
Syntax_Tools
Copyright © 2006-2020 Ericsson AB. All Rights Reserved.

Syntax_Tools 2.3.1
September 22, 2020

Copyright © 2006-2020 Ericsson AB. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance
with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless
required by applicable law or agreed to in writing, software distributed under the License is distributed on an
"AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See
the License for the specific language governing permissions and limitations under the License. Ericsson AB. All
Rights Reserved..

September 22, 2020

1.1 Erlang Syntax and Metaprogramming tools

1 Syntax_Tools User's Guide

Syntax_Tools contains modules for handling abstract Erlang syntax trees, in a way that is compatible with the "parse
trees" of the STDLIB module erl_parse, together with utilities for reading source files in unusual ways and pretty-
printing syntax trees. Also included is an amazing module merger and renamer called Igor, as well as an automatic
code-cleaner.

1.1 Erlang Syntax and Metaprogramming tools
1.1.1 Overview
This package contains modules for handling abstract syntax trees (ASTs) in Erlang, in a way that is compatible with the
"abstract format" parse trees of the stdlib module erl_parse, together with utilities for reading source files, pretty-
printing syntax trees, merging and renaming modules, cleaning up obsolete constructs, and doing metaprogramming
in Erlang.

The abstract layer (defined in erl_syntax) is nicely structured and the node types are context-independent. The layer
makes it possible to transparently attach source-code comments and user annotations to nodes of the tree. Using
the abstract layer makes applications less sensitive to changes in the erl_parse(3) data structures, only requiring the
erl_syntax module to be up-to-date.

The pretty printer erl_prettypr is implemented on top of the library module prettypr: this is a powerful and flexible
generic pretty printing library, which is also distributed separately.

For a short demonstration of parsing and pretty-printing, simply compile the included module demo.erl, and execute
demo:run() from the Erlang shell. It will compile the remaining modules and give you further instructions.

Also try the erl_tidy module, as follows:

 erl_tidy:dir("any-erlang-source-dir", [test, old_guard_tests]).

(the test option assures that no files are modified).

Ericsson AB. All Rights Reserved.: Syntax_Tools | 1

href

1.1 Erlang Syntax and Metaprogramming tools

2 Reference Manual

Syntax_Tools contains modules for handling abstract Erlang syntax trees, in a way that is compatible with the "external
format" parse trees of the STDLIB module erl_parse, together with utilities for reading source files, pretty-printing
syntax trees, merging and renaming modules, cleaning up obsolete constructs, and doing metaprogramming in Erlang.

2 | Ericsson AB. All Rights Reserved.: Syntax_Tools

epp_dodger

epp_dodger
Erlang module

epp_dodger - bypasses the Erlang preprocessor.

This module tokenises and parses most Erlang source code without expanding preprocessor directives and macro
applications, as long as these are syntactically "well-behaved". Because the normal parse trees of the erl_parse
module cannot represent these things (normally, they are expanded by the Erlang preprocessor epp(3) before the parser
sees them), an extended syntax tree is created, using the erl_syntax module.

DATA TYPES
errorinfo() = {ErrorLine::integer(), Module::atom(), Descriptor::term()}

This is a so-called Erlang I/O ErrorInfo structure; see the io(3) module for details.

Exports

parse(Dev::IODevice) -> {ok, Forms} | {error, errorinfo()}
Equivalent to parse(IODevice, 1).

parse(Dev::IODevice, L::StartLine) -> {ok, Forms} | {error, errorinfo()}
Types:

IODevice = pid()

StartLine = integer()

Forms = [erl_syntax:syntaxTree()]

Equivalent to parse(IODevice, StartLine, []).

See also: parse/1.

parse(Dev::IODevice, L0::StartLine, Options) -> {ok, Forms} | {error,
errorinfo()}
Types:

IODevice = pid()

StartLine = integer()

Options = [term()]

Forms = [erl_syntax:syntaxTree()]

Reads and parses program text from an I/O stream. Characters are read from IODevice until end-of-file; apart from
this, the behaviour is the same as for parse_file/2. StartLine is the initial line number, which should be a positive
integer.

See also: parse/2, parse_file/2, parse_form/2, quick_parse/3.

parse_file(File) -> {ok, Forms} | {error, errorinfo()}
Types:

File = file:filename()

Forms = [erl_syntax:syntaxTree()]

Ericsson AB. All Rights Reserved.: Syntax_Tools | 3

epp_dodger

Equivalent to parse_file(File, []).

parse_file(File, Options) -> {ok, Forms} | {error, errorinfo()}
Types:

File = file:filename()

Options = [term()]

Forms = [erl_syntax:syntaxTree()]

Reads and parses a file. If successful, {ok, Forms} is returned, where Forms is a list of abstract syntax
trees representing the "program forms" of the file (cf. erl_syntax:is_form/1). Otherwise, {error,
errorinfo()} is returned, typically if the file could not be opened. Note that parse errors show up as error markers
in the returned list of forms; they do not cause this function to fail or return {error, errorinfo()}.

Options:

{no_fail, boolean()}

If true, this makes epp_dodger replace any program forms that could not be parsed with nodes of type text
(see erl_syntax:text/1), representing the raw token sequence of the form, instead of reporting a parse error. The
default value is false.

{clever, boolean()}

If set to true, this makes epp_dodger try to repair the source code as it seems fit, in certain cases where
parsing would otherwise fail. Currently, it inserts ++-operators between string literals and macros where it looks
like concatenation was intended. The default value is false.

See also: parse/2, quick_parse_file/1, erl_syntax:is_form/1.

parse_form(Dev::IODevice, L0::StartLine) -> {ok, Form, LineNo} | {eof,
LineNo} | {error, errorinfo(), LineNo}
Types:

IODevice = pid()

StartLine = integer()

Form = erl_syntax:syntaxTree()

LineNo = integer()

Equivalent to parse_form(IODevice, StartLine, []).

See also: quick_parse_form/2.

parse_form(Dev::IODevice, L0::StartLine, Options) -> {ok, Form, LineNo} |
{eof, LineNo} | {error, errorinfo(), LineNo}
Types:

IODevice = pid()

StartLine = integer()

Options = [term()]

Form = erl_syntax:syntaxTree()

LineNo = integer()

Reads and parses a single program form from an I/O stream. Characters are read from IODevice until an end-of-
form marker is found (a period character followed by whitespace), or until end-of-file; apart from this, the behaviour

4 | Ericsson AB. All Rights Reserved.: Syntax_Tools

epp_dodger

is similar to that of parse/3, except that the return values also contain the final line number given that StartLine
is the initial line number, and that {eof, LineNo} may be returned.

See also: parse/3, parse_form/2, quick_parse_form/3.

quick_parse(Dev::IODevice) -> {ok, Forms} | {error, errorinfo()}
Equivalent to quick_parse(IODevice, 1).

quick_parse(Dev::IODevice, L::StartLine) -> {ok, Forms} | {error,
errorinfo()}
Types:

IODevice = pid()

StartLine = integer()

Forms = [erl_syntax:syntaxTree()]

Equivalent to quick_parse(IODevice, StartLine, []).

See also: quick_parse/1.

quick_parse(Dev::IODevice, L0::StartLine, Options) -> {ok, Forms} | {error,
errorinfo()}
Types:

IODevice = pid()

StartLine = integer()

Options = [term()]

Forms = [erl_syntax:syntaxTree()]

Similar to parse/3, but does a more quick-and-dirty processing of the code. See quick_parse_file/2 for details.

See also: parse/3, quick_parse/2, quick_parse_file/2, quick_parse_form/2.

quick_parse_file(File) -> {ok, Forms} | {error, errorinfo()}
Types:

File = file:filename()

Forms = [erl_syntax:syntaxTree()]

Equivalent to quick_parse_file(File, []).

quick_parse_file(File, Options) -> {ok, Forms} | {error, errorinfo()}
Types:

File = file:filename()

Options = [term()]

Forms = [erl_syntax:syntaxTree()]

Similar to parse_file/2, but does a more quick-and-dirty processing of the code. Macro definitions and other
preprocessor directives are discarded, and all macro calls are replaced with atoms. This is useful when only the main
structure of the code is of interest, and not the details. Furthermore, the quick-parse method can usually handle more
strange cases than the normal, more exact parsing.

Options: see parse_file/2. Note however that for quick_parse_file/2, the option no_fail is true by default.

See also: parse_file/2, quick_parse/2.

Ericsson AB. All Rights Reserved.: Syntax_Tools | 5

epp_dodger

quick_parse_form(Dev::IODevice, L0::StartLine) -> {ok, Form, LineNo} | {eof,
LineNo} | {error, errorinfo(), LineNo}
Types:

IODevice = pid()

StartLine = integer()

Form = erl_syntax:syntaxTree() | none

LineNo = integer()

Equivalent to quick_parse_form(IODevice, StartLine, []).

See also: parse_form/2.

quick_parse_form(Dev::IODevice, L0::StartLine, Options) -> {ok, Form, LineNo}
| {eof, LineNo} | {error, errorinfo(), LineNo}
Types:

IODevice = pid()

StartLine = integer()

Options = [term()]

Form = erl_syntax:syntaxTree()

LineNo = integer()

Similar to parse_form/3, but does a more quick-and-dirty processing of the code. See quick_parse_file/2 for details.

See also: parse/3, parse_form/3, quick_parse_form/2.

tokens_to_string(Tokens::[term()]) -> string()
Generates a string corresponding to the given token sequence. The string can be re-tokenized to yield the same token
list again.

6 | Ericsson AB. All Rights Reserved.: Syntax_Tools

erl_comment_scan

erl_comment_scan
Erlang module

Functions for reading comment lines from Erlang source code.

DATA TYPES
comment() = {Line::integer(), Column::integer(), Indentation::integer(), Text::[string()]}

Exports

file(FileName::file:filename()) -> [Comment]
Types:

Comment = {Line, Column, Indentation, Text}

Line = integer()

Column = integer()

Indentation = integer()

Text = [string()]

Extracts comments from an Erlang source code file. Returns a list of entries representing multi-line comments, listed
in order of increasing line-numbers. For each entry, Text is a list of strings representing the consecutive comment
lines in top-down order; the strings contain all characters following (but not including) the first comment-introducing
% character on the line, up to (but not including) the line-terminating newline.

Furthermore, Line is the line number and Column the left column of the comment (i.e., the column of the comment-
introducing % character). Indent is the indentation (or padding), measured in character positions between the last
non-whitespace character before the comment (or the left margin), and the left column of the comment. Line and
Column are always positive integers, and Indentation is a nonnegative integer.

Evaluation exits with reason {read, Reason} if a read error occurred, where Reason is an atom corresponding
to a Posix error code; see the module file(3) for details.

join_lines(Lines::[CommentLine]) -> [Comment]
Types:

CommentLine = {Line, Column, Indent, string()}

Line = integer()

Column = integer()

Indent = integer()

Comment = {Line, Column, Indent, Text}

Text = [string()]

Joins individual comment lines into multi-line comments. The input is a list of entries representing individual comment
lines, in order of decreasing line-numbers; see scan_lines/1 for details. The result is a list of entries representing
multi-line comments, still listed in order of decreasing line-numbers, but where for each entry, Text is a list of
consecutive comment lines in order of increasing line-numbers (i.e., top-down).

See also: scan_lines/1.

Ericsson AB. All Rights Reserved.: Syntax_Tools | 7

erl_comment_scan

scan_lines(Text::string()) -> [CommentLine]
Types:

CommentLine = {Line, Column, Indent, Text}

Line = integer()

Column = integer()

Indent = integer()

Text = string()

Extracts individual comment lines from a source code string. Returns a list of comment lines found in the text, listed in
order of decreasing line-numbers, i.e., the last comment line in the input is first in the resulting list. Text is a single
string, containing all characters following (but not including) the first comment-introducing % character on the line,
up to (but not including) the line-terminating newline. For details on Line, Column and Indent, see file/1.

string(Text::string()) -> [Comment]
Types:

Comment = {Line, Column, Indentation, Text}

Line = integer()

Column = integer()

Indentation = integer()

Text = [string()]

Extracts comments from a string containing Erlang source code. Except for reading directly from a string, the behaviour
is the same as for file/1.

See also: file/1.

8 | Ericsson AB. All Rights Reserved.: Syntax_Tools

erl_prettypr

erl_prettypr
Erlang module

Pretty printing of abstract Erlang syntax trees.

This module is a front end to the pretty-printing library module prettypr, for text formatting of abstract syntax
trees defined by the module erl_syntax.

DATA TYPES
context()

A representation of the current context of the pretty-printer. Can be accessed in hook functions.

hook() = (syntaxTree(), context(), Continuation) -> prettypr:document()

• Continuation = (syntaxTree(), context()) -> prettypr:document()

A call-back function for user-controlled formatting. See format/2.

syntaxTree() = erl_syntax:syntaxTree()

An abstract syntax tree. See the erl_syntax module for details.

Exports

best(Tree::syntaxTree()) -> empty | prettypr:document()
Equivalent to best(Tree, []).

best(Tree::syntaxTree(), Options::[term()]) -> empty | prettypr:document()
Creates a fixed "best" abstract layout for a syntax tree. This is similar to the layout/2 function, except that here, the
final layout has been selected with respect to the given options. The atom empty is returned if no such layout could
be produced. For information on the options, see the format/2 function.

See also: best/1, format/2, layout/2, prettypr:best/3.

format(Tree::syntaxTree()) -> string()
Equivalent to format(Tree, []).

format(Tree::syntaxTree(), Options::[term()]) -> string()
Prettyprint-formats an abstract Erlang syntax tree as text. For example, if you have a .beam file that has been
compiled with debug_info, the following should print the source code for the module (as it looks in the debug
info representation):

 {ok,{_,[{abstract_code,{_,AC}}]}} =
 beam_lib:chunks("myfile.beam",[abstract_code]),
 io:put_chars(erl_prettypr:format(erl_syntax:form_list(AC)))

Available options:

{hook, none | hook()}

Unless the value is none, the given function is called for each node whose list of annotations is not empty; see
below for details. The default value is none.

Ericsson AB. All Rights Reserved.: Syntax_Tools | 9

erl_prettypr

{paper, integer()}

Specifies the preferred maximum number of characters on any line, including indentation. The default value is 80.

{ribbon, integer()}

Specifies the preferred maximum number of characters on any line, not counting indentation. The default value
is 65.

{user, term()}

User-specific data for use in hook functions. The default value is undefined.

{encoding, epp:source_encoding()}

Specifies the encoding of the generated file.

A hook function (cf. the hook() type) is passed the current syntax tree node, the context, and a continuation. The
context can be examined and manipulated by functions such as get_ctxt_user/1 and set_ctxt_user/2. The
hook must return a "document" data structure (see layout/2 and best/2); this may be constructed in part or in whole by
applying the continuation function. For example, the following is a trivial hook:

 fun (Node, Ctxt, Cont) -> Cont(Node, Ctxt) end

which yields the same result as if no hook was given. The following, however:

 fun (Node, Ctxt, Cont) ->
 Doc = Cont(Node, Ctxt),
 prettypr:beside(prettypr:text(""),
 prettypr:beside(Doc,
 prettypr:text("")))
 end

will place the text of any annotated node (regardless of the annotation data) between HTML "boldface begin" and
"boldface end" tags.

See also: erl_syntax, best/2, format/1, get_ctxt_user/1, layout/2, set_ctxt_user/2.

get_ctxt_hook(Ctxt::context()) -> hook()
Returns the hook function field of the prettyprinter context.

See also: set_ctxt_hook/2.

get_ctxt_linewidth(Ctxt::context()) -> integer()
Returns the line widh field of the prettyprinter context.

See also: set_ctxt_linewidth/2.

get_ctxt_paperwidth(Ctxt::context()) -> integer()
Returns the paper widh field of the prettyprinter context.

See also: set_ctxt_paperwidth/2.

get_ctxt_precedence(Ctxt::context()) -> integer()
Returns the operator precedence field of the prettyprinter context.

See also: set_ctxt_precedence/2.

10 | Ericsson AB. All Rights Reserved.: Syntax_Tools

erl_prettypr

get_ctxt_user(Ctxt::context()) -> term()
Returns the user data field of the prettyprinter context.

See also: set_ctxt_user/2.

layout(Tree::syntaxTree()) -> prettypr:document()
Equivalent to layout(Tree, []).

layout(Tree::syntaxTree(), Options::[term()]) -> prettypr:document()
Creates an abstract document layout for a syntax tree. The result represents a set of possible layouts (cf. module
prettypr). For information on the options, see format/2; note, however, that the paper and ribbon options are
ignored by this function.

This function provides a low-level interface to the pretty printer, returning a flexible representation of possible
layouts, independent of the paper width eventually to be used for formatting. This can be included as part of another
document and/or further processed directly by the functions in the prettypr module, or used in a hook function
(see format/2 for details).

See also: prettypr, format/2, layout/1.

set_ctxt_hook(Ctxt::context(), Hook::hook()) -> context()
Updates the hook function field of the prettyprinter context.

See also: get_ctxt_hook/1.

set_ctxt_linewidth(Ctxt::context(), W::integer()) -> context()
Updates the line widh field of the prettyprinter context.

Note: changing this value (and passing the resulting context to a continuation function) does not affect the normal
formatting, but may affect user-defined behaviour in hook functions.

See also: get_ctxt_linewidth/1.

set_ctxt_paperwidth(Ctxt::context(), W::integer()) -> context()
Updates the paper widh field of the prettyprinter context.

Note: changing this value (and passing the resulting context to a continuation function) does not affect the normal
formatting, but may affect user-defined behaviour in hook functions.

See also: get_ctxt_paperwidth/1.

set_ctxt_precedence(Ctxt::context(), Prec::integer()) -> context()
Updates the operator precedence field of the prettyprinter context. See the erl_parse(3) module for operator
precedences.

See also: erl_parse(3), get_ctxt_precedence/1.

set_ctxt_user(Ctxt::context(), X::term()) -> context()
Updates the user data field of the prettyprinter context.

See also: get_ctxt_user/1.

Ericsson AB. All Rights Reserved.: Syntax_Tools | 11

erl_recomment

erl_recomment
Erlang module

Inserting comments into abstract Erlang syntax trees

This module contains functions for inserting comments, described by position, indentation and text, as attachments
on an abstract syntax tree, at the correct places.

DATA TYPES
syntaxTree() = erl_syntax:syntaxTree()

An abstract syntax tree. See the erl_syntax module for details.

Exports

quick_recomment_forms(Tree::Forms, Comments::[Comment]) -> syntaxTree()
Types:

Forms = syntaxTree() | [syntaxTree()]

Comment = {Line, Column, Indentation, Text}

Line = integer()

Column = integer()

Indentation = integer()

Text = [string()]

Like recomment_forms/2, but only inserts top-level comments. Comments within function definitions or declarations
("forms") are simply ignored.

recomment_forms(Tree::Forms, Comments::[Comment]) -> syntaxTree()
Types:

Forms = syntaxTree() | [syntaxTree()]

Comment = {Line, Column, Indentation, Text}

Line = integer()

Column = integer()

Indentation = integer()

Text = [string()]

Attaches comments to the syntax tree/trees representing a program. The given Forms should be a single syntax tree of
type form_list, or a list of syntax trees representing "program forms". The syntax trees must contain valid position
information (for details, see recomment_tree/2). The result is a corresponding syntax tree of type form_list
in which all comments in the list Comments have been attached at the proper places.

Assuming Forms represents a program (or any sequence of "program forms"), any comments whose first lines are not
directly associated with a specific program form will become standalone comments inserted between the neighbouring
program forms. Furthermore, comments whose column position is less than or equal to one will not be attached to a
program form that begins at a conflicting line number (this can happen with preprocessor-generated line-attributes).

If Forms is a syntax tree of some other type than form_list, the comments will be inserted directly using
recomment_tree/2, and any comments left over from that process are added as postcomments on the result.

12 | Ericsson AB. All Rights Reserved.: Syntax_Tools

erl_recomment

Entries in Comments represent multi-line comments. For each entry, Line is the line number and Column the left
column of the comment (the column of the first comment-introducing "%" character). Indentation is the number
of character positions between the last non-whitespace character before the comment (or the left margin) and the left
column of the comment. Text is a list of strings representing the consecutive comment lines in top-down order,
where each string contains all characters following (but not including) the comment-introducing "%" and up to (but
not including) the terminating newline. (Cf. module erl_comment_scan.)

Evaluation exits with reason {bad_position, Pos} if the associated position information Pos of some subtree
in the input does not have a recognizable format, or with reason {bad_tree, L, C} if insertion of a comment at
line L, column C, fails because the tree structure is ill-formed.

See also: erl_comment_scan, quick_recomment_forms/2, recomment_tree/2.

recomment_tree(Tree::syntaxTree(), Comments::[Comment]) -> {syntaxTree(),
[Comment]}
Types:

Comment = {Line, Column, Indentation, Text}

Line = integer()

Column = integer()

Indentation = integer()

Text = [string()]

Attaches comments to a syntax tree. The result is a pair {NewTree, Remainder} where NewTree is the given
Tree where comments from the list Comments have been attached at the proper places. Remainder is the list of
entries in Comments which have not been inserted, because their line numbers are greater than those of any node in
the tree. The entries in Comments are inserted in order; if two comments become attached to the same node, they
will appear in the same order in the program text.

The nodes of the syntax tree must contain valid position information. This can be single integers, assumed to represent
a line number, or 2- or 3-tuples where the first or second element is an integer, in which case the leftmost integer
element is assumed to represent the line number. Line numbers less than one are ignored (usually, the default line
number for newly created nodes is zero).

For details on the Line, Column and Indentation fields, and the behaviour in case of errors, see
recomment_forms/2.

See also: recomment_forms/2.

Ericsson AB. All Rights Reserved.: Syntax_Tools | 13

erl_syntax

erl_syntax
Erlang module

Abstract Erlang syntax trees.

This module defines an abstract data type for representing Erlang source code as syntax trees, in a way that is backwards
compatible with the data structures created by the Erlang standard library parser module erl_parse (often referred to
as "parse trees", which is a bit of a misnomer). This means that all erl_parse trees are valid abstract syntax trees, but
the reverse is not true: abstract syntax trees can in general not be used as input to functions expecting an erl_parse
tree. However, as long as an abstract syntax tree represents a correct Erlang program, the function revert/1 should be
able to transform it to the corresponding erl_parse representation.

A recommended starting point for the first-time user is the documentation of the syntaxTree() data type, and the
function type/1.

NOTES:

This module deals with the composition and decomposition of syntactic entities (as opposed to semantic ones); its
purpose is to hide all direct references to the data structures used to represent these entities. With few exceptions, the
functions in this module perform no semantic interpretation of their inputs, and in general, the user is assumed to pass
type-correct arguments - if this is not done, the effects are not defined.

