Data = [term()]

Reason = term()

Logs an error message. Seeerror _| ogger : error _nsg/ 2 for details.

Logger:info msg(Format, Data) -> ok | exit(Reason)
Types.

Format = string()

Data = [term()]

Reason = term()

Logs an info message. Seeer r or _| ogger : i nf o_nsg/ 2 for details.
Logger:warning msg(Format, Data) -> ok | exit(Reason)

Types:
Format = string()

10 | Ericsson AB. All Rights Reserved.: TFTP

tftp

Data = [term()]
Reason = term()

Logs awarning message. Seeer r or _| ogger : war ni ng_nsg/ 2 for details.

Ericsson AB. All Rights Reserved.: TFTP | 11

	TFTP
	TFTP User's Guide
	Introduction
	Purpose
	Prerequisites

	Getting Started
	General Information
	Using the TFTP client and server

	Reference Manual
	tftp
	change_config/2
	change_config/2
	change_config/2
	info/1
	info/1
	info/1
	read_file/3
	start/1
	write_file/3
	Module:abort/3
	Module:open/6
	Module:prepare/6
	Module:read/1
	Module:write/2
	Logger:error_msg/2
	Logger:info_msg/2
	Logger:warning_msg/2

