
Secure Socket Layer
Copyright © 1999-2020 Ericsson AB. All Rights Reserved.

Secure Socket Layer 10.1
September 22, 2020



Copyright © 1999-2020 Ericsson AB. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance
with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless
required by applicable law or agreed to in writing, software distributed under the License is distributed on an
"AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See
the License for the specific language governing permissions and limitations under the License. Ericsson AB. All
Rights Reserved..

September 22, 2020



1.1  Introduction

1    SSL User's Guide

The SSL application implements Transport Layer Security (TLS), formerly known as the Secure Socket Layer (SSL),
that is it provides secure communication over sockets.

1.1  Introduction
1.1.1  Purpose
Transport Layer Security (TLS) and its predecessor, the Secure Sockets Layer (SSL), are cryptographic protocols
designed to provide communications security over a computer network. The protocols use X.509 certificates and
hence public key (asymmetric) cryptography to authenticate the counterpart with whom they communicate, and to
exchange a symmetric key for payload encryption. The protocol provides data/message confidentiality (encryption),
integrity (through message authentication code checks) and host verification (through certificate path validation).
DTLS (Datagram Transport Layer Security) that is based on TLS but datagram oriented instead of stream oriented.

1.1.2  Prerequisites
It is assumed that the reader is familiar with the Erlang programming language, the concepts of OTP, and has a basic
understanding of TLS/DTLS.

1.2  TLS/DTLS and TLS Predecessor, SSL
The Erlang SSL application implements the TLS/DTLS protocol for the currently supported versions, see the ssl(3)
manual page.

By default TLS is run over the TCP/IP protocol even though you can plug in any other reliable transport protocol
with the same Application Programming Interface (API) as the gen_tcp module in Kernel. DTLS is by default run
over UDP/IP, which means that application data has no delivery guarentees. Other transports, such as SCTP, may be
supported in future releases.

If a client and a server wants to use an upgrade mechanism, such as defined by RFC 2817, to upgrade a regular TCP/
IP connection to a TLS connection, this is supported by the Erlang SSL application API. This can be useful for, for
example, supporting HTTP and HTTPS on the same port and implementing virtual hosting. Note this is a TLS feature
only.

1.2.1  Security Overview
To achieve authentication and privacy, the client and server perform a TLS/DTLS handshake procedure before
transmitting or receiving any data. During the handshake, they agree on a protocol version and cryptographic
algorithms, generate shared secrets using public key cryptographies, and optionally authenticate each other with digital
certificates.

1.2.2  Data Privacy and Integrity
A symmetric key algorithm has one key only. The key is used for both encryption and decryption. These algorithms
are fast, compared to public key algorithms (using two keys, one public and one private) and are therefore typically
used for encrypting bulk data.

Ericsson AB. All Rights Reserved.: Secure Socket Layer | 1



1.3  Using SSL application API

The keys for the symmetric encryption are generated uniquely for each connection and are based on a secret negotiated
in the TLS/DTLS handshake.

The TLS/DTLS handshake protocol and data transfer is run on top of the TLS/DTLS Record Protocol, which uses a
keyed-hash Message Authenticity Code (MAC), or a Hash-based MAC (HMAC), to protect the message data integrity.
From the TLS RFC: "A Message Authentication Code is a one-way hash computed from a message and some secret
data. It is difficult to forge without knowing the secret data. Its purpose is to detect if the message has been altered."

1.2.3  Digital Certificates
A certificate is similar to a driver's license, or a passport. The holder of the certificate is called the subject. The
certificate is signed with the private key of the issuer of the certificate. A chain of trust is built by having the issuer
in its turn being certified by another certificate, and so on, until you reach the so called root certificate, which is self-
signed, that is, issued by itself.

Certificates are issued by Certification Authorities (CAs) only. A handful of top CAs in the world issue root certificates.
You can examine several of these certificates by clicking through the menus of your web browser.

1.2.4  Peer Authentication
Authentication of the peer is done by public key path validation as defined in RFC 3280. This means basically the
following:

• Each certificate in the certificate chain is issued by the previous one.

• The certificates attributes are valid.

• The root certificate is a trusted certificate that is present in the trusted certificate database kept by the peer.

The server always sends a certificate chain as part of the TLS handshake, but the client only sends one if requested by
the server. If the client does not have an appropriate certificate, it can send an "empty" certificate to the server.

The client can choose to accept some path evaluation errors, for example, a web browser can ask the user whether
to accept an unknown CA root certificate. The server, if it requests a certificate, does however not accept any path
validation errors. It is configurable if the server is to accept or reject an "empty" certificate as response to a certificate
request.