With the exception of the erl_parse() data structures, the internal representations of abstract syntax trees are subject to
change without notice, and should not be documented outside this module. Furthermore, we do not give any guarantees
on how an abstract syntax tree may or may not be represented, with the following exceptions: no syntax tree is
represented by a single atom, such as none, by a list constructor [X | Y], or by the empty list []. This can be
relied on when writing functions that operate on syntax trees.

DATA TYPES
encoding() = utf8 | unicode | latin1

erl_parse() = erl_parse:abstract_clause() | erl_parse:abstract_expr() | erl_parse:abstract_form() |
erl_parse:abstract_type() | erl_parse:form_info() | erl_parse:af_binelement(term()) | erl_parse:af_generator() |
erl_parse:af_remote_function()

forms() = syntaxTree() | [syntaxTree()]

guard() = none | syntaxTree() | [syntaxTree()] | [[syntaxTree()]]

padding() = none | integer()

syntaxTree()

An abstract syntax tree. The erl_parse() "parse tree" representation is a proper subset of the syntaxTree()
representation.

Every abstract syntax tree node has a type, given by the function type/1. Each node also has associated attributes;
see get_attrs/1 for details. The functions make_tree/2 and subtrees/1 are generic constructor/decomposition
functions for abstract syntax trees. The functions abstract/1 and concrete/1 convert between constant Erlang terms
and their syntactic representations. The set of syntax tree nodes is extensible through the tree/2 function.

A syntax tree can be transformed to the erl_parse() representation with the revert/1 function.

syntaxTreeAttributes()

14 | Ericsson AB. All Rights Reserved.: Syntax_Tools

erl_syntax

This is an abstract representation of syntax tree node attributes; see the function get_attrs/1.

tree() = #tree{type=atom(), attr=#attr{pos=term(), ann=[term()], com=none | #com{pre=[syntaxTree()],
post=[syntaxTree()]}}, data=term()}

Exports

abstract(T::term()) -> syntaxTree()
Returns the syntax tree corresponding to an Erlang term. Term must be a literal term, i.e., one that can be represented
as a source code literal. Thus, it may not contain a process identifier, port, reference or function value as a subterm.
The function recognises printable strings, in order to get a compact and readable representation. Evaluation fails with
reason badarg if Term is not a literal term.

See also: concrete/1, is_literal/1.

add_ann(A::term(), Node::syntaxTree()) -> syntaxTree()
Appends the term Annotation to the list of user annotations of Node.

Note: this is equivalent to set_ann(Node, [Annotation | get_ann(Node)]), but potentially more
efficient.

See also: get_ann/1, set_ann/2.

add_postcomments(Cs::[syntaxTree()], Node::syntaxTree()) -> syntaxTree()
Appends Comments to the post-comments of Node.

Note: This is equivalent to set_postcomments(Node, get_postcomments(Node) ++ Comments),
but potentially more efficient.

See also: add_precomments/2, comment/2, get_postcomments/1, join_comments/2, set_postcomments/2.

add_precomments(Cs::[syntaxTree()], Node::syntaxTree()) -> syntaxTree()
Appends Comments to the pre-comments of Node.

Note: This is equivalent to set_precomments(Node, get_precomments(Node) ++ Comments), but
potentially more efficient.

See also: add_postcomments/2, comment/2, get_precomments/1, join_comments/2, set_precomments/2.

annotated_type(Name::syntaxTree(), Type::syntaxTree()) -> syntaxTree()
Creates an abstract annotated type expression. The result represents "Name :: Type".

See also: annotated_type_body/1, annotated_type_name/1.

annotated_type_body(Node::syntaxTree()) -> syntaxTree()
Returns the type subtrees of an annotated_type node.

See also: annotated_type/2.

annotated_type_name(Node::syntaxTree()) -> syntaxTree()
Returns the name subtree of an annotated_type node.

See also: annotated_type/2.

Ericsson AB. All Rights Reserved.: Syntax_Tools | 15

erl_syntax

application(Operator::syntaxTree(), Arguments::[syntaxTree()]) ->
syntaxTree()
Creates an abstract function application expression. If Arguments is [A1, ..., An], the result represents
"Operator(A1, ..., An)".

See also: application/3, application_arguments/1, application_operator/1.

application(Module::none | syntaxTree(), Name::syntaxTree(), Arguments::
[syntaxTree()]) -> syntaxTree()
Creates an abstract function application expression. If Module is none, this is call
is equivalent to application(Function, Arguments), otherwise it is equivalent to
application(module_qualifier(Module, Function), Arguments).

(This is a utility function.)

See also: application/2, module_qualifier/2.

application_arguments(Node::syntaxTree()) -> [syntaxTree()]
Returns the list of argument subtrees of an application node.

See also: application/2.

application_operator(Node::syntaxTree()) -> syntaxTree()
Returns the operator subtree of an application node.

Note: if Node represents "M:F(...)", then the result is the subtree representing "M:F".

See also: application/2, module_qualifier/2.

arity_qualifier(Body::syntaxTree(), Arity::syntaxTree()) -> syntaxTree()
Creates an abstract arity qualifier. The result represents "Body/Arity".

See also: arity_qualifier_argument/1, arity_qualifier_body/1.

arity_qualifier_argument(Node::syntaxTree()) -> syntaxTree()
Returns the argument (the arity) subtree of an arity_qualifier node.

See also: arity_qualifier/2.

arity_qualifier_body(Node::syntaxTree()) -> syntaxTree()
Returns the body subtree of an arity_qualifier node.

See also: arity_qualifier/2.

atom(Name::atom() | string()) -> syntaxTree()
Creates an abstract atom literal. The print name of the atom is the character sequence represented by Name.

See also: atom_literal/1, atom_literal/2, atom_name/1, atom_value/1, is_atom/2.

atom_literal(Node::syntaxTree()) -> string()
Returns the literal string represented by an atom node. This includes surrounding single-quote characters if necessary.
Characters beyond 255 will be escaped.

16 | Ericsson AB. All Rights Reserved.: Syntax_Tools

erl_syntax

Note that e.g. the result of atom("x\ny") represents any and all of `x\ny'', `x\12y'', `x\012y'' and `x\^Jy\''; see
string/1.

See also: atom/1, string/1.

atom_literal(Node, X2) -> term()
Returns the literal string represented by an atom node. This includes surrounding single-quote characters if necessary.
Depending on the encoding a character beyond 255 will be escaped (latin1) or copied as is (utf8).

See also: atom/1, atom_literal/1, string/1.

atom_name(Node::syntaxTree()) -> string()
Returns the printname of an atom node.

See also: atom/1.

atom_value(Node::syntaxTree()) -> atom()
Returns the value represented by an atom node.

See also: atom/1.

attribute(Name::syntaxTree()) -> syntaxTree()
Equivalent to attribute(Name, none).

attribute(Name::syntaxTree(), Args::none | [syntaxTree()]) -> syntaxTree()
Creates an abstract program attribute. If Arguments is [A1, ..., An], the result represents "-Name(A1, ...,
An).". Otherwise, if Arguments is none, the result represents "-Name.". The latter form makes it possible to
represent preprocessor directives such as "-endif.". Attributes are source code forms.

Note: The preprocessor macro definition directive "-define(Name, Body)." has relatively few requirements on
the syntactical form of Body (viewed as a sequence of tokens). The text node type can be used for a Body that
is not a normal Erlang construct.

See also: attribute/1, attribute_arguments/1, attribute_name/1, is_form/1, text/1.

attribute_arguments(Node::syntaxTree()) -> none | [syntaxTree()]
Returns the list of argument subtrees of an attribute node, if any. If Node represents "-Name.", the result is
none. Otherwise, if Node represents "-Name(E1, ..., En).", [E1, ..., E1] is returned.

See also: attribute/1.

attribute_name(Node::syntaxTree()) -> syntaxTree()
Returns the name subtree of an attribute node.

See also: attribute/1.

binary(List::[syntaxTree()]) -> syntaxTree()
Creates an abstract binary-object template. If Fields is [F1, ..., Fn], the result represents "<<F1, ...,
Fn>>".

See also: binary_field/2, binary_fields/1.

Ericsson AB. All Rights Reserved.: Syntax_Tools | 17

erl_syntax

binary_comp(Template::syntaxTree(), Body::[syntaxTree()]) -> syntaxTree()
Creates an abstract binary comprehension. If Body is [E1, ..., En], the result represents "<<Template ||
E1, ..., En>>".

See also: binary_comp_body/1, binary_comp_template/1, generator/2.

binary_comp_body(Node::syntaxTree()) -> [syntaxTree()]
Returns the list of body subtrees of a binary_comp node.

See also: binary_comp/2.

binary_comp_template(Node::syntaxTree()) -> syntaxTree()
Returns the template subtree of a binary_comp node.

See also: binary_comp/2.

binary_field(Body::syntaxTree()) -> syntaxTree()
Equivalent to binary_field(Body, []).

binary_field(Body::syntaxTree(), Types::[syntaxTree()]) -> syntaxTree()
Creates an abstract binary template field. If Types is the empty list, the result simply represents "Body", otherwise,
if Types is [T1, ..., Tn], the result represents "Body/T1-...-Tn".

See also: binary/1, binary_field/1, binary_field/3, binary_field_body/1, binary_field_size/1, binary_field_types/1.

binary_field(Body::syntaxTree(), Size::none | syntaxTree(), Types::
[syntaxTree()]) -> syntaxTree()
Creates an abstract binary template field. If Size is none, this is equivalent to "binary_field(Body,
Types)", otherwise it is equivalent to "binary_field(size_qualifier(Body, Size), Types)".

(This is a utility function.)

See also: binary/1, binary_field/2, size_qualifier/2.

binary_field_body(Node::syntaxTree()) -> syntaxTree()
Returns the body subtree of a binary_field.

See also: binary_field/2.

binary_field_size(Node::syntaxTree()) -> none | syntaxTree()
Returns the size specifier subtree of a binary_field node, if any. If Node represents "Body:Size" or
"Body:Size/T1, ..., Tn", the result is Size, otherwise none is returned.

(This is a utility function.)

See also: binary_field/2, binary_field/3.

binary_field_types(Node::syntaxTree()) -> [syntaxTree()]
Returns the list of type-specifier subtrees of a binary_field node. If Node represents ".../T1, ..., Tn",
the result is [T1, ..., Tn], otherwise the result is the empty list.

See also: binary_field/2.

18 | Ericsson AB. All Rights Reserved.: Syntax_Tools

erl_syntax

binary_fields(Node::syntaxTree()) -> [syntaxTree()]
Returns the list of field subtrees of a binary node.

See also: binary/1, binary_field/2.

binary_generator(Pattern::syntaxTree(), Body::syntaxTree()) -> syntaxTree()
Creates an abstract binary_generator. The result represents "Pattern <- Body".

See also: binary_comp/2, binary_generator_body/1, binary_generator_pattern/1, list_comp/2.

binary_generator_body(Node::syntaxTree()) -> syntaxTree()
Returns the body subtree of a generator node.

See also: binary_generator/2.

binary_generator_pattern(Node::syntaxTree()) -> syntaxTree()
Returns the pattern subtree of a generator node.

See also: binary_generator/2.

bitstring_type(M::syntaxTree(), N::syntaxTree()) -> syntaxTree()
Creates an abstract bitstring type. The result represents "<<_:M, _:_*N>>".

See also: bitstring_type_m/1, bitstring_type_n/1.

bitstring_type_m(Node::syntaxTree()) -> syntaxTree()
Returns the number of start bits, M, of a bitstring_type node.

See also: bitstring_type/2.

bitstring_type_n(Node::syntaxTree()) -> syntaxTree()
Returns the segment size, N, of a bitstring_type node.

See also: bitstring_type/2.

block_expr(Body::[syntaxTree()]) -> syntaxTree()
Creates an abstract block expression. If Body is [B1, ..., Bn], the result represents "begin B1, ...,
Bn end".

See also: block_expr_body/1.

block_expr_body(Node::syntaxTree()) -> [syntaxTree()]
Returns the list of body subtrees of a block_expr node.

See also: block_expr/1.

case_expr(Argument::syntaxTree(), Clauses::[syntaxTree()]) -> syntaxTree()
Creates an abstract case-expression. If Clauses is [C1, ..., Cn], the result represents "case Argument of
C1; ...; Cn end". More exactly, if each Ci represents "(Pi) Gi -> Bi", then the result represents "case
Argument of P1 G1 -> B1; ...; Pn Gn -> Bn end".

Ericsson AB. All Rights Reserved.: Syntax_Tools | 19

erl_syntax

See also: case_expr_argument/1, case_expr_clauses/1, clause/3, if_expr/1.

case_expr_argument(Node::syntaxTree()) -> syntaxTree()
Returns the argument subtree of a case_expr node.

See also: case_expr/2.

case_expr_clauses(Node::syntaxTree()) -> [syntaxTree()]
Returns the list of clause subtrees of a case_expr node.

See also: case_expr/2.

catch_expr(Expr::syntaxTree()) -> syntaxTree()
Creates an abstract catch-expression. The result represents "catch Expr".

See also: catch_expr_body/1.

catch_expr_body(Node::syntaxTree()) -> syntaxTree()
Returns the body subtree of a catch_expr node.

See also: catch_expr/1.

char(Char::char()) -> syntaxTree()
Creates an abstract character literal. The result represents "$Name", where Name corresponds to Value.

Note: the literal corresponding to a particular character value is not uniquely defined. E.g., the character "a" can be
written both as "$a" and "$\141", and a Tab character can be written as "$\11", "$\011" or "$\t".

See also: char_literal/1, char_literal/2, char_value/1, is_char/2.

char_literal(Node::syntaxTree()) -> nonempty_string()
Returns the literal string represented by a char node. This includes the leading "$" character. Characters beyond 255
will be escaped.

See also: char/1.

char_literal(Node::syntaxTree(), X2::encoding()) -> nonempty_string()
Returns the literal string represented by a char node. This includes the leading "$" character. Depending on the
encoding a character beyond 255 will be escaped (latin1) or copied as is (utf8).

See also: char/1.

char_value(Node::syntaxTree()) -> char()
Returns the value represented by a char node.

See also: char/1.

class_qualifier(Class::syntaxTree(), Body::syntaxTree()) -> syntaxTree()
Creates an abstract class qualifier. The result represents "Class:Body".

See also: class_qualifier_argument/1, class_qualifier_body/1, class_qualifier_stacktrace/1, try_expr/4.

20 | Ericsson AB. All Rights Reserved.: Syntax_Tools

erl_syntax

class_qualifier(Class::syntaxTree(), Body::syntaxTree(),
Stacktrace::syntaxTree()) -> syntaxTree()
Creates an abstract class qualifier. The result represents "Class:Body:Stacktrace".

See also: class_qualifier_argument/1, class_qualifier_body/1, try_expr/4.

class_qualifier_argument(Node::syntaxTree()) -> syntaxTree()
Returns the argument (the class) subtree of a class_qualifier node.

See also: class_qualifier/2.

class_qualifier_body(Node::syntaxTree()) -> syntaxTree()
Returns the body subtree of a class_qualifier node.

See also: class_qualifier/2.

class_qualifier_stacktrace(Node::syntaxTree()) -> syntaxTree()
Returns the stacktrace subtree of a class_qualifier node.

See also: class_qualifier/2.

clause(Guard::guard(), Body::[syntaxTree()]) -> syntaxTree()
Equivalent to clause([], Guard, Body).

clause(Patterns::[syntaxTree()], Guard::guard(), Body::[syntaxTree()]) ->
syntaxTree()
Creates an abstract clause. If Patterns is [P1, ..., Pn] and Body is [B1, ..., Bm], then if Guard is
none, the result represents "(P1, ..., Pn) -> B1, ..., Bm", otherwise, unless Guard is a list, the result
represents "(P1, ..., Pn) when Guard -> B1, ..., Bm".

For simplicity, the Guard argument may also be any of the following:

• An empty list []. This is equivalent to passing none.

• A nonempty list [E1, ..., Ej] of syntax trees. This is equivalent to passing conjunction([E1, ...,
Ej]).

• A nonempty list of lists of syntax trees [[E1_1, ..., E1_k1], ..., [Ej_1, ..., Ej_kj]],
which is equivalent to passing disjunction([conjunction([E1_1, ..., E1_k1]), ...,
conjunction([Ej_1, ..., Ej_kj])]).

See also: clause/2, clause_body/1, clause_guard/1, clause_patterns/1.

clause_body(Node::syntaxTree()) -> [syntaxTree()]
Return the list of body subtrees of a clause node.

See also: clause/3.

clause_guard(Node::syntaxTree()) -> none | syntaxTree()
Returns the guard subtree of a clause node, if any. If Node represents "(P1, ..., Pn) when Guard ->
B1, ..., Bm", Guard is returned. Otherwise, the result is none.

See also: clause/3.

Ericsson AB. All Rights Reserved.: Syntax_Tools | 21

erl_syntax

clause_patterns(Node::syntaxTree()) -> [syntaxTree()]
Returns the list of pattern subtrees of a clause node.

See also: clause/3.

comment(Strings::[string()]) -> syntaxTree()
Equivalent to comment(none, Strings).

comment(Pad::padding(), Strings::[string()]) -> syntaxTree()
Creates an abstract comment with the given padding and text. If Strings is a (possibly empty) list ["Txt1", ...,
"TxtN"], the result represents the source code text

 %Txt1
 ...
 %TxtN

Padding states the number of empty character positions to the left of the comment separating it horizontally from
source code on the same line (if any). If Padding is none, a default positive number is used. If Padding is an integer
less than 1, there should be no separating space. Comments are in themselves regarded as source program forms.

See also: comment/1, is_form/1.

comment_padding(Node::syntaxTree()) -> padding()
Returns the amount of padding before the comment, or none. The latter means that a default padding may be used.

See also: comment/2.

comment_text(Node::syntaxTree()) -> [string()]
Returns the lines of text of the abstract comment.

See also: comment/2.

compact_list(Node::syntaxTree()) -> syntaxTree()
Yields the most compact form for an abstract list skeleton. The result either represents "[E1, ..., En | Tail]",
where Tail is not a list skeleton, or otherwise simply "[E1, ..., En]". Annotations on subtrees of Node that
represent list skeletons may be lost, but comments will be propagated to the result. Returns Node itself if Node does
not represent a list skeleton.

See also: list/2, normalize_list/1.

concrete(Node::syntaxTree()) -> term()
Returns the Erlang term represented by a syntax tree. Evaluation fails with reason badarg if Node does not represent
a literal term.

Note: Currently, the set of syntax trees which have a concrete representation is larger than the set of trees which can
be built using the function abstract/1. An abstract character will be concretised as an integer, while abstract/1 does not
at present yield an abstract character for any input. (Use the char/1 function to explicitly create an abstract character.)

Note: arity_qualifier nodes are recognized. This is to follow The Erlang Parser when it comes to wild attributes:
both {F, A} and F/A are recognized, which makes it possible to turn wild attributes into recognized attributes without at
the same time making it impossible to compile files using the new syntax with the old version of the Erlang Compiler.

22 | Ericsson AB. All Rights Reserved.: Syntax_Tools

erl_syntax

See also: abstract/1, char/1, is_literal/1.

conjunction(Tests::[syntaxTree()]) -> syntaxTree()
Creates an abstract conjunction. If List is [E1, ..., En], the result represents "E1, ..., En".

See also: conjunction_body/1, disjunction/1.

conjunction_body(Node::syntaxTree()) -> [syntaxTree()]
Returns the list of body subtrees of a conjunction node.

See also: conjunction/1.

cons(Head::syntaxTree(), Tail::syntaxTree()) -> syntaxTree()
"Optimising" list skeleton cons operation. Creates an abstract list skeleton whose first element is Head and whose tail
corresponds to Tail. This is similar to list([Head], Tail), except that Tail may not be none, and that the
result does not necessarily represent exactly "[Head | Tail]", but may depend on the Tail subtree. E.g., if Tail
represents [X, Y], the result may represent "[Head, X, Y]", rather than "[Head | [X, Y]]". Annotations
on Tail itself may be lost if Tail represents a list skeleton, but comments on Tail are propagated to the result.

See also: list/2, list_head/1, list_tail/1.

constrained_function_type(FunctionType::syntaxTree(), FunctionConstraint::
[syntaxTree()]) -> syntaxTree()
Creates an abstract constrained function type. If FunctionConstraint is [C1, ..., Cn], the result represents
"FunctionType when C1, ...Cn".

See also: constrained_function_type_argument/1, constrained_function_type_body/1.

constrained_function_type_argument(Node::syntaxTree()) -> syntaxTree()
Returns the function constraint subtree of a constrained_function_type node.

See also: constrained_function_type/2.

constrained_function_type_body(Node::syntaxTree()) -> syntaxTree()
Returns the function type subtree of a constrained_function_type node.

See also: constrained_function_type/2.

constraint(Name::syntaxTree(), Types::[syntaxTree()]) -> syntaxTree()
Creates an abstract (subtype) constraint. The result represents "Name :: Type".

See also: constraint_argument/1, constraint_body/1.

constraint_argument(Node::syntaxTree()) -> syntaxTree()
Returns the name subtree of a constraint node.

See also: constraint/2.

constraint_body(Node::syntaxTree()) -> [syntaxTree()]
Returns the type subtree of a constraint node.

Ericsson AB. All Rights Reserved.: Syntax_Tools | 23

erl_syntax

See also: constraint/2.

copy_ann(Source::syntaxTree(), Target::syntaxTree()) -> syntaxTree()
Copies the list of user annotations from Source to Target.

Note: this is equivalent to set_ann(Target, get_ann(Source)), but potentially more efficient.

See also: get_ann/1, set_ann/2.

copy_attrs(S::syntaxTree(), T::syntaxTree()) -> syntaxTree()
Copies the attributes from Source to Target.

Note: this is equivalent to set_attrs(Target, get_attrs(Source)), but potentially more efficient.

See also: get_attrs/1, set_attrs/2.

copy_comments(Source::syntaxTree(), Target::syntaxTree()) -> syntaxTree()
Copies the pre- and postcomments from Source to Target.

Note: This is equivalent to set_postcomments(set_precomments(Target,
get_precomments(Source)), get_postcomments(Source)), but potentially more efficient.

See also: comment/2, get_postcomments/1, get_precomments/1, set_postcomments/2, set_precomments/2.

copy_pos(Source::syntaxTree(), Target::syntaxTree()) -> syntaxTree()
Copies the position information from Source to Target.

This is equivalent to set_pos(Target, get_pos(Source)), but potentially more efficient.

See also: get_pos/1, set_pos/2.

data(Tree::syntaxTree()) -> term()
For special purposes only. Returns the associated data of a syntax tree node. Evaluation fails with reason badarg
if is_tree(Node) does not yield true.