1.2.5  TLS Sessions
From the TLS RFC: "A TLS session is an association between a client and a server. Sessions are created by the
handshake protocol. Sessions define a set of cryptographic security parameters, which can be shared among multiple
connections. Sessions are used to avoid the expensive negotiation of new security parameters for each connection."

Session data is by default kept by the SSL application in a memory storage, hence session data is lost at application
restart or takeover. Users can define their own callback module to handle session data storage if persistent data storage
is required. Session data is also invalidated after 24 hours from it was saved, for security reasons. The amount of time
the session data is to be saved can be configured.

By default the TLS/DTLS clients try to reuse an available session and by default the TLS/DTLS servers agree to reuse
sessions when clients ask for it.

1.3  Using SSL application API
To see relevant version information for ssl, call ssl:versions/0 .

To see all supported cipher suites, call ssl:cipher_suites(all) . The available cipher suites for a connection
depend on your certificate. Specific cipher suites that you want your connection to use can also be specified. Default
is to use the strongest available.

2 | Ericsson AB. All Rights Reserved.: Secure Socket Layer



1.3  Using SSL application API

1.3.1  Setting up Connections
This section shows a small example of how to set up client/server connections using the Erlang shell. The returned
value of the sslsocket is abbreviated with [...] as it can be fairly large and is opaque.

Minimal Example

Note:

The minimal setup is not the most secure setup of TLS/DTLS.

To set up client/server connections:

Step 1: Start the server side:

1 server> ssl:start().
ok

Step 2: Create a TLS listen socket: (To run DTLS add the option {protocol, dtls})

2 server> {ok, ListenSocket} =
ssl:listen(9999, [{certfile, "cert.pem"}, {keyfile, "key.pem"},{reuseaddr, true}]).
{ok,{sslsocket, [...]}}

Step 3: Do a transport accept on the TLS listen socket:

3 server> {ok, TLSTransportSocket} = ssl:transport_accept(ListenSocket).
{ok,{sslsocket, [...]}}

Step 4: Start the client side:

1 client> ssl:start().
ok

To run DTLS add the option {protocol, dtls} to third argument.

2 client> {ok, Socket} = ssl:connect("localhost", 9999,  [], infinity).
{ok,{sslsocket, [...]}}

Step 5: Do the TLS handshake:

4 server> {ok, Socket} = ssl:handshake(TLSTransportSocket).
{ok,{sslsocket, [...]}}

Step 6: Send a message over TLS:

5 server> ssl:send(Socket, "foo").
ok

Step 7: Flush the shell message queue to see that the message was sent on the server side:

3 client> flush().
Shell got {ssl,{sslsocket,[...]},"foo"}
ok

Ericsson AB. All Rights Reserved.: Secure Socket Layer | 3



1.3  Using SSL application API

Upgrade Example - TLS only

Note:

To upgrade a TCP/IP connection to a TLS connection, the client and server must agree to do so. The agreement
can be accomplished by using a protocol, for example, the one used by HTTP specified in RFC 2817.

To upgrade to a TLS connection:

Step 1: Start the server side:

1 server> ssl:start().
ok

Step 2: Create a normal TCP listen socket:

2 server> {ok, ListenSocket} = gen_tcp:listen(9999, [{reuseaddr, true}]).
{ok, #Port<0.475>}

Step 3: Accept client connection:

3 server> {ok, Socket} = gen_tcp:accept(ListenSocket).
{ok, #Port<0.476>}

Step 4: Start the client side:

1 client> ssl:start().
ok

2 client> {ok, Socket} = gen_tcp:connect("localhost", 9999,  [], infinity).

Step 5: Ensure active is set to false before trying to upgrade a connection to a TLS connection, otherwise TLS
handshake messages can be delivered to the wrong process:

4 server> inet:setopts(Socket, [{active, false}]).
ok

Step 6: Do the TLS handshake:

5 server> {ok, TLSSocket} = ssl:handshake(Socket, [{cacertfile, "cacerts.pem"},
{certfile, "cert.pem"}, {keyfile, "key.pem"}]).
{ok,{sslsocket,[...]}}

Step 7: Upgrade to a TLS connection. The client and server must agree upon the upgrade. The server must call
ssl:handshake/2 before the client calls ssl:connect/3.

3 client>{ok, TLSSocket} = ssl:connect(Socket, [{cacertfile, "cacerts.pem"},
{certfile, "cert.pem"}, {keyfile, "key.pem"}], infinity).
{ok,{sslsocket,[...]}}

Step 8: Send a message over TLS:

4 client> ssl:send(TLSSocket, "foo").
ok

Step 9: Set active true on the TLS socket:

4 server> ssl:setopts(TLSSocket, [{active, true}]).
ok

4 | Ericsson AB. All Rights Reserved.: Secure Socket Layer



1.3  Using SSL application API

Step 10: Flush the shell message queue to see that the message was sent on the client side:

5 server> flush().
Shell got {ssl,{sslsocket,[...]},"foo"}
ok

1.3.2  Customizing cipher suites
Fetch default cipher suite list for a TLS/DTLS version. Change default to all to get all possible cipher suites.