See also: tree/2.

disjunction(Tests::[syntaxTree()]) -> syntaxTree()
Creates an abstract disjunction. If List is [E1, ..., En], the result represents "E1; ...; En".

See also: conjunction/1, disjunction_body/1.

disjunction_body(Node::syntaxTree()) -> [syntaxTree()]
Returns the list of body subtrees of a disjunction node.

See also: disjunction/1.

eof_marker() -> syntaxTree()
Creates an abstract end-of-file marker. This represents the end of input when reading a sequence of source code forms.
An end-of-file marker is itself regarded as a source code form (namely, the last in any sequence in which it occurs).
It has no defined lexical form.

Note: this is retained only for backwards compatibility with existing parsers and tools.

24 | Ericsson AB. All Rights Reserved.: Syntax_Tools

erl_syntax

See also: error_marker/1, is_form/1, warning_marker/1.

error_marker(Error::term()) -> syntaxTree()
Creates an abstract error marker. The result represents an occurrence of an error in the source code, with an associated
Erlang I/O ErrorInfo structure given by Error (see module io(3) for details). Error markers are regarded as source
code forms, but have no defined lexical form.

Note: this is supported only for backwards compatibility with existing parsers and tools.

See also: eof_marker/0, error_marker_info/1, is_form/1, warning_marker/1.

error_marker_info(Node::syntaxTree()) -> term()
Returns the ErrorInfo structure of an error_marker node.

See also: error_marker/1.

flatten_form_list(Node::syntaxTree()) -> syntaxTree()
Flattens sublists of a form_list node. Returns Node with all subtrees of type form_list recursively expanded,
yielding a single "flat" abstract form sequence.

See also: form_list/1.

float(Value::float()) -> syntaxTree()
Creates an abstract floating-point literal. The lexical representation is the decimal floating-point numeral of Value.

See also: float_literal/1, float_value/1.

float_literal(Node::syntaxTree()) -> string()
Returns the numeral string represented by a float node.

See also: float/1.

float_value(Node::syntaxTree()) -> float()
Returns the value represented by a float node. Note that floating-point values should usually not be compared for
equality.

See also: float/1.

form_list(Forms::[syntaxTree()]) -> syntaxTree()
Creates an abstract sequence of "source code forms". If Forms is [F1, ..., Fn], where each Fi is a form (see
is_form/1, the result represents

 F1
 ...
 Fn

where the Fi are separated by one or more line breaks. A node of type form_list is itself regarded as a source
code form; see flatten_form_list/1.

Note: this is simply a way of grouping source code forms as a single syntax tree, usually in order to form an Erlang
module definition.

See also: flatten_form_list/1, form_list_elements/1, is_form/1.

Ericsson AB. All Rights Reserved.: Syntax_Tools | 25

erl_syntax

form_list_elements(Node::syntaxTree()) -> [syntaxTree()]
Returns the list of subnodes of a form_list node.

See also: form_list/1.

fun_expr(Clauses::[syntaxTree()]) -> syntaxTree()
Creates an abstract fun-expression. If Clauses is [C1, ..., Cn], the result represents "fun C1; ...; Cn
end". More exactly, if each Ci represents "(Pi1, ..., Pim) Gi -> Bi", then the result represents "fun
(P11, ..., P1m) G1 -> B1; ...; (Pn1, ..., Pnm) Gn -> Bn end".

See also: fun_expr_arity/1, fun_expr_clauses/1.

fun_expr_arity(Node::syntaxTree()) -> arity()
Returns the arity of a fun_expr node. The result is the number of parameter patterns in the first clause of the fun-
expression; subsequent clauses are ignored.

An exception is thrown if fun_expr_clauses(Node) returns an empty list, or if the first element of that list is
not a syntax tree C of type clause such that clause_patterns(C) is a nonempty list.

See also: clause/3, clause_patterns/1, fun_expr/1, fun_expr_clauses/1.

fun_expr_clauses(Node::syntaxTree()) -> [syntaxTree()]
Returns the list of clause subtrees of a fun_expr node.

See also: fun_expr/1.

fun_type() -> syntaxTree()
Creates an abstract fun of any type. The result represents "fun()".

function(Name::syntaxTree(), Clauses::[syntaxTree()]) -> syntaxTree()
Creates an abstract function definition. If Clauses is [C1, ..., Cn], the result represents "Name C1; ...;
Name Cn.". More exactly, if each Ci represents "(Pi1, ..., Pim) Gi -> Bi", then the result represents
"Name(P11, ..., P1m) G1 -> B1; ...; Name(Pn1, ..., Pnm) Gn -> Bn.". Function definitions
are source code forms.

See also: function_arity/1, function_clauses/1, function_name/1, is_form/1.

function_arity(Node::syntaxTree()) -> arity()
Returns the arity of a function node. The result is the number of parameter patterns in the first clause of the function;
subsequent clauses are ignored.

An exception is thrown if function_clauses(Node) returns an empty list, or if the first element of that list is
not a syntax tree C of type clause such that clause_patterns(C) is a nonempty list.

See also: clause/3, clause_patterns/1, function/2, function_clauses/1.

function_clauses(Node::syntaxTree()) -> [syntaxTree()]
Returns the list of clause subtrees of a function node.

See also: function/2.

26 | Ericsson AB. All Rights Reserved.: Syntax_Tools

erl_syntax

function_name(Node::syntaxTree()) -> syntaxTree()
Returns the name subtree of a function node.

See also: function/2.

function_type(Type) -> term()
Equivalent to function_type(any_arity, Type).

function_type(Arguments::any_arity | syntaxTree(), Return::syntaxTree()) ->
syntaxTree()
Creates an abstract function type. If Arguments is [T1, ..., Tn], then if it occurs within a function specification,
the result represents "(T1, ...Tn) -> Return"; otherwise it represents "fun((T1, ...Tn) -> Return)".
If Arguments is any_arity, it represents "fun((...) -> Return)".

Note that the erl_parse representation is identical for "FunctionType" and "fun(FunctionType)".

See also: function_type_arguments/1, function_type_return/1.

function_type_arguments(Node::syntaxTree()) -> any_arity | [syntaxTree()]
Returns the argument types subtrees of a function_type node. If Node represents "fun((...) -> Return)",
any_arity is returned; otherwise, if Node represents "(T1, ...Tn) -> Return" or "fun((T1, ...Tn)
-> Return)", [T1, ..., Tn] is returned.

See also: function_type/1, function_type/2.

function_type_return(Node::syntaxTree()) -> syntaxTree()
Returns the return type subtrees of a function_type node.

See also: function_type/1, function_type/2.

generator(Pattern::syntaxTree(), Body::syntaxTree()) -> syntaxTree()
Creates an abstract generator. The result represents "Pattern <- Body".

See also: binary_comp/2, generator_body/1, generator_pattern/1, list_comp/2.

generator_body(Node::syntaxTree()) -> syntaxTree()
Returns the body subtree of a generator node.

See also: generator/2.

generator_pattern(Node::syntaxTree()) -> syntaxTree()
Returns the pattern subtree of a generator node.

See also: generator/2.

get_ann(Tree::syntaxTree()) -> [term()]
Returns the list of user annotations associated with a syntax tree node. For a newly created node, this is the empty
list. The annotations may be any terms.

See also: get_attrs/1, set_ann/2.

Ericsson AB. All Rights Reserved.: Syntax_Tools | 27

erl_syntax

get_attrs(Tree::syntaxTree()) -> syntaxTreeAttributes()
Returns a representation of the attributes associated with a syntax tree node. The attributes are all the extra information
that can be attached to a node. Currently, this includes position information, source code comments, and user
annotations. The result of this function cannot be inspected directly; only attached to another node (see set_attrs/2).

For accessing individual attributes, see get_pos/1, get_ann/1, get_precomments/1 and get_postcomments/1.

See also: get_ann/1, get_pos/1, get_postcomments/1, get_precomments/1, set_attrs/2.

get_pos(Tree::syntaxTree()) -> term()
Returns the position information associated with Node. This is usually a nonnegative integer (indicating the source
code line number), but may be any term. By default, all new tree nodes have their associated position information
set to the integer zero.

See also: get_attrs/1, set_pos/2.

get_postcomments(Tree::syntaxTree()) -> [syntaxTree()]
Returns the associated post-comments of a node. This is a possibly empty list of abstract comments, in top-down
textual order. When the code is formatted, post-comments are typically displayed to the right of and/or below the
node. For example:

 {foo, X, Y} % Post-comment of tuple

If possible, the comment should be moved past any following separator characters on the same line, rather than placing
the separators on the following line. E.g.:

 foo([X | Xs], Y) ->
 foo(Xs, bar(X)); % Post-comment of 'bar(X)' node
 ...

(where the comment is moved past the rightmost ")" and the ";").

See also: comment/2, get_attrs/1, get_precomments/1, set_postcomments/2.

get_precomments(Tree::syntaxTree()) -> [syntaxTree()]
Returns the associated pre-comments of a node. This is a possibly empty list of abstract comments, in top-down textual
order. When the code is formatted, pre-comments are typically displayed directly above the node. For example:

 % Pre-comment of function
 foo(X) -> {bar, X}.

If possible, the comment should be moved before any preceding separator characters on the same line. E.g.:

 foo([X | Xs]) ->
 % Pre-comment of 'bar(X)' node
 [bar(X) | foo(Xs)];
 ...

(where the comment is moved before the "[").

See also: comment/2, get_attrs/1, get_postcomments/1, set_precomments/2.

has_comments(Tree::syntaxTree()) -> boolean()
Yields false if the node has no associated comments, and true otherwise.

28 | Ericsson AB. All Rights Reserved.: Syntax_Tools

erl_syntax

Note: This is equivalent to (get_precomments(Node) == []) and (get_postcomments(Node) ==
[]), but potentially more efficient.

See also: get_postcomments/1, get_precomments/1, remove_comments/1.

if_expr(Clauses::[syntaxTree()]) -> syntaxTree()
Creates an abstract if-expression. If Clauses is [C1, ..., Cn], the result represents "if C1; ...; Cn
end". More exactly, if each Ci represents "() Gi -> Bi", then the result represents "if G1 -> B1; ...;
Gn -> Bn end".

See also: case_expr/2, clause/3, if_expr_clauses/1.

if_expr_clauses(Node::syntaxTree()) -> [syntaxTree()]
Returns the list of clause subtrees of an if_expr node.

See also: if_expr/1.

implicit_fun(Name::syntaxTree()) -> syntaxTree()
Creates an abstract "implicit fun" expression. The result represents "fun Name". Name should represent either F/
A or M:F/A

See also: arity_qualifier/2, implicit_fun/2, implicit_fun/3, implicit_fun_name/1, module_qualifier/2.

implicit_fun(Name::syntaxTree(), Arity::none | syntaxTree()) -> syntaxTree()
Creates an abstract "implicit fun" expression. If Arity is none, this is equivalent to implicit_fun(Name),
otherwise it is equivalent to implicit_fun(arity_qualifier(Name, Arity)).

(This is a utility function.)

See also: implicit_fun/1, implicit_fun/3.

implicit_fun(Module::none | syntaxTree(), Name::syntaxTree(),
Arity::syntaxTree()) -> syntaxTree()
Creates an abstract module-qualified "implicit fun" expression. If Module is none,
this is equivalent to implicit_fun(Name, Arity), otherwise it is equivalent to
implicit_fun(module_qualifier(Module, arity_qualifier(Name, Arity)).

(This is a utility function.)

See also: implicit_fun/1, implicit_fun/2.

implicit_fun_name(Node::syntaxTree()) -> syntaxTree()
Returns the name subtree of an implicit_fun node.

Note: if Node represents "fun N/A" or "fun M:N/A", then the result is the subtree representing "N/A" or "M:N/
A", respectively.

See also: arity_qualifier/2, implicit_fun/1, module_qualifier/2.

infix_expr(Left::syntaxTree(), Operator::syntaxTree(), Right::syntaxTree()) -
> syntaxTree()
Creates an abstract infix operator expression. The result represents "Left Operator Right".

See also: infix_expr_left/1, infix_expr_operator/1, infix_expr_right/1, prefix_expr/2.

Ericsson AB. All Rights Reserved.: Syntax_Tools | 29

erl_syntax

infix_expr_left(Node::syntaxTree()) -> syntaxTree()
Returns the left argument subtree of an infix_expr node.

See also: infix_expr/3.

infix_expr_operator(Node::syntaxTree()) -> syntaxTree()
Returns the operator subtree of an infix_expr node.

See also: infix_expr/3.

infix_expr_right(Node::syntaxTree()) -> syntaxTree()
Returns the right argument subtree of an infix_expr node.

See also: infix_expr/3.

integer(Value::integer()) -> syntaxTree()
Creates an abstract integer literal. The lexical representation is the canonical decimal numeral of Value.

See also: integer_literal/1, integer_value/1, is_integer/2.

integer_literal(Node::syntaxTree()) -> string()
Returns the numeral string represented by an integer node.

See also: integer/1.

integer_range_type(Low::syntaxTree(), High::syntaxTree()) -> syntaxTree()
Creates an abstract range type. The result represents "Low .. High".

See also: integer_range_type_high/1, integer_range_type_low/1.

integer_range_type_high(Node::syntaxTree()) -> syntaxTree()
Returns the high limit of an integer_range_type node.

See also: integer_range_type/2.

integer_range_type_low(Node::syntaxTree()) -> syntaxTree()
Returns the low limit of an integer_range_type node.

See also: integer_range_type/2.

integer_value(Node::syntaxTree()) -> integer()
Returns the value represented by an integer node.

See also: integer/1.

is_atom(Node::syntaxTree(), Value::atom()) -> boolean()
Returns true if Node has type atom and represents Value, otherwise false.

See also: atom/1.

30 | Ericsson AB. All Rights Reserved.: Syntax_Tools

erl_syntax

is_char(Node::syntaxTree(), Value::char()) -> boolean()
Returns true if Node has type char and represents Value, otherwise false.

See also: char/1.

is_form(Node::syntaxTree()) -> boolean()
Returns true if Node is a syntax tree representing a so-called "source code form", otherwise false. Forms are the
Erlang source code units which, placed in sequence, constitute an Erlang program. Current form types are:

attribute comment error_marker eof_marker
form_list function warning_marker text

See also: attribute/2, comment/2, eof_marker/0, error_marker/1, form_list/1, function/2, type/1, warning_marker/1.

is_integer(Node::syntaxTree(), Value::integer()) -> boolean()
Returns true if Node has type integer and represents Value, otherwise false.

See also: integer/1.

is_leaf(Node::syntaxTree()) -> boolean()
Returns true if Node is a leaf node, otherwise false. The currently recognised leaf node types are:

atom char comment eof_marker error_marker
float fun_type integer nil operator string
text underscore variable warning_marker

A node of type map_expr is a leaf node if and only if it has no argument and no fields. A node of type map_type
is a leaf node if and only if it has no fields (any_size). A node of type tuple is a leaf node if and only if its arity
is zero. A node of type tuple_type is a leaf node if and only if it has no elements (any_size).

Note: not all literals are leaf nodes, and vice versa. E.g., tuples with nonzero arity and nonempty lists may be literals,
but are not leaf nodes. Variables, on the other hand, are leaf nodes but not literals.

See also: is_literal/1, type/1.

is_list_skeleton(Node::syntaxTree()) -> boolean()
Returns true if Node has type list or nil, otherwise false.

See also: list/2, nil/0.

is_literal(T::syntaxTree()) -> boolean()
Returns true if Node represents a literal term, otherwise false. This function returns true if and only if the value
of concrete(Node) is defined.

See also: abstract/1, concrete/1.

is_proper_list(Node::syntaxTree()) -> boolean()
Returns true if Node represents a proper list, and false otherwise. A proper list is a list skeleton either on the form
"[]" or "[E1, ..., En]", or "[... | Tail]" where recursively Tail also represents a proper list.

Note: Since Node is a syntax tree, the actual run-time values corresponding to its subtrees may often be partially or
completely unknown. Thus, if Node represents e.g. "[... | Ns]" (where Ns is a variable), then the function will
return false, because it is not known whether Ns will be bound to a list at run-time. If Node instead represents e.g.
"[1, 2, 3]" or "[A | []]", then the function will return true.

Ericsson AB. All Rights Reserved.: Syntax_Tools | 31

erl_syntax

See also: list/2.

is_string(Node::syntaxTree(), Value::string()) -> boolean()
Returns true if Node has type string and represents Value, otherwise false.

See also: string/1.

is_tree(Tree::syntaxTree()) -> boolean()
For special purposes only. Returns true if Tree is an abstract syntax tree and false otherwise.

Note: this function yields false for all "old-style" erl_parse-compatible "parse trees".

See also: tree/2.

join_comments(Source::syntaxTree(), Target::syntaxTree()) -> syntaxTree()
Appends the comments of Source to the current comments of Target.

Note: This is equivalent to add_postcomments(get_postcomments(Source),
add_precomments(get_precomments(Source), Target)), but potentially more efficient.

See also: add_postcomments/2, add_precomments/2, comment/2, get_postcomments/1, get_precomments/1.

list(List::[syntaxTree()]) -> syntaxTree()
Equivalent to list(List, none).

list(Elements::[syntaxTree()], Tail::none | syntaxTree()) -> syntaxTree()
Constructs an abstract list skeleton. The result has type list or nil. If List is a nonempty list [E1, ..., En],
the result has type list and represents either "[E1, ..., En]", if Tail is none, or otherwise "[E1, ..., En
| Tail]". If List is the empty list, Tail must be none, and in that case the result has type nil and represents
"[]" (see nil/0).

The difference between lists as semantic objects (built up of individual "cons" and "nil" terms) and the various syntactic
forms for denoting lists may be bewildering at first. This module provides functions both for exact control of the
syntactic representation as well as for the simple composition and deconstruction in terms of cons and head/tail
operations.

Note: in list(Elements, none), the "nil" list terminator is implicit and has no associated information (see
get_attrs/1), while in the seemingly equivalent list(Elements, Tail) when Tail has type nil, the list
terminator subtree Tail may have attached attributes such as position, comments, and annotations, which will be
preserved in the result.

See also: compact_list/1, cons/2, get_attrs/1, is_list_skeleton/1, is_proper_list/1, list/1, list_elements/1, list_head/1,
list_length/1, list_prefix/1, list_suffix/1, list_tail/1, nil/0, normalize_list/1.

list_comp(Template::syntaxTree(), Body::[syntaxTree()]) -> syntaxTree()
Creates an abstract list comprehension. If Body is [E1, ..., En], the result represents "[Template ||
E1, ..., En]".

See also: generator/2, list_comp_body/1, list_comp_template/1.

list_comp_body(Node::syntaxTree()) -> [syntaxTree()]
Returns the list of body subtrees of a list_comp node.

32 | Ericsson AB. All Rights Reserved.: Syntax_Tools

erl_syntax

See also: list_comp/2.

list_comp_template(Node::syntaxTree()) -> syntaxTree()
Returns the template subtree of a list_comp node.

See also: list_comp/2.

list_elements(Node::syntaxTree()) -> [syntaxTree()]
Returns the list of element subtrees of a list skeleton. Node must represent a proper list. E.g., if Node represents
"[X1, X2 | [X3, X4 | []]", then list_elements(Node) yields the list [X1, X2, X3, X4].

See also: is_proper_list/1, list/2.

list_head(Node::syntaxTree()) -> syntaxTree()
Returns the head element subtree of a list node. If Node represents "[Head ...]", the result will represent
"Head".

See also: cons/2, list/2, list_tail/1.

list_length(Node::syntaxTree()) -> non_neg_integer()
Returns the number of element subtrees of a list skeleton. Node must represent a proper list. E.g., if Node represents
"[X1 | [X2, X3 | [X4, X5, X6]]]", then list_length(Node) returns the integer 6.

Note: this is equivalent to length(list_elements(Node)), but potentially more efficient.

See also: is_proper_list/1, list/2, list_elements/1.

list_prefix(Node::syntaxTree()) -> [syntaxTree()]
Returns the prefix element subtrees of a list node. If Node represents "[E1, ..., En]" or "[E1, ..., En
| Tail]", the returned value is [E1, ..., En].

See also: list/2.

list_suffix(Node::syntaxTree()) -> none | syntaxTree()
Returns the suffix subtree of a list node, if one exists. If Node represents "[E1, ..., En | Tail]", the
returned value is Tail, otherwise, i.e., if Node represents "[E1, ..., En]", none is returned.

Note that even if this function returns some Tail that is not none, the type of Tail can be nil, if the tail has been
given explicitly, and the list skeleton has not been compacted (see compact_list/1).

See also: compact_list/1, list/2, nil/0.

list_tail(Node::syntaxTree()) -> syntaxTree()
Returns the tail of a list node. If Node represents a single-element list "[E]", then the result has type nil,
representing "[]". If Node represents "[E1, E2 ...]", the result will represent "[E2 ...]", and if Node
represents "[Head | Tail]", the result will represent "Tail".

See also: cons/2, list/2, list_head/1.

macro(Name::syntaxTree()) -> syntaxTree()
Equivalent to macro(Name, none).

Ericsson AB. All Rights Reserved.: Syntax_Tools | 33

erl_syntax

macro(Name::syntaxTree(), Arguments::none | [syntaxTree()]) -> syntaxTree()
Creates an abstract macro application. If Arguments is none, the result represents "?Name", otherwise, if
Arguments is [A1, ..., An], the result represents "?Name(A1, ..., An)".

Notes: if Arguments is the empty list, the result will thus represent "?Name()", including a pair of matching
parentheses.

The only syntactical limitation imposed by the preprocessor on the arguments to a macro application (viewed as
sequences of tokens) is that they must be balanced with respect to parentheses, brackets, begin ... end,
case ... end, etc. The text node type can be used to represent arguments which are not regular Erlang constructs.

See also: macro/1, macro_arguments/1, macro_name/1, text/1.

macro_arguments(Node::syntaxTree()) -> none | [syntaxTree()]
Returns the list of argument subtrees of a macro node, if any. If Node represents "?Name", none is returned.
Otherwise, if Node represents "?Name(A1, ..., An)", [A1, ..., An] is returned.

See also: macro/2.

macro_name(Node::syntaxTree()) -> syntaxTree()
Returns the name subtree of a macro node.

See also: macro/2.

make_tree(X1::atom(), X2::[[syntaxTree()]]) -> syntaxTree()
Creates a syntax tree with the given type and subtrees. Type must be a node type name (see type/1) that does not
denote a leaf node type (see is_leaf/1). Groups must be a nonempty list of groups of syntax trees, representing the
subtrees of a node of the given type, in left-to-right order as they would occur in the printed program text, grouped
by category as done by subtrees/1.

The result of copy_attrs(Node, make_tree(type(Node), subtrees(Node))) (see update_tree/2)
represents the same source code text as the original Node, assuming that subtrees(Node) yields a nonempty list.
However, it does not necessarily have the same data representation as Node.

See also: copy_attrs/2, is_leaf/1, subtrees/1, type/1, update_tree/2.

map_expr(Fields::[syntaxTree()]) -> syntaxTree()
Equivalent to map_expr(none, Fields).

map_expr(Argument::none | syntaxTree(), Fields::[syntaxTree()]) ->
syntaxTree()
Creates an abstract map expression. If Fields is [F1, ..., Fn], then if Argument is none, the result represents
"#{F1, ..., Fn}", otherwise it represents "Argument#{F1, ..., Fn}".

See also: map_expr/1, map_expr_argument/1, map_expr_fields/1, map_field_assoc/2, map_field_exact/2.

map_expr_argument(Node::syntaxTree()) -> none | syntaxTree()
Returns the argument subtree of a map_expr node, if any. If Node represents "#{...}", none is returned.
Otherwise, if Node represents "Argument#{...}", Argument is returned.

See also: map_expr/2.

34 | Ericsson AB. All Rights Reserved.: Syntax_Tools

erl_syntax

map_expr_fields(Node::syntaxTree()) -> [syntaxTree()]
Returns the list of field subtrees of a map_expr node.

See also: map_expr/2.

map_field_assoc(Name::syntaxTree(), Value::syntaxTree()) -> syntaxTree()
Creates an abstract map assoc field. The result represents "Name => Value".

See also: map_expr/2, map_field_assoc_name/1, map_field_assoc_value/1.

map_field_assoc_name(Node::syntaxTree()) -> syntaxTree()
Returns the name subtree of a map_field_assoc node.

See also: map_field_assoc/2.

map_field_assoc_value(Node::syntaxTree()) -> syntaxTree()
Returns the value subtree of a map_field_assoc node.

See also: map_field_assoc/2.

map_field_exact(Name::syntaxTree(), Value::syntaxTree()) -> syntaxTree()
Creates an abstract map exact field. The result represents "Name := Value".

See also: map_expr/2, map_field_exact_name/1, map_field_exact_value/1.

map_field_exact_name(Node::syntaxTree()) -> syntaxTree()
Returns the name subtree of a map_field_exact node.

See also: map_field_exact/2.

map_field_exact_value(Node::syntaxTree()) -> syntaxTree()
Returns the value subtree of a map_field_exact node.

See also: map_field_exact/2.

map_type() -> term()
Equivalent to map_type(any_size).

map_type(Fields::any_size | [syntaxTree()]) -> syntaxTree()
Creates an abstract type map. If Fields is [F1, ..., Fn], the result represents "#{F1, ..., Fn}"; otherwise,
if Fields is any_size, it represents "map()".

See also: map_type_fields/1.

map_type_assoc(Name::syntaxTree(), Value::syntaxTree()) -> syntaxTree()
Creates an abstract map type assoc field. The result represents "Name => Value".

See also: map_type/1, map_type_assoc_name/1, map_type_assoc_value/1.

Ericsson AB. All Rights Reserved.: Syntax_Tools | 35

erl_syntax

map_type_assoc_name(Node::syntaxTree()) -> syntaxTree()
Returns the name subtree of a map_type_assoc node.

See also: map_type_assoc/2.

map_type_assoc_value(Node::syntaxTree()) -> syntaxTree()
Returns the value subtree of a map_type_assoc node.

See also: map_type_assoc/2.

map_type_exact(Name::syntaxTree(), Value::syntaxTree()) -> syntaxTree()
Creates an abstract map type exact field. The result represents "Name := Value".

See also: map_type/1, map_type_exact_name/1, map_type_exact_value/1.

map_type_exact_name(Node::syntaxTree()) -> syntaxTree()
Returns the name subtree of a map_type_exact node.

See also: map_type_exact/2.

map_type_exact_value(Node::syntaxTree()) -> syntaxTree()
Returns the value subtree of a map_type_exact node.

See also: map_type_exact/2.

map_type_fields(Node::syntaxTree()) -> any_size | [syntaxTree()]
Returns the list of field subtrees of a map_type node. If Node represents "map()", any_size is returned;
otherwise, if Node represents "#{F1, ..., Fn}", [F1, ..., Fn] is returned.

See also: map_type/0, map_type/1.

match_expr(Pattern::syntaxTree(), Body::syntaxTree()) -> syntaxTree()
Creates an abstract match-expression. The result represents "Pattern = Body".

See also: match_expr_body/1, match_expr_pattern/1.

match_expr_body(Node::syntaxTree()) -> syntaxTree()
Returns the body subtree of a match_expr node.

See also: match_expr/2.

match_expr_pattern(Node::syntaxTree()) -> syntaxTree()
Returns the pattern subtree of a match_expr node.

See also: match_expr/2.

meta(T::syntaxTree()) -> syntaxTree()
Creates a meta-representation of a syntax tree. The result represents an Erlang expression "MetaTree" which, if
evaluated, will yield a new syntax tree representing the same source code text as Tree (although the actual data
representation may be different). The expression represented by MetaTree is implementation independent with

36 | Ericsson AB. All Rights Reserved.: Syntax_Tools

erl_syntax

regard to the data structures used by the abstract syntax tree implementation. Comments attached to nodes of Tree
will be preserved, but other attributes are lost.

Any node in Tree whose node type is variable (see type/1), and whose list of annotations (see get_ann/1) contains
the atom meta_var, will remain unchanged in the resulting tree, except that exactly one occurrence of meta_var
is removed from its annotation list.

The main use of the function meta/1 is to transform a data structure Tree, which represents a piece of program code,
into a form that is representation independent when printed. E.g., suppose Tree represents a variable named "V".
Then (assuming a function print/1 for printing syntax trees), evaluating print(abstract(Tree)) - simply
using abstract/1 to map the actual data structure onto a syntax tree representation - would output a string that might look
something like "{tree, variable, ..., "V", ...}", which is obviously dependent on the implementation
of the abstract syntax trees. This could e.g. be useful for caching a syntax tree in a file. However, in some situations
like in a program generator generator (with two "generator"), it may be unacceptable. Using print(meta(Tree))
instead would output a representation independent syntax tree generating expression; in the above case, something
like "erl_syntax:variable("V")".

See also: abstract/1, get_ann/1, type/1.

module_qualifier(Module::syntaxTree(), Body::syntaxTree()) -> syntaxTree()
Creates an abstract module qualifier. The result represents "Module:Body".

See also: module_qualifier_argument/1, module_qualifier_body/1.

module_qualifier_argument(Node::syntaxTree()) -> syntaxTree()
Returns the argument (the module) subtree of a module_qualifier node.

See also: module_qualifier/2.

module_qualifier_body(Node::syntaxTree()) -> syntaxTree()
Returns the body subtree of a module_qualifier node.

See also: module_qualifier/2.

named_fun_expr(Name::syntaxTree(), Clauses::[syntaxTree()]) -> syntaxTree()
Creates an abstract named fun-expression. If Clauses is [C1, ..., Cn], the result represents "fun Name
C1; ...; Name Cn end". More exactly, if each Ci represents "(Pi1, ..., Pim) Gi -> Bi", then the result
represents "fun Name(P11, ..., P1m) G1 -> B1; ...; Name(Pn1, ..., Pnm) Gn -> Bn end".

See also: named_fun_expr_arity/1, named_fun_expr_clauses/1, named_fun_expr_name/1.

named_fun_expr_arity(Node::syntaxTree()) -> arity()
Returns the arity of a named_fun_expr node. The result is the number of parameter patterns in the first clause of
the named fun-expression; subsequent clauses are ignored.

An exception is thrown if named_fun_expr_clauses(Node) returns an empty list, or if the first element of that
list is not a syntax tree C of type clause such that clause_patterns(C) is a nonempty list.

See also: clause/3, clause_patterns/1, named_fun_expr/2, named_fun_expr_clauses/1.

named_fun_expr_clauses(Node::syntaxTree()) -> [syntaxTree()]
Returns the list of clause subtrees of a named_fun_expr node.

See also: named_fun_expr/2.

Ericsson AB. All Rights Reserved.: Syntax_Tools | 37

erl_syntax

named_fun_expr_name(Node::syntaxTree()) -> syntaxTree()
Returns the name subtree of a named_fun_expr node.

See also: named_fun_expr/2.

nil() -> syntaxTree()
Creates an abstract empty list. The result represents "[]". The empty list is traditionally called "nil".

See also: is_list_skeleton/1, list/2.

normalize_list(Node::syntaxTree()) -> syntaxTree()
Expands an abstract list skeleton to its most explicit form. If Node represents "[E1, ..., En | Tail]", the result
represents "[E1 | ... [En | Tail1] ...]", where Tail1 is the result of normalize_list(Tail).
If Node represents "[E1, ..., En]", the result simply represents "[E1 | ... [En | []] ...]". If
Node does not represent a list skeleton, Node itself is returned.

See also: compact_list/1, list/2.

operator(Name::atom() | string()) -> syntaxTree()
Creates an abstract operator. The name of the operator is the character sequence represented by Name. This is analogous
to the print name of an atom, but an operator is never written within single-quotes; e.g., the result of operator('+
+') represents "++" rather than "'++'".

See also: atom/1, operator_literal/1, operator_name/1.

operator_literal(Node::syntaxTree()) -> string()
Returns the literal string represented by an operator node. This is simply the operator name as a string.

See also: operator/1.

operator_name(Node::syntaxTree()) -> atom()
Returns the name of an operator node. Note that the name is returned as an atom.

See also: operator/1.

parentheses(Expr::syntaxTree()) -> syntaxTree()
Creates an abstract parenthesised expression. The result represents "(Body)", independently of the context.

See also: parentheses_body/1.

parentheses_body(Node::syntaxTree()) -> syntaxTree()
Returns the body subtree of a parentheses node.

See also: parentheses/1.

prefix_expr(Operator::syntaxTree(), Argument::syntaxTree()) -> syntaxTree()
Creates an abstract prefix operator expression. The result represents "Operator Argument".

See also: infix_expr/3, prefix_expr_argument/1, prefix_expr_operator/1.

38 | Ericsson AB. All Rights Reserved.: Syntax_Tools

erl_syntax

prefix_expr_argument(Node::syntaxTree()) -> syntaxTree()
Returns the argument subtree of a prefix_expr node.

See also: prefix_expr/2.

prefix_expr_operator(Node::syntaxTree()) -> syntaxTree()
Returns the operator subtree of a prefix_expr node.

See also: prefix_expr/2.

receive_expr(Clauses::[syntaxTree()]) -> syntaxTree()
Equivalent to receive_expr(Clauses, none, []).

receive_expr(Clauses::[syntaxTree()], Timeout::none | syntaxTree(), Action::
[syntaxTree()]) -> syntaxTree()
Creates an abstract receive-expression. If Timeout is none, the result represents "receive C1; ...; Cn
end" (the Action argument is ignored). Otherwise, if Clauses is [C1, ..., Cn] and Action is [A1, ...,
Am], the result represents "receive C1; ...; Cn after Timeout -> A1, ..., Am end". More
exactly, if each Ci represents "(Pi) Gi -> Bi", then the result represents "receive P1 G1 -> B1; ...;
Pn Gn -> Bn ... end".

Note that in Erlang, a receive-expression must have at least one clause if no timeout part is specified.

See also: case_expr/2, clause/3, receive_expr/1, receive_expr_action/1, receive_expr_clauses/1,
receive_expr_timeout/1.

receive_expr_action(Node::syntaxTree()) -> [syntaxTree()]
Returns the list of action body subtrees of a receive_expr node. If Node represents "receive C1; ...;
Cn end", this is the empty list.

See also: receive_expr/3.

receive_expr_clauses(Node::syntaxTree()) -> [syntaxTree()]
Returns the list of clause subtrees of a receive_expr node.

See also: receive_expr/3.

receive_expr_timeout(Node::syntaxTree()) -> none | syntaxTree()
Returns the timeout subtree of a receive_expr node, if any. If Node represents "receive C1; ...; Cn
end", none is returned. Otherwise, if Node represents "receive C1; ...; Cn after Timeout -> ...
end", Timeout is returned.

See also: receive_expr/3.

record_access(Argument::syntaxTree(), Type::syntaxTree(),
Field::syntaxTree()) -> syntaxTree()
Creates an abstract record field access expression. The result represents "Argument#Type.Field".

See also: record_access_argument/1, record_access_field/1, record_access_type/1, record_expr/3.

Ericsson AB. All Rights Reserved.: Syntax_Tools | 39

erl_syntax

record_access_argument(Node::syntaxTree()) -> syntaxTree()
Returns the argument subtree of a record_access node.

See also: record_access/3.

record_access_field(Node::syntaxTree()) -> syntaxTree()
Returns the field subtree of a record_access node.

See also: record_access/3.

record_access_type(Node::syntaxTree()) -> syntaxTree()
Returns the type subtree of a record_access node.

See also: record_access/3.

record_expr(Type::syntaxTree(), Fields::[syntaxTree()]) -> syntaxTree()
Equivalent to record_expr(none, Type, Fields).

record_expr(Argument::none | syntaxTree(), Type::syntaxTree(), Fields::
[syntaxTree()]) -> syntaxTree()
Creates an abstract record expression. If Fields is [F1, ..., Fn], then if Argument is none, the result
represents "#Type{F1, ..., Fn}", otherwise it represents "Argument#Type{F1, ..., Fn}".

See also: record_access/3, record_expr/2, record_expr_argument/1, record_expr_fields/1, record_expr_type/1,
record_field/2, record_index_expr/2.

record_expr_argument(Node::syntaxTree()) -> none | syntaxTree()
Returns the argument subtree of a record_expr node, if any. If Node represents "#Type{...}", none is
returned. Otherwise, if Node represents "Argument#Type{...}", Argument is returned.

See also: record_expr/3.

record_expr_fields(Node::syntaxTree()) -> [syntaxTree()]
Returns the list of field subtrees of a record_expr node.

See also: record_expr/3.

record_expr_type(Node::syntaxTree()) -> syntaxTree()
Returns the type subtree of a record_expr node.

See also: record_expr/3.

record_field(Name::syntaxTree()) -> syntaxTree()
Equivalent to record_field(Name, none).

record_field(Name::syntaxTree(), Value::none | syntaxTree()) -> syntaxTree()
Creates an abstract record field specification. If Value is none, the result represents simply "Name", otherwise it
represents "Name = Value".

See also: record_expr/3, record_field_name/1, record_field_value/1.

40 | Ericsson AB. All Rights Reserved.: Syntax_Tools

erl_syntax

record_field_name(Node::syntaxTree()) -> syntaxTree()
Returns the name subtree of a record_field node.

See also: record_field/2.

record_field_value(Node::syntaxTree()) -> none | syntaxTree()
Returns the value subtree of a record_field node, if any. If Node represents "Name", none is returned.
Otherwise, if Node represents "Name = Value", Value is returned.

See also: record_field/2.

record_index_expr(Type::syntaxTree(), Field::syntaxTree()) -> syntaxTree()
Creates an abstract record field index expression. The result represents "#Type.Field".

(Note: the function name record_index/2 is reserved by the Erlang compiler, which is why that name could not
be used for this constructor.)

See also: record_expr/3, record_index_expr_field/1, record_index_expr_type/1.

record_index_expr_field(Node::syntaxTree()) -> syntaxTree()
Returns the field subtree of a record_index_expr node.

See also: record_index_expr/2.

record_index_expr_type(Node::syntaxTree()) -> syntaxTree()
Returns the type subtree of a record_index_expr node.

See also: record_index_expr/2.

record_type(Name::syntaxTree(), Fields::[syntaxTree()]) -> syntaxTree()
Creates an abstract record type. If Fields is [F1, ..., Fn], the result represents "#Name{F1, ..., Fn}".

See also: record_type_fields/1, record_type_name/1.

record_type_field(Name::syntaxTree(), Type::syntaxTree()) -> syntaxTree()
Creates an abstract record type field. The result represents "Name :: Type".

See also: record_type_field_name/1, record_type_field_type/1.

record_type_field_name(Node::syntaxTree()) -> syntaxTree()
Returns the name subtree of a record_type_field node.

See also: record_type_field/2.

record_type_field_type(Node::syntaxTree()) -> syntaxTree()
Returns the type subtree of a record_type_field node.

See also: record_type_field/2.

record_type_fields(Node::syntaxTree()) -> [syntaxTree()]
Returns the fields subtree of a record_type node.

Ericsson AB. All Rights Reserved.: Syntax_Tools | 41

erl_syntax

See also: record_type/2.

record_type_name(Node::syntaxTree()) -> syntaxTree()
Returns the name subtree of a record_type node.

See also: record_type/2.

remove_comments(Node::syntaxTree()) -> syntaxTree()
Clears the associated comments of Node.

Note: This is equivalent to set_precomments(set_postcomments(Node, []), []), but potentially more
efficient.

See also: set_postcomments/2, set_precomments/2.

revert(Node::syntaxTree()) -> syntaxTree()
Returns an erl_parse-compatible representation of a syntax tree, if possible. If Tree represents a well-formed
Erlang program or expression, the conversion should work without problems. Typically, is_tree/1 yields true if
conversion failed (i.e., the result is still an abstract syntax tree), and false otherwise.

The is_tree/1 test is not completely foolproof. For a few special node types (e.g. arity_qualifier), if such a node
occurs in a context where it is not expected, it will be left unchanged as a non-reverted subtree of the result. This can
only happen if Tree does not actually represent legal Erlang code.

See also: erl_parse(3), revert_forms/1.

revert_forms(Forms::forms()) -> [erl_parse()]
Reverts a sequence of Erlang source code forms. The sequence can be given either as a form_list syntax tree
(possibly nested), or as a list of "program form" syntax trees. If successful, the corresponding flat list of erl_parse-
compatible syntax trees is returned (see revert/1). If some program form could not be reverted, {error, Form} is
thrown. Standalone comments in the form sequence are discarded.

See also: form_list/1, is_form/1, revert/1.

set_ann(Node::syntaxTree(), As::[term()]) -> syntaxTree()
Sets the list of user annotations of Node to Annotations.

See also: add_ann/2, copy_ann/2, get_ann/1.

set_attrs(Node::syntaxTree(), Attr::syntaxTreeAttributes()) -> syntaxTree()
Sets the attributes of Node to Attributes.

See also: copy_attrs/2, get_attrs/1.

set_pos(Node::syntaxTree(), Pos::term()) -> syntaxTree()
Sets the position information of Node to Pos.

See also: copy_pos/2, get_pos/1.

set_postcomments(Node::syntaxTree(), Cs::[syntaxTree()]) -> syntaxTree()
Sets the post-comments of Node to Comments. Comments should be a possibly empty list of abstract comments,
in top-down textual order

42 | Ericsson AB. All Rights Reserved.: Syntax_Tools

erl_syntax

See also: add_postcomments/2, comment/2, copy_comments/2, get_postcomments/1, join_comments/2,
remove_comments/1, set_precomments/2.

set_precomments(Node::syntaxTree(), Cs::[syntaxTree()]) -> syntaxTree()
Sets the pre-comments of Node to Comments. Comments should be a possibly empty list of abstract comments,
in top-down textual order.

See also: add_precomments/2, comment/2, copy_comments/2, get_precomments/1, join_comments/2,
remove_comments/1, set_postcomments/2.

size_qualifier(Body::syntaxTree(), Size::syntaxTree()) -> syntaxTree()
Creates an abstract size qualifier. The result represents "Body:Size".

See also: size_qualifier_argument/1, size_qualifier_body/1.

size_qualifier_argument(Node::syntaxTree()) -> syntaxTree()
Returns the argument subtree (the size) of a size_qualifier node.

See also: size_qualifier/2.

size_qualifier_body(Node::syntaxTree()) -> syntaxTree()
Returns the body subtree of a size_qualifier node.

See also: size_qualifier/2.

string(String::string()) -> syntaxTree()
Creates an abstract string literal. The result represents "Text" (including the surrounding double-quotes), where
Text corresponds to the sequence of characters in Value, but not representing a specific string literal.

For example, the result of string("x\ny") represents any and all of "x\ny", "x\12y", "x\012y" and "x
\^Jy"; see char/1.

See also: char/1, is_string/2, string_literal/1, string_literal/2, string_value/1.

string_literal(Node::syntaxTree()) -> nonempty_string()
Returns the literal string represented by a string node. This includes surrounding double-quote characters.
Characters beyond 255 will be escaped.

See also: string/1.

string_literal(Node::syntaxTree(), X2::encoding()) -> nonempty_string()
Returns the literal string represented by a string node. This includes surrounding double-quote characters.
Depending on the encoding characters beyond 255 will be escaped (latin1) or copied as is (utf8).

See also: string/1.

string_value(Node::syntaxTree()) -> string()
Returns the value represented by a string node.

See also: string/1.

Ericsson AB. All Rights Reserved.: Syntax_Tools | 43

erl_syntax

subtrees(T::syntaxTree()) -> [[syntaxTree()]]
Returns the grouped list of all subtrees of a syntax tree. If Node is a leaf node (see is_leaf/1), this is the empty list,
otherwise the result is always a nonempty list, containing the lists of subtrees of Node, in left-to-right order as they
occur in the printed program text, and grouped by category. Often, each group contains only a single subtree.

Depending on the type of Node, the size of some groups may be variable (e.g., the group consisting of all the elements
of a tuple), while others always contain the same number of elements - usually exactly one (e.g., the group containing
the argument expression of a case-expression). Note, however, that the exact structure of the returned list (for a given
node type) should in general not be depended upon, since it might be subject to change without notice.

The function subtrees/1 and the constructor functions make_tree/2 and update_tree/2 can be a great help if one wants
to traverse a syntax tree, visiting all its subtrees, but treat nodes of the tree in a uniform way in most or all cases. Using
these functions makes this simple, and also assures that your code is not overly sensitive to extensions of the syntax
tree data type, because any node types not explicitly handled by your code can be left to a default case.

For example:

 postorder(F, Tree) ->
 F(case subtrees(Tree) of
 [] -> Tree;
 List -> update_tree(Tree,
 [[postorder(F, Subtree)
 || Subtree <- Group]
 || Group <- List])
 end).

maps the function F on Tree and all its subtrees, doing a post-order traversal of the syntax tree. (Note the use of
update_tree/2 to preserve node attributes.) For a simple function like:

 f(Node) ->
 case type(Node) of
 atom -> atom("a_" ++ atom_name(Node));
 _ -> Node
 end.

the call postorder(fun f/1, Tree) will yield a new representation of Tree in which all atom names have been
extended with the prefix "a_", but nothing else (including comments, annotations and line numbers) has been changed.