1>  Default = ssl:cipher_suites(default, 'tlsv1.2').
    [#{cipher => aes_256_gcm,key_exchange => ecdhe_ecdsa,
    mac => aead,prf => sha384}, ....]

In OTP 20 it is desirable to remove all cipher suites that uses rsa kexchange (removed from default in 21)

2> NoRSA =
    ssl:filter_cipher_suites(Default,
                            [{key_exchange, fun(rsa) -> false;
                          (_) -> true end}]).
    [...]

Pick just a few suites

 3> Suites =
    ssl:filter_cipher_suites(Default,
                            [{key_exchange, fun(ecdh_ecdsa) -> true;
                          (_) -> false end},
                             {cipher, fun(aes_128_cbc) ->true;
                     (_) ->false end}]).
    [#{cipher => aes_128_cbc,key_exchange => ecdh_ecdsa,
     mac => sha256,prf => sha256},
     #{cipher => aes_128_cbc,key_exchange => ecdh_ecdsa,mac => sha,
     prf => default_prf}]

Make some particular suites the most preferred, or least preferred by changing prepend to append.

 4>ssl:prepend_cipher_suites(Suites, Default).
  [#{cipher => aes_128_cbc,key_exchange => ecdh_ecdsa,
     mac => sha256,prf => sha256},
   #{cipher => aes_128_cbc,key_exchange => ecdh_ecdsa,mac => sha,
     prf => default_prf},
   #{cipher => aes_256_cbc,key_exchange => ecdhe_ecdsa,
     mac => sha384,prf => sha384}, ...]

1.3.3  Using an Engine Stored Key
Erlang ssl application is able to use private keys provided by OpenSSL engines using the following mechanism:

1> ssl:start().
ok

Load a crypto engine, should be done once per engine used. For example dynamically load the engine called
MyEngine:

2> {ok, EngineRef} =
crypto:engine_load(<<"dynamic">>,
                   [{<<"SO_PATH">>, "/tmp/user/engines/MyEngine"},<<"LOAD">>],[]).
{ok,#Ref<0.2399045421.3028942852.173962>}

Create a map with the engine information and the algorithm used by the engine:

Ericsson AB. All Rights Reserved.: Secure Socket Layer | 5



1.3  Using SSL application API

3> PrivKey =
 #{algorithm => rsa,
   engine => EngineRef,
   key_id => "id of the private key in Engine"}.

Use the map in the ssl key option:

4> {ok, SSLSocket} =
ssl:connect("localhost", 9999,
            [{cacertfile, "cacerts.pem"},
             {certfile, "cert.pem"},
             {key, PrivKey}], infinity).

See also crypto documentation

1.3.4  Session Tickets and Session Resumption in TLS 1.3
TLS 1.3 introduces a new secure way of resuming sessions by using session tickets. A session ticket is an opaque data
structure that is sent in the pre_shared_key extension of a ClientHello, when a client attempts to resume a session with
keying material from a previous successful handshake.

Session tickets can be stateful or stateless. A stateful session ticket is a database reference (session ticket store) and used
with stateful servers, while a stateless ticket is a self-encrypted and self-authenticated data structure with cryptographic
keying material and state data, enabling session resumption with stateless servers.

The choice between stateful or stateless depends on the server requirements as the session tickets are opaque for the
clients. Generally, stateful tickets are smaller and the server can guarantee that tickets are only used once. Stateless
tickets contain additional data, require less storage on the server side, but they offer different guarantees against anti-
replay. See also Anti-Replay Protection in TLS 1.3

Session tickets are sent by servers on newly estalished TLS connections. The number of tickets sent and their lifetime
are configurable by application variables. See also SSL's configuration.

Session tickets are protected by application traffic keys, and in stateless tickets, the opaque data structure itself is self-
encrypted.

An example with automatic and manual session resumption:

Step 1 (server): Start the server:

      {ok, _} = application:ensure_all_started(ssl).
      LOpts = [{certfile, "cert.pem"},
               {keyfile, "key.pem"},
               {versions, ['tlsv1.2','tlsv1.3']},
               {session_tickets, stateless}].
      {ok, LSock} = ssl:listen(8001, LOpts).
      {ok, CSock} = ssl:transport_accept(LSock).