See also: copy_attrs/2, is_leaf/1, make_tree/2, type/1.

text(String::string()) -> syntaxTree()
Creates an abstract piece of source code text. The result represents exactly the sequence of characters in String.
This is useful in cases when one wants full control of the resulting output, e.g., for the appearance of floating-point
numbers or macro definitions.

See also: text_string/1.

text_string(Node::syntaxTree()) -> string()
Returns the character sequence represented by a text node.

See also: text/1.

tree(Type::atom()) -> tree()
Equivalent to tree(Type, []).

44 | Ericsson AB. All Rights Reserved.: Syntax_Tools

erl_syntax

tree(Type::atom(), Data::term()) -> tree()
For special purposes only. Creates an abstract syntax tree node with type tag Type and associated data Data.

This function and the related is_tree/1 and data/1 provide a uniform way to extend the set of erl_parse node types.
The associated data is any term, whose format may depend on the type tag.

Notes:

• Any nodes created outside of this module must have type tags distinct from those currently defined by this module;
see type/1 for a complete list.

• The type tag of a syntax tree node may also be used as a primary tag by the erl_parse representation; in that
case, the selector functions for that node type must handle both the abstract syntax tree and the erl_parse
form. The function type(T) should return the correct type tag regardless of the representation of T, so that the
user sees no difference between erl_syntax and erl_parse nodes.

See also: data/1, is_tree/1, type/1.

try_after_expr(Body::[syntaxTree()], After::[syntaxTree()]) -> syntaxTree()
Equivalent to try_expr(Body, [], [], After).

try_expr(Body::[syntaxTree()], Handlers::[syntaxTree()]) -> syntaxTree()
Equivalent to try_expr(Body, [], Handlers).

try_expr(Body::[syntaxTree()], Clauses::[syntaxTree()], Handlers::
[syntaxTree()]) -> syntaxTree()
Equivalent to try_expr(Body, Clauses, Handlers, []).

try_expr(Body::[syntaxTree()], Clauses::[syntaxTree()], Handlers::
[syntaxTree()], After::[syntaxTree()]) -> syntaxTree()
Creates an abstract try-expression. If Body is [B1, ..., Bn], Clauses is [C1, ..., Cj], Handlers is
[H1, ..., Hk], and After is [A1, ..., Am], the result represents "try B1, ..., Bn of C1; ...;
Cj catch H1; ...; Hk after A1, ..., Am end". More exactly, if each Ci represents "(CPi) CGi
-> CBi", and each Hi represents "(HPi) HGi -> HBi", then the result represents "try B1, ..., Bn of
CP1 CG1 -> CB1; ...; CPj CGj -> CBj catch HP1 HG1 -> HB1; ...; HPk HGk ->
HBk after A1, ..., Am end"; see case_expr/2. If Clauses is the empty list, the of ... section is left
out. If After is the empty list, the after ... section is left out. If Handlers is the empty list, and After is
nonempty, the catch ... section is left out.

See also: case_expr/2, class_qualifier/2, clause/3, try_after_expr/2, try_expr/2, try_expr/3, try_expr_after/1,
try_expr_body/1, try_expr_clauses/1, try_expr_handlers/1.

try_expr_after(Node::syntaxTree()) -> [syntaxTree()]
Returns the list of "after" subtrees of a try_expr node.

See also: try_expr/4.

try_expr_body(Node::syntaxTree()) -> [syntaxTree()]
Returns the list of body subtrees of a try_expr node.

See also: try_expr/4.

Ericsson AB. All Rights Reserved.: Syntax_Tools | 45

erl_syntax

try_expr_clauses(Node::syntaxTree()) -> [syntaxTree()]
Returns the list of case-clause subtrees of a try_expr node. If Node represents "try Body catch H1; ...;
Hn end", the result is the empty list.

See also: try_expr/4.

try_expr_handlers(Node::syntaxTree()) -> [syntaxTree()]
Returns the list of handler-clause subtrees of a try_expr node.

See also: try_expr/4.

tuple(List::[syntaxTree()]) -> syntaxTree()
Creates an abstract tuple. If Elements is [X1, ..., Xn], the result represents "{X1, ..., Xn}".

Note: The Erlang language has distinct 1-tuples, i.e., {X} is always distinct from X itself.

See also: tuple_elements/1, tuple_size/1.

tuple_elements(Node::syntaxTree()) -> [syntaxTree()]
Returns the list of element subtrees of a tuple node.

See also: tuple/1.

tuple_size(Node::syntaxTree()) -> non_neg_integer()
Returns the number of elements of a tuple node.

Note: this is equivalent to length(tuple_elements(Node)), but potentially more efficient.

See also: tuple/1, tuple_elements/1.

tuple_type() -> term()
Equivalent to tuple_type(any_size).

tuple_type(Elements::any_size | [syntaxTree()]) -> syntaxTree()
Creates an abstract type tuple. If Elements is [T1, ..., Tn], the result represents "{T1, ..., Tn}";
otherwise, if Elements is any_size, it represents "tuple()".

See also: tuple_type_elements/1.

tuple_type_elements(Node::syntaxTree()) -> any_size | [syntaxTree()]
Returns the list of type element subtrees of a tuple_type node. If Node represents "tuple()", any_size is
returned; otherwise, if Node represents "{T1, ..., Tn}", [T1, ..., Tn] is returned.

See also: tuple_type/0, tuple_type/1.

type(Tree::syntaxTree()) -> atom()
Returns the type tag of Node. If Node does not represent a syntax tree, evaluation fails with reason badarg. Node
types currently defined by this module are:

application annotated_type arity_qualifier atom
attribute binary binary_field bitstring_type
block_expr case_expr catch_expr char

46 | Ericsson AB. All Rights Reserved.: Syntax_Tools

erl_syntax

class_qualifier clause comment conjunction
constrained_function_type constraint disjunction eof_marker
error_marker float form_list fun_expr
fun_type function function_type generator
if_expr implicit_fun infix_expr integer
integer_range_type list list_comp macro
map_expr map_field_assoc map_field_exact map_type
map_type_assoc map_type_exact match_expr module_qualifier
named_fun_expr nil operator parentheses
prefix_expr receive_expr record_access record_expr
record_field record_index_expr record_type record_type_field
size_qualifier string text try_expr
tuple tuple_type typed_record_field type_application
type_union underscore user_type_application variable
warning_marker

The user may (for special purposes) create additional nodes with other type tags, using the tree/2 function.

Note: The primary constructor functions for a node type should always have the same name as the node type itself.

See also: annotated_type/2, application/3, arity_qualifier/2, atom/1, attribute/2, binary/1, binary_field/2,
bitstring_type/2, block_expr/1, case_expr/2, catch_expr/1, char/1, class_qualifier/2, clause/3, comment/2,
conjunction/1, constrained_function_type/2, constraint/2, disjunction/1, eof_marker/0, error_marker/1, float/1,
form_list/1, fun_expr/1, fun_type/0, function/2, function_type/1, function_type/2, generator/2, if_expr/1,
implicit_fun/2, infix_expr/3, integer/1, integer_range_type/2, list/2, list_comp/2, macro/2, map_expr/2,
map_field_assoc/2, map_field_exact/2, map_type/0, map_type/1, map_type_assoc/2, map_type_exact/2,
match_expr/2, module_qualifier/2, named_fun_expr/2, nil/0, operator/1, parentheses/1, prefix_expr/2, receive_expr/3,
record_access/3, record_expr/2, record_field/2, record_index_expr/2, record_type/2, record_type_field/2,
size_qualifier/2, string/1, text/1, tree/2, try_expr/3, tuple/1, tuple_type/0, tuple_type/1, type_application/2,
type_union/1, typed_record_field/2, underscore/0, user_type_application/2, variable/1, warning_marker/1.

type_application(TypeName::syntaxTree(), Arguments::[syntaxTree()]) ->
syntaxTree()
Creates an abstract type application expression. If Arguments is [T1, ..., Tn], the result represents
"TypeName(T1, ...Tn)".

See also: type_application/3, type_application_arguments/1, type_application_name/1, user_type_application/2.

type_application(Module::none | syntaxTree(), TypeName::syntaxTree(),
Arguments::[syntaxTree()]) -> syntaxTree()
Creates an abstract type application expression. If Module is none, this is call is
equivalent to type_application(TypeName, Arguments), otherwise it is equivalent to
type_application(module_qualifier(Module, TypeName), Arguments).

(This is a utility function.)

See also: module_qualifier/2, type_application/2.

type_application_arguments(Node::syntaxTree()) -> [syntaxTree()]
Returns the arguments subtrees of a type_application node.

See also: type_application/2.

Ericsson AB. All Rights Reserved.: Syntax_Tools | 47

erl_syntax

type_application_name(Node::syntaxTree()) -> syntaxTree()
Returns the type name subtree of a type_application node.

See also: type_application/2.

type_union(Types::[syntaxTree()]) -> syntaxTree()
Creates an abstract type union. If Types is [T1, ..., Tn], the result represents "T1 | ... | Tn".

See also: type_union_types/1.

type_union_types(Node::syntaxTree()) -> [syntaxTree()]
Returns the list of type subtrees of a type_union node.

See also: type_union/1.

typed_record_field(Field::syntaxTree(), Type::syntaxTree()) -> syntaxTree()
Creates an abstract typed record field specification. The result represents "Field :: Type".

See also: typed_record_field_body/1, typed_record_field_type/1.

typed_record_field_body(Node::syntaxTree()) -> syntaxTree()
Returns the field subtree of a typed_record_field node.

See also: typed_record_field/2.

typed_record_field_type(Node::syntaxTree()) -> syntaxTree()
Returns the type subtree of a typed_record_field node.

See also: typed_record_field/2.

underscore() -> syntaxTree()
Creates an abstract universal pattern ("_"). The lexical representation is a single underscore character. Note that this
is not a variable, lexically speaking.

See also: variable/1.

update_tree(Node::syntaxTree(), Groups::[[syntaxTree()]]) -> syntaxTree()
Creates a syntax tree with the same type and attributes as the given tree. This is equivalent to copy_attrs(Node,
make_tree(type(Node), Groups)).

See also: copy_attrs/2, make_tree/2, type/1.

user_type_application(TypeName::syntaxTree(), Arguments::[syntaxTree()]) ->
syntaxTree()
Creates an abstract user type. If Arguments is [T1, ..., Tn], the result represents
"TypeName(T1, ...Tn)".

See also: type_application/2, user_type_application_arguments/1, user_type_application_name/1.

user_type_application_arguments(Node::syntaxTree()) -> [syntaxTree()]
Returns the arguments subtrees of a user_type_application node.

48 | Ericsson AB. All Rights Reserved.: Syntax_Tools

erl_syntax

See also: user_type_application/2.

user_type_application_name(Node::syntaxTree()) -> syntaxTree()
Returns the type name subtree of a user_type_application node.

See also: user_type_application/2.

variable(Name::atom() | string()) -> syntaxTree()
Creates an abstract variable with the given name. Name may be any atom or string that represents a lexically valid
variable name, but not a single underscore character; see underscore/0.

Note: no checking is done whether the character sequence represents a proper variable name, i.e., whether or not its
first character is an uppercase Erlang character, or whether it does not contain control characters, whitespace, etc.

See also: underscore/0, variable_literal/1, variable_name/1.

variable_literal(Node::syntaxTree()) -> string()
Returns the name of a variable node as a string.

See also: variable/1.

variable_name(Node::syntaxTree()) -> atom()
Returns the name of a variable node as an atom.

See also: variable/1.

warning_marker(Warning::term()) -> syntaxTree()
Creates an abstract warning marker. The result represents an occurrence of a possible problem in the source code,
with an associated Erlang I/O ErrorInfo structure given by Error (see module io(3) for details). Warning markers
are regarded as source code forms, but have no defined lexical form.

Note: this is supported only for backwards compatibility with existing parsers and tools.

See also: eof_marker/0, error_marker/1, is_form/1, warning_marker_info/1.

warning_marker_info(Node::syntaxTree()) -> term()
Returns the ErrorInfo structure of a warning_marker node.

See also: warning_marker/1.

Ericsson AB. All Rights Reserved.: Syntax_Tools | 49

erl_syntax_lib

erl_syntax_lib
Erlang module

Support library for abstract Erlang syntax trees.

This module contains utility functions for working with the abstract data type defined in the module erl_syntax.

DATA TYPES
info_pair() = {key(), term()}

key() = attributes | errors | exports | functions | imports | module | records | warnings

ordset(T) = ordsets:ordset(T)

set(T) = sets:set(T)

syntaxTree() = erl_syntax:syntaxTree()

An abstract syntax tree. See the erl_syntax module for details.

Exports

analyze_application(Node::syntaxTree()) -> FunctionName | Arity
Types:

FunctionName = {atom(), Arity} | {ModuleName, FunctionName}

Arity = integer()

ModuleName = atom()

Returns the name of a called function. The result is a representation of the name of the applied function F/A, if Node
represents a function application "F(X_1, ..., X_A)". If the function is
not explicitly named (i.e., F is given by some expression), only the arity A is returned.

The evaluation throws syntax_error if Node does not represent a well-formed application expression.

See also: analyze_function_name/1.

analyze_attribute(Node::syntaxTree()) -> preprocessor | {atom(), atom()}
Analyzes an attribute node. If Node represents a preprocessor directive, the atom preprocessor is returned.
Otherwise, if Node represents a module attribute "-Name...", a tuple {Name, Info} is returned,
where Info depends on Name, as follows:

{module, Info}

where Info = analyze_module_attribute(Node).

{export, Info}

where Info = analyze_export_attribute(Node).

{import, Info}

where Info = analyze_import_attribute(Node).

50 | Ericsson AB. All Rights Reserved.: Syntax_Tools

erl_syntax_lib

{file, Info}

where Info = analyze_file_attribute(Node).

{record, Info}

where Info = analyze_record_attribute(Node).

{Name, Info}

where {Name, Info} = analyze_wild_attribute(Node).

The evaluation throws syntax_error if Node does not represent a well-formed module attribute.

See also: analyze_export_attribute/1, analyze_file_attribute/1, analyze_import_attribute/1,
analyze_module_attribute/1, analyze_record_attribute/1, analyze_wild_attribute/1.

analyze_export_attribute(Node::syntaxTree()) -> [FunctionName]
Types:

FunctionName = atom() | {atom(), integer()} | {ModuleName, FunctionName}

ModuleName = atom()

Returns the list of function names declared by an export attribute. We do not guarantee that each name occurs at most
once in the list. The order of listing is not defined.

The evaluation throws syntax_error if Node does not represent a well-formed export attribute.

See also: analyze_attribute/1.

analyze_file_attribute(Node::syntaxTree()) -> {string(), integer()}
Returns the file name and line number of a file attribute. The result is the pair {File, Line} if Node represents
"-file(File, Line).".

The evaluation throws syntax_error if Node does not represent a well-formed file attribute.

See also: analyze_attribute/1.

analyze_form(Node::syntaxTree()) -> {atom(), term()} | atom()
Analyzes a "source code form" node. If Node is a "form" type (cf. erl_syntax:is_form/1), the returned value
is a tuple {Type, Info} where Type is the node type and Info depends on Type, as follows:

{attribute, Info}

where Info = analyze_attribute(Node).

{error_marker, Info}

where Info = erl_syntax:error_marker_info(Node).

{function, Info}

where Info = analyze_function(Node).

{warning_marker, Info}

where Info = erl_syntax:warning_marker_info(Node).

For other types of forms, only the node type is returned.

The evaluation throws syntax_error if Node is not well-formed.

See also: analyze_attribute/1, analyze_function/1, erl_syntax:error_marker_info/1, erl_syntax:is_form/1,
erl_syntax:warning_marker_info/1.

Ericsson AB. All Rights Reserved.: Syntax_Tools | 51

erl_syntax_lib

analyze_forms(Forms) -> [{Key, term()}]
Types:

Forms = syntaxTree() | [syntaxTree()]

Key = attributes | errors | exports | functions | imports | module |
records | warnings

Analyzes a sequence of "program forms". The given Forms may be a single syntax tree of type form_list, or a
list of "program form" syntax trees. The returned value is a list of pairs {Key, Info}, where each value of Key
occurs at most once in the list; the absence of a particular key indicates that there is no well-defined value for that key.

Each entry in the resulting list contains the following corresponding information about the program forms:

{attributes, Attributes}

• Attributes = [{atom(), term()}]

Attributes is a list of pairs representing the names and corresponding values of all so-called "wild"
attributes (as e.g. "-compile(...)") occurring in Forms (cf. analyze_wild_attribute/1). We do
not guarantee that each name occurs at most once in the list. The order of listing is not defined.

{errors, Errors}

• Errors = [term()]

Errors is the list of error descriptors of all error_marker nodes that occur in Forms. The order of listing
is not defined.

{exports, Exports}

• Exports = [FunctionName]

• FunctionName = atom() | {atom(), integer()} | {ModuleName, FunctionName}

• ModuleName = atom()

Exports is a list of representations of those function names that are listed by export declaration attributes in
Forms (cf. analyze_export_attribute/1). We do not guarantee that each name occurs at most once in
the list. The order of listing is not defined.

{functions, Functions}

• Functions = [{atom(), integer()}]

Functions is a list of the names of the functions that are defined in Forms (cf. analyze_function/1).
We do not guarantee that each name occurs at most once in the list. The order of listing is not defined.

{imports, Imports}

• Imports = [{Module, Names}]

• Module = atom()

• Names = [FunctionName]

• FunctionName = atom() | {atom(), integer()} | {ModuleName, FunctionName}

• ModuleName = atom()

Imports is a list of pairs representing those module names and corresponding function names that are listed by
import declaration attributes in Forms (cf. analyze_import_attribute/1), where each Module occurs
at most once in Imports. We do not guarantee that each name occurs at most once in the lists of function names.
The order of listing is not defined.

{module, ModuleName}

• ModuleName = atom()

52 | Ericsson AB. All Rights Reserved.: Syntax_Tools

erl_syntax_lib

ModuleName is the name declared by a module attribute in Forms. If no module name is defined in Forms,
the result will contain no entry for the module key. If multiple module name declarations should occur, all but
the first will be ignored.

{records, Records}

• Records = [{atom(), Fields}]

• Fields = [{atom(), {Default, Type}}]

• Default = none | syntaxTree()

• Type = none | syntaxTree()

Records is a list of pairs representing the names and corresponding field declarations of all record declaration
attributes occurring in Forms. For fields declared without a default value, the corresponding value for Default
is the atom none. Similarly, for fields declared without a type, the corresponding value for Type is the atom
none (cf. analyze_record_attribute/1). We do not guarantee that each record name occurs at most
once in the list. The order of listing is not defined.

{warnings, Warnings}

• Warnings = [term()]

Warnings is the list of error descriptors of all warning_marker nodes that occur in Forms. The order of
listing is not defined.

The evaluation throws syntax_error if an ill-formed Erlang construct is encountered.

See also: analyze_export_attribute/1, analyze_function/1, analyze_import_attribute/1, analyze_record_attribute/1,
analyze_wild_attribute/1, erl_syntax:error_marker_info/1, erl_syntax:warning_marker_info/1.

analyze_function(Node::syntaxTree()) -> {atom(), integer()}
Returns the name and arity of a function definition. The result is a pair {Name, A} if Node represents a function
definition "Name(P_1, ..., P_A) -> ...".

The evaluation throws syntax_error if Node does not represent a well-formed function definition.

analyze_function_name(Node::syntaxTree()) -> FunctionName
Types:

FunctionName = atom() | {atom(), integer()} | {ModuleName, FunctionName}

ModuleName = atom()

Returns the function name represented by a syntax tree. If Node represents a function name, such as "foo/1" or
"bloggs:fred/2", a uniform representation of that name is returned. Different nestings of arity and module name
qualifiers in the syntax tree does not affect the result.

The evaluation throws syntax_error if Node does not represent a well-formed function name.

analyze_implicit_fun(Node::syntaxTree()) -> FunctionName
Types:

FunctionName = atom() | {atom(), integer()} | {ModuleName, FunctionName}

ModuleName = atom()

Returns the name of an implicit fun expression "fun F". The result is a representation of the function
name F. (Cf. analyze_function_name/1.)

The evaluation throws syntax_error if Node does not represent a well-formed implicit fun.

See also: analyze_function_name/1.

Ericsson AB. All Rights Reserved.: Syntax_Tools | 53

erl_syntax_lib

analyze_import_attribute(Node::syntaxTree()) -> {atom(), [FunctionName]} |
atom()
Types:

FunctionName = atom() | {atom(), integer()} | {ModuleName, FunctionName}

ModuleName = atom()

Returns the module name and (if present) list of function names declared by an import attribute. The returned value
is an atom Module or a pair {Module, Names}, where Names is a list of function names declared as imported
from the module named by Module. We do not guarantee that each name occurs at most once in Names. The order
of listing is not defined.

The evaluation throws syntax_error if Node does not represent a well-formed import attribute.

See also: analyze_attribute/1.

analyze_module_attribute(Node::syntaxTree()) -> Name::atom() | {Name::atom(),
Variables::[atom()]}
Returns the module name and possible parameters declared by a module attribute. If the attribute is a plain module
declaration such as -module(name), the result is the module name. If the attribute is a parameterized module
declaration, the result is a tuple containing the module name and a list of the parameter variable names.

The evaluation throws syntax_error if Node does not represent a well-formed module attribute.

See also: analyze_attribute/1.

analyze_record_attribute(Node::syntaxTree()) -> {atom(), Fields}
Types:

Fields = [{atom(), {Default, Type}}]

Default = none | syntaxTree()

Type = none | syntaxTree()

Returns the name and the list of fields of a record declaration attribute. The result is a pair {Name, Fields}, if Node
represents "-record(Name, {...}).", where Fields is a list of pairs {Label, {Default, Type}}
for each field "Label", "Label = Default", "Label :: Type", or "Label =
Default :: Type" in the declaration, listed in left-to-right order. If the field has no
default-value declaration, the value for Default will be the atom none. If the field has no type declaration, the value
for Type will be the atom none. We do not guarantee that each label occurs at most once in the list.

The evaluation throws syntax_error if Node does not represent a well-formed record declaration attribute.

See also: analyze_attribute/1, analyze_record_field/1.

analyze_record_expr(Node::syntaxTree()) -> {atom(), Info} | atom()
Types:

Info = {atom(), [{atom(), Value}]} | {atom(), atom()} | atom()

Value = syntaxTree()

Returns the record name and field name/names of a record expression. If Node has type record_expr,
record_index_expr or record_access, a pair {Type, Info} is returned, otherwise an atom Type is
returned. Type is the node type of Node, and Info depends on Type, as follows:

record_expr:

{atom(), [{atom(), Value}]}

54 | Ericsson AB. All Rights Reserved.: Syntax_Tools

erl_syntax_lib

record_access:

{atom(), atom()}

record_index_expr:

{atom(), atom()}

For a record_expr node, Info represents the record name and the list of descriptors for the involved fields,
listed in the order they appear. A field descriptor is a pair {Label, Value}, if Node represents "Label =
Value". For a record_access node, Info represents the record name and the field name. For a
record_index_expr node, Info represents the record name and the name field name.

The evaluation throws syntax_error if Node represents a record expression that is not well-formed.

See also: analyze_record_attribute/1, analyze_record_field/1.

analyze_record_field(Node::syntaxTree()) -> {atom(), {Default, Type}}
Types:

Default = none | syntaxTree()

Type = none | syntaxTree()

Returns the label, value-expression, and type of a record field specifier. The result is a pair {Label, {Default,
Type}}, if Node represents "Label", "Label = Default", "Label :: Type",
or "Label = Default :: Type". If the field has no value-expression, the value for
Default will be the atom none. If the field has no type, the value for Type will be the atom none.

The evaluation throws syntax_error if Node does not represent a well-formed record field specifier.

See also: analyze_record_attribute/1, analyze_record_expr/1.

analyze_type_application(Node::syntaxTree()) -> TypeName
Types:

TypeName = {atom(), integer()} | {ModuleName, {atom(), integer()}}

ModuleName = atom()

Returns the name of a used type. The result is a representation of the name of the used pre-defined or local type N/A,
if Node represents a local (user) type application "N(T_1, ..., T_A)",
or a representation of the name of the used remote type M:N/A if Node represents a remote user type application
"M:N(T_1, ..., T_A)".

The evaluation throws syntax_error if Node does not represent a well-formed (user) type application expression.

See also: analyze_type_name/1.

analyze_type_name(Node::syntaxTree()) -> TypeName
Types:

TypeName = atom() | {atom(), integer()} | {ModuleName, {atom(),
integer()}}

ModuleName = atom()

Returns the type name represented by a syntax tree. If Node represents a type name, such as "foo/1" or
"bloggs:fred/2", a uniform representation of that name is returned.

The evaluation throws syntax_error if Node does not represent a well-formed type name.

Ericsson AB. All Rights Reserved.: Syntax_Tools | 55

erl_syntax_lib

analyze_wild_attribute(Node::syntaxTree()) -> {atom(), term()}
Returns the name and value of a "wild" attribute. The result is the pair {Name, Value}, if Node represents "-
Name(Value)".

Note that no checking is done whether Name is a reserved attribute name such as module or export: it is assumed
that the attribute is "wild".

The evaluation throws syntax_error if Node does not represent a well-formed wild attribute.

See also: analyze_attribute/1.

annotate_bindings(Tree::syntaxTree()) -> syntaxTree()
Adds or updates annotations on nodes in a syntax tree. Equivalent to annotate_bindings(Tree, Bindings)
where the top-level environment Bindings is taken from the annotation {env, Bindings} on the root node of
Tree. An exception is thrown if no such annotation should exist.

See also: annotate_bindings/2.

annotate_bindings(Tree::syntaxTree(), Bindings::ordset(atom())) ->
syntaxTree()
Adds or updates annotations on nodes in a syntax tree. Bindings specifies the set of bound variables in the
environment of the top level node. The following annotations are affected:

• {env, Vars}, representing the input environment of the subtree.

• {bound, Vars}, representing the variables that are bound in the subtree.

• {free, Vars}, representing the free variables in the subtree.

Bindings and Vars are ordered-set lists (cf. module ordsets) of atoms representing variable names.

See also: ordsets(3), annotate_bindings/1.

fold(F::Function, Start::term(), Tree::syntaxTree()) -> term()
Types:

Function = (syntaxTree(), term()) -> term()

Folds a function over all nodes of a syntax tree. The result is the value of Function(X1, Function(X2, ...
Function(Xn, Start) ...)), where [X1, X2, ..., Xn] are the nodes of Tree in a post-order traversal.

See also: fold_subtrees/3, foldl_listlist/3.

fold_subtrees(F::Function, Start::term(), Tree::syntaxTree()) -> term()
Types:

Function = (syntaxTree(), term()) -> term()

Folds a function over the immediate subtrees of a syntax tree. This is similar to fold/3, but only on the immediate
subtrees of Tree, in left-to-right order; it does not include the root node of Tree.

See also: fold/3.

foldl_listlist(F::Function, Start::term(), Ls::[[term()]]) -> term()
Types:

Function = (term(), term()) -> term()

Like lists:foldl/3, but over a list of lists.

56 | Ericsson AB. All Rights Reserved.: Syntax_Tools

erl_syntax_lib

See also: lists:foldl/3, fold/3.

function_name_expansions(Names::[Name]) -> [{ShortName, Name}]
Types:

Name = ShortName | {atom(), Name}

ShortName = atom() | {atom(), integer()}

Creates a mapping from corresponding short names to full function names. Names are represented by nested tuples
of atoms and integers (cf. analyze_function_name/1). The result is a list containing a pair {ShortName,
Name} for each element Name in the given list, where the corresponding ShortName is the rightmost-innermost
part of Name. The list thus represents a finite mapping from unqualified names to the corresponding qualified names.

Note: the resulting list can contain more than one tuple {ShortName, Name} for the same ShortName, possibly
with different values for Name, depending on the given list.

See also: analyze_function_name/1.

is_fail_expr(Tree::syntaxTree()) -> boolean()
Returns true if Tree represents an expression which never terminates normally. Note that the reverse does not apply.
Currently, the detected cases are calls to exit/1, throw/1, erlang:error/1 and erlang:error/2.

See also: erlang:error/1, erlang:error/2, erlang:exit/1, erlang:throw/1.

limit(Tree, Depth) -> syntaxTree()
Equivalent to limit(Tree, Depth, Text) using the text "..." as default replacement.

See also: limit/3, erl_syntax:text/1.

limit(Tree::syntaxTree(), Depth::integer(), Node::syntaxTree()) ->
syntaxTree()
Limits a syntax tree to a specified depth. Replaces all non-leaf subtrees in Tree at the given Depth by Node. If
Depth is negative, the result is always Node, even if Tree has no subtrees.

When a group of subtrees (as e.g., the argument list of an application node) is at the specified depth, and there
are two or more subtrees in the group, these will be collectively replaced by Node even if they are leaf nodes. Groups
of subtrees that are above the specified depth will be limited in size, as if each subsequent tree in the group were one
level deeper than the previous. E.g., if Tree represents a list of integers "[1, 2, 3, 4, 5, 6, 7, 8, 9,
10]", the result of limit(Tree, 5) will represent [1, 2, 3, 4, ...].

The resulting syntax tree is typically only useful for pretty-printing or similar visual formatting.

See also: limit/2.

map(F::Function, Tree::syntaxTree()) -> syntaxTree()
Types:

Function = (syntaxTree()) -> syntaxTree()

Applies a function to each node of a syntax tree. The result of each application replaces the corresponding original
node. The order of traversal is bottom-up.

See also: map_subtrees/2.

map_subtrees(F::Function, Tree::syntaxTree()) -> syntaxTree()
Types:

Ericsson AB. All Rights Reserved.: Syntax_Tools | 57

erl_syntax_lib

Function = (Tree) -> Tree1

Applies a function to each immediate subtree of a syntax tree. The result of each application replaces the corresponding
original node.

See also: map/2.

mapfold(F::Function, Start::term(), Tree::syntaxTree()) -> {syntaxTree(),
term()}
Types:

Function = (syntaxTree(), term()) -> {syntaxTree(), term()}

Combines map and fold in a single operation. This is similar to map/2, but also propagates an extra value from each
application of the Function to the next, while doing a post-order traversal of the tree like fold/3. The value
Start is passed to the first function application, and the final result is the result of the last application.

See also: fold/3, map/2.

mapfold_subtrees(F::Function, Start::term(), Tree::syntaxTree()) ->
{syntaxTree(), term()}
Types:

Function = (syntaxTree(), term()) -> {syntaxTree(), term()}

Does a mapfold operation over the immediate subtrees of a syntax tree. This is similar to mapfold/3, but only on
the immediate subtrees of Tree, in left-to-right order; it does not include the root node of Tree.

See also: mapfold/3.

mapfoldl_listlist(F::Function, S::State, Ls::[[term()]]) -> {[[term()]],
term()}
Types:

Function = (term(), term()) -> {term(), term()}

Like lists:mapfoldl/3, but over a list of lists. The list of lists in the result has the same structure as the given
list of lists.

new_variable_name(Used::set(atom())) -> atom()
Returns an atom which is not already in the set Used. This is equivalent to new_variable_name(Function,
Used), where Function maps a given integer N to the atom whose name consists of "V" followed by the numeral
for N.

See also: new_variable_name/2.

new_variable_name(F::Function, Used::set(atom())) -> atom()
Types:

Function = (integer()) -> atom()

Returns a user-named atom which is not already in the set Used. The atom is generated by applying the given
Function to a generated integer. Integers are generated using an algorithm which tries to keep the names randomly
distributed within a reasonably small range relative to the number of elements in the set.

This function uses the module rand to generate new keys. The seed it uses may be initialized by calling
rand:seed/1 or rand:seed/2 before this function is first called.

See also: random(3), sets(3), new_variable_name/1.

58 | Ericsson AB. All Rights Reserved.: Syntax_Tools

erl_syntax_lib

new_variable_names(N::integer(), Used::set(atom())) -> [atom()]
Like new_variable_name/1, but generates a list of N new names.

See also: new_variable_name/1.

new_variable_names(N::integer(), F::Function, Used::set(atom())) -> [atom()]
Types:

Function = (integer()) -> atom()

Like new_variable_name/2, but generates a list of N new names.

See also: new_variable_name/2.

strip_comments(Tree::syntaxTree()) -> syntaxTree()
Removes all comments from all nodes of a syntax tree. All other attributes (such as position information) remain
unchanged. Standalone comments in form lists are removed; any other standalone comments are changed into null-
comments (no text, no indentation).

to_comment(Tree) -> syntaxTree()
Equivalent to to_comment(Tree, "% ").

to_comment(Tree::syntaxTree(), Prefix::string()) -> syntaxTree()
Equivalent to to_comment(Tree, Prefix, F) for a default formatting function F. The default F simply calls
erl_prettypr:format/1.

See also: to_comment/3, erl_prettypr:format/1.

to_comment(Tree::syntaxTree(), Prefix::string(), F::Printer) -> syntaxTree()
Types:

Printer = (syntaxTree()) -> string()

Transforms a syntax tree into an abstract comment. The lines of the comment contain the text for Node, as produced
by the given Printer function. Each line of the comment is prefixed by the string Prefix (this does not include
the initial "%" character of the comment line).

For example, the result of to_comment(erl_syntax:abstract([a,b,c])) represents

 %% [a,b,c]

(cf. to_comment/1).

Note: the text returned by the formatting function will be split automatically into separate comment lines at each line
break. No extra work is needed.

See also: to_comment/1, to_comment/2.

variables(Tree::syntaxTree()) -> set(atom())
Returns the names of variables occurring in a syntax tree, The result is a set of variable names represented by atoms.
Macro names are not included.

See also: sets(3).

Ericsson AB. All Rights Reserved.: Syntax_Tools | 59

erl_tidy

erl_tidy
Erlang module

Tidies and pretty-prints Erlang source code, removing unused functions, updating obsolete constructs and function
calls, etc.

Caveats: It is possible that in some intricate uses of macros, the automatic addition or removal of parentheses around
uses or arguments could cause the resulting program to be rejected by the compiler; however, we have found no such
case in existing code. Programs defining strange macros can usually not be read by this program, and in those cases,
no changes will be made.

If you really, really want to, you may call it "Inga".

Disclaimer: The author accepts no responsibility for errors introduced in code that has been processed by the program.
It has been reasonably well tested, but the possibility of errors remains. Keep backups of your original code safely
stored, until you feel confident that the new, modified code can be trusted.

DATA TYPES
filename() = file:filename()

syntaxTree() = erl_syntax:syntaxTree()

An abstract syntax tree. See the erl_syntax module for details.

Exports

dir() -> ok
Equivalent to dir("").

dir(Dir) -> ok
Equivalent to dir(Dir, []).

dir(Directory::filename(), Options::[term()]) -> ok
Tidies Erlang source files in a directory and its subdirectories.

Available options:

{follow_links, boolean()}

If the value is true, symbolic directory links will be followed. The default value is false.

{recursive, boolean()}

If the value is true, subdirectories will be visited recursively. The default value is true.

{regexp, string()}

The value denotes a regular expression (see module re). Tidying will only be applied to those regular files whose
names match this pattern. The default value is ".*\\.erl$", which matches normal Erlang source file names.

{test, boolean()}

If the value is true, no files will be modified. The default value is false.

60 | Ericsson AB. All Rights Reserved.: Syntax_Tools

erl_tidy

{verbose, boolean()}

If the value is true, progress messages will be output while the program is running, unless the quiet option
is true. The default value when calling dir/2 is true.

See the function file/2 for further options.

See also: re(3), file/2.

file(Name) -> ok
Equivalent to file(Name, []).

file(Name::filename(), Options::[term()]) -> ok
Tidies an Erlang source code file.

Available options are:

{backup_suffix, string()}

Specifies the file name suffix to be used when a backup file is created; the default value is ".bak" (cf. the
backups option).

{backups, boolean()}

If the value is true, existing files will be renamed before new files are opened for writing. The new names are
formed by appending the string given by the backup_suffix option to the original name. The default value
is true.

{dir, filename()}

Specifies the name of the directory in which the output file is to be written. By default, the current directory is
used. If the value is an empty string, the current directory is used.

{outfile, filename()}

Specifies the name of the file (without suffix) to which the resulting source code is to be written. If this option
is not specified, the Name argument is used.

{printer, Function}

• Function = (syntaxTree(), [term()]) -> string()

Specifies a function for prettyprinting Erlang syntax trees. This is used for outputting the resulting module
definition. The function is assumed to return formatted text for the given syntax tree, and should raise an exception
if an error occurs. The default formatting function calls erl_prettypr:format/2.

{test, boolean()}

If the value is true, no files will be modified; this is typically most useful if the verbose flag is enabled, to
generate reports about the program files without affecting them. The default value is false.

{stdout, boolean()}

If the value is true, instead of the file being written to disk it will be printed to stdout. The default value is
false.

See the function module/2 for further options.

See also: module/2, erl_prettypr:format/2.

module(Forms) -> syntaxTree()
Equivalent to module(Forms, []).

Ericsson AB. All Rights Reserved.: Syntax_Tools | 61

erl_tidy

module(Forms, Options::[term()]) -> syntaxTree()
Types:

Forms = syntaxTree() | [syntaxTree()]

Tidies a syntax tree representation of a module definition. The given Forms may be either a single syntax tree of type
form_list, or a list of syntax trees representing "program forms". In either case, Forms must represent a single
complete module definition. The returned syntax tree has type form_list and represents a tidied-up version of the
same source code.

Available options are:

{auto_export_vars, boolean()}

If the value is true, all matches "{V1, ..., Vn} = E" where E is a case-, if- or receive-expression whose
branches all return n-tuples (or explicitly throw exceptions) will be rewritten to bind and export the variables
V1, ..., Vn directly. The default value is false.

For example:

 {X, Y} = case ... of
 ... -> {17, foo()};
 ... -> {42, bar()}
 end

will be rewritten to:

 case ... of
 ... -> X = 17, Y = foo(), {X, Y};
 ... -> X = 42, Y = bar(), {X, Y}
 end

{auto_list_comp, boolean()}

If the value is true, calls to lists:map/2 and lists:filter/2 will be rewritten using list
comprehensions. The default value is true.

{file, string()}

Specifies the name of the file from which the source code was taken. This is only used for generation of error
reports. The default value is the empty string.

{idem, boolean()}

If the value is true, all options that affect how the code is modified are set to "no changes". For example, to
only update guard tests, and nothing else, use the options [new_guard_tests, idem]. (Recall that options
closer to the beginning of the list have higher precedence.)

{keep_unused, boolean()}

If the value is true, unused functions will not be removed from the code. The default value is false.

{new_guard_tests, boolean()}

If the value is true, guard tests will be updated to use the new names, e.g. "is_integer(X)" instead of
"integer(X)". The default value is true. See also old_guard_tests.

{no_imports, boolean()}

If the value is true, all import statements will be removed and calls to imported functions will be expanded to
explicit remote calls. The default value is false.

62 | Ericsson AB. All Rights Reserved.: Syntax_Tools

erl_tidy

{old_guard_tests, boolean()}

If the value is true, guard tests will be changed to use the old names instead of the new ones, e.g.
"integer(X)" instead of "is_integer(X)". The default value is false. This option overrides the
new_guard_tests option.

{quiet, boolean()}

If the value is true, all information messages and warning messages will be suppressed. The default value is
false.

{rename, [{{atom(), atom(), integer()}, {atom(), atom()}}]}

The value is a list of pairs, associating tuples {Module, Name, Arity} with tuples {NewModule,
NewName}, specifying renamings of calls to remote functions. By default, the value is the empty list.

The renaming affects only remote calls (also when disguised by import declarations); local calls within a module
are not affected, and no function definitions are renamed. Since the arity cannot change, the new name is
represented by {NewModule, NewName} only. Only calls matching the specified arity will match; multiple
entries are necessary for renaming calls to functions that have the same module and function name, but different
arities.

This option can also be used to override the default renaming of calls which use obsolete function names.

{verbose, boolean()}

If the value is true, progress messages will be output while the program is running, unless the quiet option
is true. The default value is false.

Ericsson AB. All Rights Reserved.: Syntax_Tools | 63

igor

igor
Erlang module

Igor: the Module Merger and Renamer.

The program Igor merges the source code of one or more Erlang modules into a single module, which can then replace
the original set of modules. Igor is also able to rename a set of (possibly interdependent) modules, without joining
them into a single module.

The main user interface consists of the functions merge/3 and rename/3. See also the function parse_transform/2.

A note of warning: Igor cannot do anything about the case when the name of a remote function is passed to the built-
in functions apply and spawn unless the module and function names are explicitly stated in the call, as in e.g.
apply(lists, reverse, [Xs]). In all other cases, Igor leaves such calls unchanged, and warns the user that
manual editing might be necessary.

Also note that Erlang records will be renamed as necessary to avoid non-equivalent definitions using the same record
name. This does not work if the source code accesses the name field of such record tuples by element/2 or similar
methods. Always use the record syntax to handle record tuples, if possible.

Disclaimer: the author of this program takes no responsibility for the correctness of the produced output, or for any
effects of its execution. In particular, the author may not be held responsible should Igor include the code of a deceased
madman in the result.

For further information on Igors in general, see e.g. "Young Frankenstein", Mel Brooks, 1974, and "The Fifth
Elephant", Terry Pratchett, 1999.

DATA TYPES
filename() = file:filename()

stubDescriptor() = {ModuleName, Functions, [Attribute]}

• ModuleName = atom()

• Functions = [{FunctionName, {ModuleName, FunctionName}}]

• FunctionName = {atom(), integer()}

• Attribute = {atom(), term()}

A stub module descriptor contains the module name, a list of exported functions, and a list of module attributes.
Each function is described by its name (which includes its arity), and the corresponding module and function that
it calls. (The arities should always match.) The attributes are simply described by key-value pairs.

syntaxTree() = erl_syntax:syntaxTree()

An abstract syntax tree. See the erl_syntax module for details.

Exports

create_stubs(Stubs::[stubDescriptor()], Options::[term()]) -> [string()]
Creates stub module source files corresponding to the given stub descriptors. The returned value is the list of names
of the created files. See merge_sources/3 for more information about stub descriptors.

Options:

{backup_suffix, string()}
{backups, boolean()}

64 | Ericsson AB. All Rights Reserved.: Syntax_Tools

igor

{printer, Function}
{stub_dir, filename()}
{suffix, string()}
{verbose, boolean()}

See merge/3 for details on these options.

See also: merge/3, merge_sources/3.

merge(Name::atom(), Files::[filename()]) -> [filename()]
Equivalent to merge(Name, Files, []).

merge(Name::atom(), Files::[filename()], Options::[term()]) -> [filename()]
Merges source code files to a single file. Name specifies the name of the resulting module - not the name of the
output file. Files is a list of file names and/or module names of source modules to be read and merged (see
merge_files/4 for details). All the input modules must be distinctly named.

The resulting source code is written to a file named "Name.erl" in the current directory, unless
otherwise specified by the options dir and outfile described below.

Examples:

• given a module m in file "m.erl" which uses the standard library module lists, calling igor:merge(m,
[m, lists]) will create a new file "m.erl which contains the code from m and exports the same functions, and
which includes the referenced code from the lists module. The original file will be renamed to "m.erl.bak".

• given modules m1 and m2, in corresponding files, calling igor:merge(m, [m1, m2]) will create a file
"m.erl" which contains the code from m1 and m2 and exports the functions of m1.

Stub module files are created for those modules that are to be exported by the target module (see options export,
stubs and stub_dir).

The function returns the list of file names of all created modules, including any automatically created stub modules.
The file name of the target module is always first in the list.

Note: If you get a "syntax error" message when trying to merge files (and you know those files to be correct), then
try the preprocess option. It typically means that your code contains too strange macros to be handled without
actually performing the preprocessor expansions.

Options:

{backup_suffix, string()}

Specifies the file name suffix to be used when a backup file is created; the default value is ".bak".

{backups, boolean()}

If the value is true, existing files will be renamed before new files are opened for writing. The new names are
formed by appending the string given by the backup_suffix option to the original name. The default value
is true.

{dir, filename()}

Specifies the name of the directory in which the output file is to be written. An empty string is interpreted as the
current directory. By default, the current directory is used.

{outfile, filename()}

Specifies the name of the file (without suffix) to which the resulting source code is to be written. By default, this
is the same as the Name argument.

Ericsson AB. All Rights Reserved.: Syntax_Tools | 65

igor

{preprocess, boolean()}

If the value is true, preprocessing will be done when reading the source code. See merge_files/4 for details.

{printer, Function}

• Function = (syntaxTree()) -> string()

Specifies a function for prettyprinting Erlang syntax trees. This is used for outputting the resulting module
definition, as well as for creating stub files. The function is assumed to return formatted text for the
given syntax tree, and should raise an exception if an error occurs. The default formatting function calls
erl_prettypr:format/2.

{stub_dir, filename()}

Specifies the name of the directory to which any generated stub module files are written. The default value is
"stubs".

{stubs, boolean()}

If the value is true, stub module files will be automatically generated for all exported modules that do not have
the same name as the target module. The default value is true.

{suffix, string()}

Specifies the suffix to be used for the output file names; the default value is ".erl".

See merge_files/4 for further options.

See also: merge/2, merge_files/4.

merge_files(Name::atom(), Files::[filename()], Options::[term()]) ->
{syntaxTree(), [stubDescriptor()]}
Equivalent to merge_files(Name, [], Files, Options).

merge_files(Name::atom(), Sources::[Forms], Files::[filename()], Options::
[term()]) -> {syntaxTree(), [stubDescriptor()]}
Types:

Forms = syntaxTree() | [syntaxTree()]

Merges source code files and syntax trees to a single syntax tree. This is a file-reading front end to
merge_sources/3. Name specifies the name of the resulting module - not the name of the output file. Sources
is a list of syntax trees and/or lists of "source code form" syntax trees, each entry representing a module definition.
Files is a list of file names and/or module names of source modules to be read and included. All the input modules
must be distinctly named.

If a name in Files is not the name of an existing file, Igor assumes it represents a module name, and tries to locate and
read the corresponding source file. The parsed files are appended to Sources and passed on to merge_sources/3,
i.e., entries in Sources are listed before entries read from files.

If no exports are listed by an export option (see merge_sources/3 for details), then if Name is also the name
of one of the input modules, that module will be exported; otherwise, the first listed module will be exported. Cf. the
examples under merge/3.

The result is a pair {Tree, Stubs}, where Tree represents the source code that is the result of merging all the
code in Sources and Files, and Stubs is a list of stub module descriptors (see merge_sources/3 for details).

Options:

66 | Ericsson AB. All Rights Reserved.: Syntax_Tools

igor

{comments, boolean()}

If the value is true, source code comments in the original files will be preserved in the output. The default
value is true.

{find_src_rules, [{string(), string()}]}

Specifies a list of rules for associating object files with source files, to be passed to the function
filelib:find_source/2. This can be used to change the way Igor looks for source files. If this option
is not specified, the default system rules are used. The first occurrence of this option completely overrides any
later in the option list.

{includes, [filename()]}

Specifies a list of directory names for the Erlang preprocessor, if used, to search for include files (cf. the
preprocess option). The default value is the empty list. The directory of the source file and the current directory
are automatically appended to the list.

{macros, [{atom(), term()}]}

Specifies a list of "pre-defined" macro definitions for the Erlang preprocessor, if used (cf. the preprocess
option). The default value is the empty list.

{preprocess, boolean()}

If the value is false, Igor will read source files without passing them through the Erlang preprocessor (epp),
in order to avoid expansion of preprocessor directives such as -include(...)., -define(...). and -
ifdef(...), and macro calls such as ?LINE and ?MY_MACRO(x, y). The default value is false, i.e.,
preprocessing is not done. (See the module epp_dodger for details.)

Notes: If a file contains too exotic definitions or uses of macros, it will not be possible to read it without
preprocessing. Furthermore, Igor does not currently try to sort out multiple inclusions of the same file, or
redefinitions of the same macro name. Therefore, when preprocessing is turned off, it may become necessary to
edit the resulting source code, removing such re-inclusions and redefinitions.

See merge_sources/3 for further options.

See also: epp_dodger, filelib:find_source/2, merge/3, merge_files/3, merge_sources/3.

merge_sources(Name::atom(), Sources::[Forms], Options::[term()]) ->
{syntaxTree(), [stubDescriptor()]}
Types:

Forms = syntaxTree() | [syntaxTree()]

Merges syntax trees to a single syntax tree. This is the main code merging "engine". Name specifies the name of the
resulting module. Sources is a list of syntax trees of type form_list and/or lists of "source code form" syntax
trees, each entry representing a module definition. All the input modules must be distinctly named.

Unless otherwise specified by the options, all modules are assumed to be at least "static", and all except the target
module are assumed to be "safe". See the static and safe options for details.

If Name is also the name of one of the input modules, the code from that module will occur at the top of the resulting
code, and no extra "header" comments will be added. In other words, the look of that module will be preserved.

The result is a pair {Tree, Stubs}, where Tree represents the source code that is the result of merging all the
code in Sources, and Stubs is a list of stub module descriptors (see below).

Stubs contains one entry for each exported input module (cf. the export option), each entry describing a stub
module that redirects calls of functions in the original module to the corresponding (possibly renamed) functions in
the new module. The stub descriptors can be used to automatically generate stub modules; see create_stubs/2.

Options:

Ericsson AB. All Rights Reserved.: Syntax_Tools | 67

igor

{export, [atom()]}

Specifies a list of names of input modules whose interfaces should be exported by the output module. A stub
descriptor is generated for each specified module, unless its name is Name. If no modules are specified, then if
Name is also the name of an input module, that module will be exported; otherwise the first listed module in
Sources will be exported. The default value is the empty list.

{export_all, boolean()}

If the value is true, this is equivalent to listing all of the input modules in the export option. The default
value is false.

{file_attributes, Preserve}

• Preserve = yes | comment | no

If the value is yes, all file attributes -file(...) in the input sources will be preserved in the resulting code.
If the value is comment, they will be turned into comments, but remain in their original positions in the code
relative to the other source code forms. If the value is no, all file attributes will be removed from the code, unless
they have attached comments, in which case they will be handled as in the comment case. The default value is no.

{no_banner, boolean()}

If the value is true, no banner comment will be added at the top of the resulting module, even if the target
module does not have the same name as any of the input modules. Instead, Igor will try to preserve the look of
the module whose code is at the top of the output. The default value is false.

{no_headers, boolean()}

If the value is true, no header comments will be added to the resulting module at the beginning of each section
of code that originates from a particular input module. The default value is false, which means that section
headers are normally added whenever more than two or more modules are merged.

{no_imports, boolean()}

If the value is true, all -import(...) declarations in the original code will be expanded in the result;
otherwise, as much as possible of the original import declarations will be preserved. The default value is false.

{notes, Notes}

• Notes = always | yes | no

If the value is yes, comments will be inserted where important changes have been made in the code. If the
value is always, all changes to the code will be commented. If the value is no, changes will be made without
comments. The default value is yes.

{redirect, [{atom(), atom()}]}

Specifies a list of pairs of module names, representing a mapping from old names to new. The set of old names
may not include any of the names of the input modules. All calls to the listed old modules will be rewritten
to refer to the corresponding new modules. The redirected calls will not be further processed, even if the
new destination is in one of the input modules. This option mainly exists to support module renaming; cf.
rename/3. The default value is the empty list.

{safe, [atom()]}

Specifies a list of names of input modules such that calls to these "safe" modules may be turned into direct local
calls, that do not test for code replacement. Typically, this can be done for e.g. standard library modules. If a
module is "safe", it is per definition also "static" (cf. below). The list may be empty. By default, all involved
modules except the target module are considered "safe".

{static, [atom()]}

Specifies a list of names of input modules which will be assumed never to be replaced (reloaded) unless the target
module is also first replaced. The list may be empty. The target module itself (which may also be one of the input

68 | Ericsson AB. All Rights Reserved.: Syntax_Tools

igor

modules) is always regarded as "static", regardless of the value of this option. By default, all involved modules
are assumed to be static.

{tidy, boolean()}

If the value is true, the resulting code will be processed using the erl_tidy module, which removes unused
functions and does general code cleanup. (See erl_tidy:module/2 for additional options.) The default value
is true.

{verbose, boolean()}

If the value is true, progress messages will be output while the program is running; the default value is false.

Note: The distinction between "static" and "safe" modules is necessary in order not to break the semantics of dynamic
code replacement. A "static" source module will not be replaced unless the target module also is. Now imagine a state
machine implemented by placing the code for each state in a separate module, and suppose that we want to merge
this into a single target module, marking all source modules as static. At each point in the original code where a call
is made from one of the modules to another (i.e., the state transitions), code replacement is expected to be detected.
Then, if we in the merged code do not check at these points if the target module (the result of the merge) has been
replaced, we cannot be sure in general that we will be able to do code replacement of the merged state machine - it
could run forever without detecting the code change. Therefore, all such calls must remain remote-calls (detecting
code changes), but may call the target module directly.

If we are sure that this kind of situation cannot ensue, we may specify the involved modules as "safe", and all calls
between them will become local. Note that if the target module itself is specified as safe, "remote" calls to itself will
be turned into local calls. This would destroy the code replacement properties of e.g. a typical server loop.

See also: create_stubs/2, rename/3, erl_tidy:module/2.

parse_transform(Forms::[syntaxTree()], Options::[term()]) -> [syntaxTree()]
Allows Igor to work as a component of the Erlang compiler. Including the term {parse_transform, igor} in
the compile options when compiling an Erlang module (cf. compile:file/2), will call upon Igor to process the
source code, allowing automatic inclusion of other source files. No files are created or overwritten when this function
is used.

Igor will look for terms {igor, List} in the compile options, where List is a list of Igor-specific options, as
follows:

{files, [filename()]}

The value specifies a list of source files to be merged with the file being compiled; cf. merge_files/4.

See merge_files/4 for further options. Note, however, that some options are preset by this function and cannot
be overridden by the user; in particular, all cosmetic features are turned off, for efficiency. Preprocessing is turned on.

See also: compile:file/2, merge_files/4.

rename(Files::[filename()], Renamings) -> [string()]
Equivalent to rename(Files, Renamings, []).

rename(Files::[filename()], Renamings, Options::[term()]) -> [string()]
Types:

Renamings = [{atom(), atom()}]

Renames a set of possibly interdependent source code modules. Files is a list of file names of source modules to
be processed. Renamings is a list of pairs of module names, representing a mapping from old names to new. The
returned value is the list of output file names.

Ericsson AB. All Rights Reserved.: Syntax_Tools | 69

igor

Each file in the list will be read and processed separately. For every file, each reference to some module M, such that
there is an entry {M, M1} in Renamings, will be changed to the corresponding M1.
Furthermore, if a file F defines module M, and there is an entry {M, M1} in Renamings,
a new file named M1.erl will be created in the same directory as F, containing the source code for
module M, renamed to M1. If M does not have an entry in Renamings, the module is not renamed, only updated, and
the resulting source code is written to M.erl (typically, this overwrites the original file). The suffix
option (see below) can be used to change the default ".erl" suffix for the generated files.

Stub modules will automatically be created (see the stubs and stub_dir options below) for each module that is
renamed. These can be used to redirect any calls still using the old module names. The stub files are created in the
same directory as the source file (typically overwriting the original file).

Options:

{backup_suffix, string()}
{backups, boolean()}
{printer, Function}
{stubs, boolean()}
{suffix, string()}

See merge/3 for details on these options.

{comments, boolean()}
{preprocess, boolean()}

See merge_files/4 for details on these options.

{no_banner, boolean()}

For the rename function, this option is true by default. See merge_sources/3 for details.

{tidy, boolean()}

For the rename function, this option is false by default. See merge_sources/3 for details.

{no_headers, boolean()}
{stub_dir, filename()}

These options are preset by the rename function and cannot be overridden by the user.

See merge_sources/3 for further options.

See also: merge/3, merge_files/4, merge_sources/3.

70 | Ericsson AB. All Rights Reserved.: Syntax_Tools

merl

merl
Erlang module

Metaprogramming in Erlang. Merl is a more user friendly interface to the erl_syntax module, making it easy both
to build new ASTs from scratch and to match and decompose existing ASTs. For details that are outside the scope of
Merl itself, please see the documentation of erl_syntax.

Quick start

To enable the full power of Merl, your module needs to include the Merl header file:

 -include_lib("syntax_tools/include/merl.hrl").

Then, you can use the ?Q(Text) macros in your code to create ASTs or match on existing ASTs. For example:

 Tuple = ?Q("{foo, 42}"),
 ?Q("{foo, _@Number}") = Tuple,
 Call = ?Q("foo:bar(_@Number)")

Calling merl:print(Call) will then print the following code:

 foo:bar(42)

The ?Q macros turn the quoted code fragments into ASTs, and lifts metavariables such as _@Tuple and _@Number
to the level of your Erlang code, so you can use the corresponding Erlang variables Tuple and Number directly.
This is the most straightforward way to use Merl, and in many cases it's all you need.

You can even write case switches using ?Q macros as patterns. For example:

 case AST of
 ?Q("{foo, _@Foo}") -> handle(Foo);
 ?Q("{bar, _@Bar}") when erl_syntax:is_integer(Bar) -> handle(Bar);
 _ -> handle_default()
 end

These case switches only allow ?Q(...) or _ as clause patterns, and the guards may contain any expressions, not
just Erlang guard expressions.

If the macro MERL_NO_TRANSFORM is defined before the merl.hrl header file is included, the parse transform
used by Merl will be disabled, and in that case, the match expressions ?Q(...) = ..., case switches using ?
Q(...) patterns, and automatic metavariables like _@Tuple cannot be used in your code, but the Merl macros and
functions still work. To do metavariable substitution, you need to use the ?Q(Text, Map) macro, e.g.:

 Tuple = ?Q("{foo, _@bar, _@baz}", [{bar, Bar}, {baz,Baz}])

The text given to a ?Q(Text) macro can be either a single string, or a list of strings. The latter is useful when you
need to split a long expression over multiple lines, e.g.:

 ?Q(["case _@Expr of",
 " {foo, X} -> f(X);",
 " {bar, X} -> g(X)",
 " _ -> h(X)"
 "end"])

If there is a syntax error somewhere in the text (like the missing semicolon in the second clause above) this allows
Merl to generate an error message pointing to the exact line in your source code. (Just remember to comma-separate
the strings in the list, otherwise Erlang will concatenate the string fragments as if they were a single string.)

Metavariable syntax

Ericsson AB. All Rights Reserved.: Syntax_Tools | 71

merl

There are several ways to write a metavariable in your quoted code:

• Atoms starting with @, for example '@foo' or '@Foo'

• Variables starting with _@, for example _@bar or _@Bar

• Strings starting with "'@, for example "'@File"

• Integers starting with 909, for example 9091 or 909123

Following the prefix, one or more _ or 0 characters may be used to indicate "lifting" of the variable one or more levels,
and after that, a @ or 9 character indicates a glob metavariable (matching zero or more elements in a sequence) rather
than a normal metavariable. For example:

• '@_foo' is lifted one level, and _@__foo is lifted two levels

• _@@bar is a glob variable, and _@_@bar is a lifted glob variable

• 90901 is a lifted variable,90991 is a glob variable, and 9090091 is a glob variable lifted two levels

(Note that the last character in the name is never considered to be a lift or glob marker, hence, _@__ and 90900 are
only lifted one level, not two. Also note that globs only matter for matching; when doing substitutions, a non-glob
variable can be used to inject a sequence of elements, and vice versa.)

If the name after the prefix and any lift and glob markers is _ or 0, the variable is treated as an anonymous catch-all
pattern in matches. For example, _@_, _@@_, _@__, or even _@__@_.

Finally, if the name without any prefixes or lift/glob markers begins with an uppercase character, as in _@Foo or
@@Foo, it will become a variable on the Erlang level, and can be used to easily deconstruct and construct syntax
trees:

 case Input of
 ?Q("{foo, _@Number}") -> ?Q("foo:bar(_@Number)");
 ...

We refer to these as "automatic metavariables". If in addition the name ends with @, as in _@Foo@, the value of the
variable as an Erlang term will be automatically converted to the corresponding abstract syntax tree when used to
construct a larger tree. For example, in:

 Bar = {bar, 42},
 Foo = ?Q("{foo, _@Bar@}")

(where Bar is just some term, not a syntax tree) the result Foo will be a syntax tree representing {foo, {bar,
42}}. This avoids the need for temporary variables in order to inject data, as in

 TmpBar = erl_syntax:abstract(Bar),
 Foo = ?Q("{foo, _@TmpBar}")

If the context requires an integer rather than a variable, an atom, or a string, you cannot use the uppercase convention
to mark an automatic metavariable. Instead, if the integer (without the 909-prefix and lift/glob markers) ends in a 9,
the integer will become an Erlang-level variable prefixed with Q, and if it ends with 99 it will also be automatically
abstracted. For example, the following will increment the arity of the exported function f:

 case Form of
 ?Q("-export([f/90919]).") ->
 Q2 = erl_syntax:concrete(Q1) + 1,
 ?Q("-export([f/909299]).");
 ...

When to use the various forms of metavariables

Merl can only parse a fragment of text if it follows the basic syntactical rules of Erlang. In most places, a normal
Erlang variable can be used as metavariable, for example:

72 | Ericsson AB. All Rights Reserved.: Syntax_Tools

merl

 ?Q("f(_@Arg)") = Expr

but if you want to match on something like the name of a function, you have to use an atom as metavariable:

 ?Q("'@Name'() -> _@@_." = Function

(note the anonymous glob variable _@@_ to ignore the function body).

In some contexts, only a string or an integer is allowed. For example, the directive -file(Name, Line) requires
that Name is a string literal and Line an integer literal:

 ?Q("-file(\"'@File\", 9090).") = ?Q("-file(\"foo.erl\", 42).")).

This will extract the string literal "foo.erl" into the variable Foo. Note the use of the anonymous variable 9090 to
ignore the line number. To match and also bind a metavariable that must be an integer literal, we can use the convention
of ending the integer with a 9, turning it into a Q-prefixed variable on the Erlang level (see the previous section).

Globs

Whenever you want to match out a number of elements in a sequence (zero or more) rather than a fixed set of elements,
you need to use a glob. For example:

 ?Q("{_@@Elements}") = ?Q({a, b, c})

will bind Elements to the list of individual syntax trees representing the atoms a, b, and c. This can also be used with
static prefix and suffix elements in the sequence. For example:

 ?Q("{a, b, _@@Elements}") = ?Q({a, b, c, d})

will bind Elements to the list of the c and d subtrees, and

 ?Q("{_@@Elements, c, d}") = ?Q({a, b, c, d})

will bind Elements to the list of the a and b subtrees. You can even use plain metavariables in the prefix or suffix:

 ?Q("{_@First, _@@Rest}") = ?Q({a, b, c})

or

 ?Q("{_@@_, _@Last}") = ?Q({a, b, c})

(ignoring all but the last element). You cannot however have two globs as part of the same sequence.

Lifted metavariables

In some cases, the Erlang syntax rules make it impossible to place a metavariable directly where you would like it.
For example, you cannot write:

 ?Q("-export([_@@Name]).")

to match out all name/arity pairs in the export list, or to insert a list of exports in a declaration, because the Erlang
parser only allows elements on the form A/I (where A is an atom and I an integer) in the export list. A variable like
the above is not allowed, but neither is a single atom or integer, so '@@Name' or 909919 wouldn't work either.

What you have to do in such cases is to write your metavariable in a syntactically valid position, and use lifting markers
to denote where it should really apply, as in:

 ?Q("-export(['@_@Name'/0]).")

Ericsson AB. All Rights Reserved.: Syntax_Tools | 73

merl

This causes the variable to be lifted (after parsing) to the next higher level in the syntax tree, replacing that entire
subtree. In this case, the '@_@Name'/0 will be replaced with '@@Name', and the /0 part was just used as dummy
notation and will be discarded.

You may even need to apply lifting more than once. To match the entire export list as a single syntax tree, you can write:

 ?Q("-export(['@__Name'/0]).")

using two underscores, but with no glob marker this time. This will make the entire ['@__Name'/0] part be replaced
with '@Name'.

Sometimes, the tree structure of a code fragment isn't very obvious, and parts of the structure may be invisible when
printed as source code. For instance, a simple function definition like the following:

 zero() -> 0.

consists of the name (the atom zero), and a list of clauses containing the single clause () -> 0. The clause consists
of an argument list (empty), a guard (empty), and a body (which is always a list of expressions) containing the single
expression 0. This means that to match out the name and the list of clauses of any function, you'll need to use a pattern
like ?Q("'@Name'() -> _@_@Body."), using a dummy clause whose body is a glob lifted one level.

To visualize the structure of a syntax tree, you can use the function merl:show(T), which prints a summary. For
example, entering

 merl:show(merl:quote("inc(X, Y) when Y > 0 -> X + Y."))

in the Erlang shell will print the following (where the + signs separate groups of subtrees on the same level):

 function: inc(X, Y) when ... -> X + Y.
 atom: inc
 +
 clause: (X, Y) when ... -> X + Y
 variable: X
 variable: Y
 +
 disjunction: Y > 0
 conjunction: Y > 0
 infix_expr: Y > 0
 variable: Y
 +
 operator: >
 +
 integer: 0
 +
 infix_expr: X + Y
 variable: X
 +
 operator: +
 +
 variable: Y

This shows another important non-obvious case: a clause guard, even if it's as simple as Y > 0, always consists of a
single disjunction of one or more conjunctions of tests, much like a tuple of tuples. Thus:

• "when _@Guard ->" will only match a guard with exactly one test

• "when _@@Guard ->" will match a guard with one or more comma-separated tests (but no semicolons),
binding Guard to the list of tests

• "when _@_Guard ->" will match just like the previous pattern, but binds Guard to the conjunction subtree

• "when _@_@Guard ->" will match an arbitrary nonempty guard, binding Guard to the list of conjunction
subtrees

74 | Ericsson AB. All Rights Reserved.: Syntax_Tools

merl

• "when _@__Guard ->" will match like the previous pattern, but binds Guard to the whole disjunction subtree

• and finally, "when _@__@Guard ->" will match any clause, binding Guard to [] if the guard is empty and
to [Disjunction] otherwise

Thus, the following pattern matches all possible clauses:

 "(_@Args) when _@__@Guard -> _@Body"

DATA TYPES
default_action() = () -> any()

env() = [{Key::id(), pattern_or_patterns()}]

guard_test() = (env()) -> boolean()

guarded_action() = switch_action() | {guard_test(), switch_action()}

guarded_actions() = guarded_action() | [guarded_action()]

id() = atom() | integer()

location() = erl_anno:location()

pattern() = tree() | template()

pattern_or_patterns() = pattern() | [pattern()]

switch_action() = (env()) -> any()

switch_clause() = {pattern_or_patterns(), guarded_actions()} | {pattern_or_patterns(), guard_test(), switch_action()}
| default_action()

template() = tree() | {id()} | {*, id()} | {template, atom(), term(), [[template()]]}

template_or_templates() = template() | [template()]

text() = string() | binary() | [string()] | [binary()]

tree() = erl_syntax:syntaxTree()

tree_or_trees() = tree() | [tree()]

Exports

alpha(Trees::pattern_or_patterns(), Env::[{id(), id()}]) ->
template_or_templates()
Alpha converts a pattern (renames variables). Similar to tsubst/1, but only renames variables (including globs).

See also: tsubst/2.

compile(Code) -> term()
Equivalent to compile(Code, []).

Ericsson AB. All Rights Reserved.: Syntax_Tools | 75

merl

compile(Code, Options) -> term()
Compile a syntax tree or list of syntax trees representing a module into a binary BEAM object.

See also: compile/1, compile_and_load/2.

compile_and_load(Code) -> term()
Equivalent to compile_and_load(Code, []).

compile_and_load(Code, Options) -> term()
Compile a syntax tree or list of syntax trees representing a module and load the resulting module into memory.

See also: compile/2, compile_and_load/1.

match(Patterns::pattern_or_patterns(), Trees::tree_or_trees()) -> {ok, env()}
| error
Match a pattern against a syntax tree (or patterns against syntax trees) returning an environment mapping variable
names to subtrees; the environment is always sorted on keys. Note that multiple occurrences of metavariables in the
pattern is not allowed, but is not checked.

See also: switch/2, template/1.

meta_template(Templates::template_or_templates()) -> tree_or_trees()
Turn a template into a syntax tree representing the template. Meta-variables in the template are turned into
normal Erlang variables if their names (after the metavariable prefix characters) begin with an uppercase character.
E.g., _@Foo in the template becomes the variable Foo in the meta-template. Furthermore, variables ending with
@ are automatically wrapped in a call to merl:term/1, so e.g. _@Foo@ in the template becomes
`merl:term(Foo) in the meta-template.

print(Ts) -> term()
Pretty-print a syntax tree or template to the standard output. This is a utility function for development and debugging.

qquote(Text::text(), Env::env()) -> tree_or_trees()
Parse text and substitute meta-variables.

qquote(StartPos::location(), Text::text(), Env::env()) -> tree_or_trees()
Parse text and substitute meta-variables. Takes an initial scanner starting position as first argument.

The macro ?Q(Text, Env) expands to merl:qquote(?LINE, Text, Env).

See also: quote/2.

quote(Text::text()) -> tree_or_trees()
Parse text.

quote(StartPos::location(), Text::text()) -> tree_or_trees()
Parse text. Takes an initial scanner starting position as first argument.

The macro ?Q(Text) expands to merl:quote(?LINE, Text, Env).

See also: quote/1.

76 | Ericsson AB. All Rights Reserved.: Syntax_Tools

merl

show(Ts) -> term()
Print the structure of a syntax tree or template to the standard output. This is a utility function for development and
debugging.

subst(Trees::pattern_or_patterns(), Env::env()) -> tree_or_trees()
Substitute metavariables in a pattern or list of patterns, yielding a syntax tree or list of trees as result. Both for normal
metavariables and glob metavariables, the substituted value may be a single element or a list of elements. For example,
if a list representing 1, 2, 3 is substituted for var in either of [foo, _@var, bar] or [foo, _@var,
bar], the result represents [foo, 1, 2, 3, bar].

switch(Trees::tree_or_trees(), Cs::[switch_clause()]) -> any()
Match against one or more clauses with patterns and optional guards.

Note that clauses following a default action will be ignored.

See also: match/2.

template(Trees::pattern_or_patterns()) -> template_or_templates()
Turn a syntax tree or list of trees into a template or templates. Templates can be instantiated or matched against, and
reverted back to normal syntax trees using tree/1. If the input is already a template, it is not modified further.

See also: match/2, subst/2, tree/1.

template_vars(Template::template_or_templates()) -> [id()]
Return an ordered list of the metavariables in the template.

term(Term::term()) -> tree()
Create a syntax tree for a constant term.

tree(Templates::template_or_templates()) -> tree_or_trees()
Revert a template to a normal syntax tree. Any remaining metavariables are turned into @-prefixed atoms or 909-
prefixed integers.

See also: template/1.

tsubst(Trees::pattern_or_patterns(), Env::env()) -> template_or_templates()
Like subst/2, but does not convert the result from a template back to a tree. Useful if you want to do multiple separate
substitutions.

See also: subst/2, tree/1.

var(Name::atom()) -> tree()
Create a variable.

Ericsson AB. All Rights Reserved.: Syntax_Tools | 77

merl_transform

merl_transform
Erlang module

Parse transform for merl. Enables the use of automatic metavariables and using quasi-quotes in matches and case
switches. Also optimizes calls to functions in merl by partially evaluating them, turning strings to templates, etc.,
at compile-time.

Using -include_lib("syntax_tools/include/merl.hrl"). enables this transform, unless the macro
MERL_NO_TRANSFORM is defined first.

Exports

parse_transform(Forms, Options) -> term()

78 | Ericsson AB. All Rights Reserved.: Syntax_Tools

prettypr

prettypr
Erlang module

A generic pretty printer library. This module uses a strict-style context passing implementation of John Hughes
algorithm, described in "The design of a Pretty-printing Library". The paragraph-style formatting, empty documents,
floating documents, and null strings are my own additions to the algorithm.

To get started, you should read about the document() data type; the main constructor functions: text/1, above/2,
beside/2, nest/2, sep/1, and par/2; and the main layout function format/3.

If you simply want to format a paragraph of plain text, you probably want to use the text_par/2 function, as in the
following example:

 prettypr:format(prettypr:text_par("Lorem ipsum dolor sit amet"), 20)

DATA TYPES
document()

An abstract character-based "document" representing a number of possible layouts, which can be processed to
produce a single concrete layout. A concrete layout can then be rendered as a sequence of characters containing
linebreaks, which can be passed to a printer or terminal that uses a fixed-width font.

For example, a document sep([text("foo"), text("bar")]) represents the two layouts

 foo bar

and

 foo
 bar

Which layout is chosen depends on the available horizontal space. When processing a document, the main
parameters are the paper width and the line width (also known as the "ribbon width"). In the resulting layout,
no text should be printed beyond the paper width (which by default is 80 characters) as long as it can be avoided,
and each single line of text (its indentation not counted, hence "ribbon") should preferably be no wider than the
specified line width (which by default is 65).

Documents can be joined into a single new document using the constructor functions of this module. Note that
the new document often represents a larger number of possible layouts than just the sum of the components.

Exports

above(D1::document(), D2::document()) -> document()
Concatenates documents vertically. Returns a document representing the concatenation of the documents D1 and D2
such that the first line of D2 follows directly below the last line of D1, and the first character of D2 is in the same
horizontal column as the first character of D1, in all possible layouts.

Examples:

Ericsson AB. All Rights Reserved.: Syntax_Tools | 79

prettypr

 ab cd => ab
 cd

 abc
 abc fgh => de
 de ij fgh
 ij

beside(D1::document(), D2::document()) -> document()
Concatenates documents horizontally. Returns a document representing the concatenation of the documents D1 and
D2 such that the last character of D1 is horizontally adjacent to the first character of D2, in all possible layouts. (Note:
any indentation of D2 is lost.)

Examples:

 ab cd => abcd

 ab ef ab
 cd gh => cdef
 gh

best(D::document(), PaperWidth::integer(), LineWidth::integer()) -> empty |
document()
Selects a "best" layout for a document, creating a corresponding fixed-layout document. If no layout could be produced,
the atom empty is returned instead. For details about PaperWidth and LineWidth, see format/3. The function
is idempotent.

One possible use of this function is to compute a fixed layout for a document, which can then be included as part of
a larger document. For example:

 above(text("Example:"), nest(8, best(D, W - 12, L - 6)))

will format D as a displayed-text example indented by 8, whose right margin is indented by 4 relative to the paper
width W of the surrounding document, and whose maximum individual line length is shorter by 6 than the line length
L of the surrounding document.

This function is used by the format/3 function to prepare a document before being laid out as text.

break(D::document()) -> document()
Forces a line break at the end of the given document. This is a utility function; see empty/0 for details.

empty() -> document()
Yields the empty document, which has neither height nor width. (empty is thus different from an empty text string,
which has zero width but height 1.)

Empty documents are occasionally useful; in particular, they have the property that above(X, empty()) will
force a new line after X without leaving an empty line below it; since this is a common idiom, the utility function
break/1 will place a given document in such a context.

See also: text/1.

floating(D::document()) -> document()
Equivalent to floating(D, 0, 0).

80 | Ericsson AB. All Rights Reserved.: Syntax_Tools

prettypr

floating(D::document(), Hp::integer(), Vp::integer()) -> document()
Creates a "floating" document. The result represents the same set of layouts as D; however, a floating document may
be moved relative to other floating documents immediately beside or above it, according to their relative horizontal
and vertical priorities. These priorities are set with the Hp and Vp parameters; if omitted, both default to zero.

Notes: Floating documents appear to work well, but are currently less general than you might wish, losing effect when
embedded in certain contexts. It is possible to nest floating-operators (even with different priorities), but the effects
may be difficult to predict. In any case, note that the way the algorithm reorders floating documents amounts to a
"bubblesort", so don't expect it to be able to sort large sequences of floating documents quickly.

follow(D1::document(), D2::document()) -> document()
Equivalent to follow(D1, D2, 0).

follow(D1::document(), D2::document(), Offset::integer()) -> document()
Separates two documents by either a single space, or a line break and intentation. In other words, one of the layouts

 abc def

or

 abc
 def

will be generated, using the optional offset in the latter case. This is often useful for typesetting programming language
constructs.

This is a utility function; see par/2 for further details.

See also: follow/2.

format(D::document()) -> string()
Equivalent to format(D, 80).

format(D::document(), PaperWidth::integer()) -> string()
Equivalent to format(D, PaperWidth, 65).

format(D::document(), PaperWidth::integer(), LineWidth::integer()) ->
string()
Computes a layout for a document and returns the corresponding text. See document() for further information. Throws
no_layout if no layout could be selected.

PaperWidth specifies the total width (in character positions) of the field for which the text is to be laid out.
LineWidth specifies the desired maximum width (in number of characters) of the text printed on any single line,
disregarding leading and trailing white space. These parameters need to be properly balanced in order to produce good
layouts. By default, PaperWidth is 80 and LineWidth is 65.

See also: best/3.

nest(N::integer(), D::document()) -> document()
Indents a document a number of character positions to the right. Note that N may be negative, shifting the text to the
left, or zero, in which case D is returned unchanged.

Ericsson AB. All Rights Reserved.: Syntax_Tools | 81

prettypr

null_text(Characters::string()) -> document()
Similar to text/1, but the result is treated as having zero width. This is regardless of the actual length of the string. Null
text is typically used for markup, which is supposed to have no effect on the actual layout.

The standard example is when formatting source code as HTML to be placed within <pre>...</pre> markup, and
using e.g. <i> and to make parts of the source code stand out. In this case, the markup does not add to the width of
the text when viewed in an HTML browser, so the layout engine should simply pretend that the markup has zero width.

See also: empty/0, text/1.

par(Docs::[document()]) -> document()
Equivalent to par(Ds, 0).

par(Docs::[document()], Offset::integer()) -> document()
Arranges documents in a paragraph-like layout. Returns a document representing all possible left-aligned paragraph-
like layouts of the (nonempty) sequence Docs of documents. Elements in Docs are separated horizontally by a single
space character and vertically with a single line break. All lines following the first (if any) are indented to the same left
column, whose indentation is specified by the optional Offset parameter relative to the position of the first element
in Docs. For example, with an offset of -4, the following layout can be produced, for a list of documents representing
the numbers 0 to 15:

 0 1 2 3
 4 5 6 7 8 9
 10 11 12 13
 14 15

or with an offset of +2:

 0 1 2 3 4 5 6
 7 8 9 10 11
 12 13 14 15

The utility function text_par/2 can be used to easily transform a string of text into a par representation by splitting
it into words.

Note that whenever a document in Docs contains a line break, it will be placed on a separate line. Thus, neither a
layout such as

 ab cd
 ef

nor

 ab
 cd ef

will be generated. However, a useful idiom for making the former variant possible (when wanted) is
beside(par([D1, text("")], N), D2) for two documents D1 and D2. This will break the line between
D1 and D2 if D1 contains a line break (or if otherwise necessary), and optionally further indent D2 by N character
positions. The utility function follow/3 creates this context for two documents D1 and D2, and an optional integer N.

See also: par/1, text_par/2.

sep(Docs::[document()]) -> document()
Arranges documents horizontally or vertically, separated by whitespace. Returns a document representing two
alternative layouts of the (nonempty) sequence Docs of documents, such that either all elements in Docs are

82 | Ericsson AB. All Rights Reserved.: Syntax_Tools

prettypr

concatenated horizontally, and separated by a space character, or all elements are concatenated vertically (without
extra separation).

Note: If some document in Docs contains a line break, the vertical layout will always be selected.

Examples:

 ab
 ab cd ef => ab cd ef | cd
 ef

 ab ab
 cd ef => cd
 ef

See also: par/2.

text(Characters::string()) -> document()
Yields a document representing a fixed, unbreakable sequence of characters. The string should contain only printable
characters (tabs allowed but not recommended), and not newline, line feed, vertical tab, etc. A tab character (\t) is
interpreted as padding of 1-8 space characters to the next column of 8 characters within the string.

See also: empty/0, null_text/1, text_par/2.

text_par(Text::string()) -> document()
Equivalent to text_par(Text, 0).

text_par(Text::string(), Indentation::integer()) -> document()
Yields a document representing paragraph-formatted plain text. The optional Indentation parameter specifies
the extra indentation of the first line of the paragraph. For example, text_par("Lorem ipsum dolor sit
amet", N) could represent

 Lorem ipsum dolor
 sit amet

if N = 0, or

 Lorem ipsum
 dolor sit amet

if N = 2, or

 Lorem ipsum dolor
 sit amet

if N = -2.

(The sign of the indentation is thus reversed compared to the par/2 function, and the behaviour varies slightly depending
on the sign in order to match the expected layout of a paragraph of text.)

Note that this is just a utility function, which does all the work of splitting the given string into words separated by
whitespace and setting up a par with the proper indentation, containing a list of text elements.

See also: par/2, text/1, text_par/1.

Ericsson AB. All Rights Reserved.: Syntax_Tools | 83

	Syntax_Tools
	Syntax_Tools User's Guide
	Erlang Syntax and Metaprogramming tools

	Overview

	Reference Manual
	epp_dodger
	parse/1
	parse/2
	parse/3
	parse_file/1
	parse_file/2
	parse_form/2
	parse_form/3
	quick_parse/1
	quick_parse/2
	quick_parse/3
	quick_parse_file/1
	quick_parse_file/2
	quick_parse_form/2
	quick_parse_form/3
	tokens_to_string/1

	erl_comment_scan
	file/1
	join_lines/1
	scan_lines/1
	string/1

	erl_prettypr
	best/1
	best/2
	format/1
	format/2
	get_ctxt_hook/1
	get_ctxt_linewidth/1
	get_ctxt_paperwidth/1
	get_ctxt_precedence/1
	get_ctxt_user/1
	layout/1
	layout/2
	set_ctxt_hook/2
	set_ctxt_linewidth/2
	set_ctxt_paperwidth/2
	set_ctxt_precedence/2
	set_ctxt_user/2

	erl_recomment
	quick_recomment_forms/2
	recomment_forms/2
	recomment_tree/2

	erl_syntax
	abstract/1
	add_ann/2
	add_postcomments/2
	add_precomments/2
	annotated_type/2
	annotated_type_body/1
	annotated_type_name/1
	application/2
	application/3
	application_arguments/1
	application_operator/1
	arity_qualifier/2
	arity_qualifier_argument/1
	arity_qualifier_body/1
	atom/1
	atom_literal/1
	atom_literal/2
	atom_name/1
	atom_value/1
	attribute/1
	attribute/2
	attribute_arguments/1
	attribute_name/1
	binary/1
	binary_comp/2
	binary_comp_body/1
	binary_comp_template/1
	binary_field/1
	binary_field/2
	binary_field/3
	binary_field_body/1
	binary_field_size/1
	binary_field_types/1
	binary_fields/1
	binary_generator/2
	binary_generator_body/1
	binary_generator_pattern/1
	bitstring_type/2
	bitstring_type_m/1
	bitstring_type_n/1
	block_expr/1
	block_expr_body/1
	case_expr/2
	case_expr_argument/1
	case_expr_clauses/1
	catch_expr/1
	catch_expr_body/1
	char/1
	char_literal/1
	char_literal/2
	char_value/1
	class_qualifier/2
	class_qualifier/3
	class_qualifier_argument/1
	class_qualifier_body/1
	class_qualifier_stacktrace/1
	clause/2
	clause/3
	clause_body/1
	clause_guard/1
	clause_patterns/1
	comment/1
	comment/2
	comment_padding/1
	comment_text/1
	compact_list/1
	concrete/1
	conjunction/1
	conjunction_body/1
	cons/2
	constrained_function_type/2
	constrained_function_type_argument/1
	constrained_function_type_body/1
	constraint/2
	constraint_argument/1
	constraint_body/1
	copy_ann/2
	copy_attrs/2
	copy_comments/2
	copy_pos/2
	data/1
	disjunction/1
	disjunction_body/1
	eof_marker/0
	error_marker/1
	error_marker_info/1
	flatten_form_list/1
	float/1
	float_literal/1
	float_value/1
	form_list/1
	form_list_elements/1
	fun_expr/1
	fun_expr_arity/1
	fun_expr_clauses/1
	fun_type/0
	function/2
	function_arity/1
	function_clauses/1
	function_name/1
	function_type/1
	function_type/2
	function_type_arguments/1
	function_type_return/1
	generator/2
	generator_body/1
	generator_pattern/1
	get_ann/1
	get_attrs/1
	get_pos/1
	get_postcomments/1
	get_precomments/1
	has_comments/1
	if_expr/1
	if_expr_clauses/1
	implicit_fun/1
	implicit_fun/2
	implicit_fun/3
	implicit_fun_name/1
	infix_expr/3
	infix_expr_left/1
	infix_expr_operator/1
	infix_expr_right/1
	integer/1
	integer_literal/1
	integer_range_type/2
	integer_range_type_high/1
	integer_range_type_low/1
	integer_value/1
	is_atom/2
	is_char/2
	is_form/1
	is_integer/2
	is_leaf/1
	is_list_skeleton/1
	is_literal/1
	is_proper_list/1
	is_string/2
	is_tree/1
	join_comments/2
	list/1
	list/2
	list_comp/2
	list_comp_body/1
	list_comp_template/1
	list_elements/1
	list_head/1
	list_length/1
	list_prefix/1
	list_suffix/1
	list_tail/1
	macro/1
	macro/2
	macro_arguments/1
	macro_name/1
	make_tree/2
	map_expr/1
	map_expr/2
	map_expr_argument/1
	map_expr_fields/1
	map_field_assoc/2
	map_field_assoc_name/1
	map_field_assoc_value/1
	map_field_exact/2
	map_field_exact_name/1
	map_field_exact_value/1
	map_type/0
	map_type/1
	map_type_assoc/2
	map_type_assoc_name/1
	map_type_assoc_value/1
	map_type_exact/2
	map_type_exact_name/1
	map_type_exact_value/1
	map_type_fields/1
	match_expr/2
	match_expr_body/1
	match_expr_pattern/1
	meta/1
	module_qualifier/2
	module_qualifier_argument/1
	module_qualifier_body/1
	named_fun_expr/2
	named_fun_expr_arity/1
	named_fun_expr_clauses/1
	named_fun_expr_name/1
	nil/0
	normalize_list/1
	operator/1
	operator_literal/1
	operator_name/1
	parentheses/1
	parentheses_body/1
	prefix_expr/2
	prefix_expr_argument/1
	prefix_expr_operator/1
	receive_expr/1
	receive_expr/3
	receive_expr_action/1
	receive_expr_clauses/1
	receive_expr_timeout/1
	record_access/3
	record_access_argument/1
	record_access_field/1
	record_access_type/1
	record_expr/2
	record_expr/3
	record_expr_argument/1
	record_expr_fields/1
	record_expr_type/1
	record_field/1
	record_field/2
	record_field_name/1
	record_field_value/1
	record_index_expr/2
	record_index_expr_field/1
	record_index_expr_type/1
	record_type/2
	record_type_field/2
	record_type_field_name/1
	record_type_field_type/1
	record_type_fields/1
	record_type_name/1
	remove_comments/1
	revert/1
	revert_forms/1
	set_ann/2
	set_attrs/2
	set_pos/2
	set_postcomments/2
	set_precomments/2
	size_qualifier/2
	size_qualifier_argument/1
	size_qualifier_body/1
	string/1
	string_literal/1
	string_literal/2
	string_value/1
	subtrees/1
	text/1
	text_string/1
	tree/1
	tree/2
	try_after_expr/2
	try_expr/2
	try_expr/3
	try_expr/4
	try_expr_after/1
	try_expr_body/1
	try_expr_clauses/1
	try_expr_handlers/1
	tuple/1
	tuple_elements/1
	tuple_size/1
	tuple_type/0
	tuple_type/1
	tuple_type_elements/1
	type/1
	type_application/2
	type_application/3
	type_application_arguments/1
	type_application_name/1
	type_union/1
	type_union_types/1
	typed_record_field/2
	typed_record_field_body/1
	typed_record_field_type/1
	underscore/0
	update_tree/2
	user_type_application/2
	user_type_application_arguments/1
	user_type_application_name/1
	variable/1
	variable_literal/1
	variable_name/1
	warning_marker/1
	warning_marker_info/1

	erl_syntax_lib
	analyze_application/1
	analyze_attribute/1
	analyze_export_attribute/1
	analyze_file_attribute/1
	analyze_form/1
	analyze_forms/1
	analyze_function/1
	analyze_function_name/1
	analyze_implicit_fun/1
	analyze_import_attribute/1
	analyze_module_attribute/1
	analyze_record_attribute/1
	analyze_record_expr/1
	analyze_record_field/1
	analyze_type_application/1
	analyze_type_name/1
	analyze_wild_attribute/1
	annotate_bindings/1
	annotate_bindings/2
	fold/3
	fold_subtrees/3
	foldl_listlist/3
	function_name_expansions/1
	is_fail_expr/1
	limit/2
	limit/3
	map/2
	map_subtrees/2
	mapfold/3
	mapfold_subtrees/3
	mapfoldl_listlist/3
	new_variable_name/1
	new_variable_name/2
	new_variable_names/2
	new_variable_names/3
	strip_comments/1
	to_comment/1
	to_comment/2
	to_comment/3
	variables/1

	erl_tidy
	dir/0
	dir/1
	dir/2
	file/1
	file/2
	module/1
	module/2

	igor
	create_stubs/2
	merge/2
	merge/3
	merge_files/3
	merge_files/4
	merge_sources/3
	parse_transform/2
	rename/2
	rename/3

	merl
	alpha/2
	compile/1
	compile/2
	compile_and_load/1
	compile_and_load/2
	match/2
	meta_template/1
	print/1
	qquote/2
	qquote/3
	quote/1
	quote/2
	show/1
	subst/2
	switch/2
	template/1
	template_vars/1
	term/1
	tree/1
	tsubst/2
	var/1

	merl_transform
	parse_transform/2

	prettypr
	above/2
	beside/2
	best/3
	break/1
	empty/0
	floating/1
	floating/3
	follow/2
	follow/3
	format/1
	format/2
	format/3
	nest/2
	null_text/1
	par/1
	par/2
	sep/1
	text/1
	text_par/1
	text_par/2