Step 2 (client): Start the client and connect to server:

      {ok, _} = application:ensure_all_started(ssl).
      COpts = [{cacertfile, "cert.pem"},
               {versions, ['tlsv1.2','tlsv1.3']},
               {log_level, debug},
               {session_tickets, auto}].
      ssl:connect("localhost", 8001, COpts).

Step 3 (server): Start the TLS handshake:

      ssl:handshake(CSock).

A connection is established using a full handshake. Below is a summary of the exchanged messages:

6 | Ericsson AB. All Rights Reserved.: Secure Socket Layer



1.3  Using SSL application API

      >>> TLS 1.3 Handshake, ClientHello ...
      <<< TLS 1.3 Handshake, ServerHello ...
      <<< Handshake, EncryptedExtensions ...
      <<< Handshake, Certificate ...
      <<< Handshake, CertificateVerify ...
      <<< Handshake, Finished ...
      >>> Handshake, Finished ...
      <<< Post-Handshake, NewSessionTicket ...

At this point the client has stored the received session tickets and ready to use them when establishing new connections
to the same server.

Step 4 (server): Accept a new connection on the server:

      {ok, CSock2} = ssl:transport_accept(LSock).

Step 5 (client): Make a new connection:

      ssl:connect("localhost", 8001, COpts).

Step 6 (server): Start the handshake:

      ssl:handshake(CSock2).

The second connection is a session resumption using keying material from the previous handshake:

      >>> TLS 1.3 Handshake, ClientHello ...
      <<< TLS 1.3 Handshake, ServerHello ...
      <<< Handshake, EncryptedExtensions ...
      <<< Handshake, Finished ...
      >>> Handshake, Finished ...
      <<< Post-Handshake, NewSessionTicket ...

Manual handling of session tickets is also supported. In manual mode, it is the responsibility of the client to handle
received session tickets.

Step 7 (server): Accept a new connection on the server:

      {ok, CSock3} = ssl:transport_accept(LSock).

Step 8 (client): Make a new connection to server:

      {ok, _} = application:ensure_all_started(ssl).
      COpts2 = [{cacertfile, "cert.pem"},
                {versions, ['tlsv1.2','tlsv1.3']},
                {log_level, debug},
                {session_tickets, manual}].
      ssl:connect("localhost", 8001, COpts).

Step 9 (server): Start the handshake:

      ssl:handshake(CSock3).

After the handshake is performed, the user process receives messages with the tickets sent by the server.

Step 10 (client): Receive a new session ticket:

      Ticket = receive {ssl, session_ticket, {_, TicketData}} -> TicketData end.

Step 11 (server): Accept a new connection on the server:

      {ok, CSock4} = ssl:transport_accept(LSock).

Ericsson AB. All Rights Reserved.: Secure Socket Layer | 7



1.3  Using SSL application API

Step 12 (client): Initiate a new connection to the server with the session ticket received in Step 10:

      {ok, _} = application:ensure_all_started(ssl).
      COpts2 = [{cacertfile, "cert.pem"},
                {versions, ['tlsv1.2','tlsv1.3']},
                {log_level, debug},
                {session_tickets, manual},
                {use_ticket, [Ticket]}].
      ssl:connect("localhost", 8001, COpts).

Step 13 (server): Start the handshake:

      ssl:handshake(CSock3).

1.3.5  Anti-Replay Protection in TLS 1.3
The TLS 1.3 protocol does not provide inherent protection for replay of 0-RTT data but describes mechanisms
that SHOULD be implemented by compliant server implementations. The implementation of TLS 1.3 in the SSL
application employs all standard methods to prevent potential threats.

Single-use tickets

This mechanism is available with stateful session tickets. Session tickets can only be used once, subsequent use of
the same ticket results in a full handshake. Stateful servers enforce this rule by maintaining a database of outstanding
valid tickets.

Client Hello Recording

This mechanism is available with stateless session tickets. The server records a unique value derived from
the ClientHello (PSK binder) in a given time window. The ticket's age is verified by using both the
"obsfuscated_ticket_age" and an additional timestamp encrypted in the ticket data. As the used datastore allows false
positives, apparent replays will be answered by doing a full 1-RTT handshake.

Freshness Checks

This mechanism is available with the stateless session tickets. As the ticket data has an embedded timestamp, the server
can determine if a ClientHello was sent reasonably recently and accept the 0-RTT handshake, otherwise if falls back
to a full 1-RTT handshake. This mechanism is tightly coupled with the previous one, it prevents storing an unlimited
number of ClientHellos.

The current implementation uses a pair of Bloom filters to implement the last two mechanisms. Bloom filters are fast,
memory-efficient, probabilistic data structures that can tell if an element may be in a set or if it is definitely not in
the set.

If the option anti_replay is defined in the server, a pair of Bloom filters (current and old) are used to record incoming
ClientHello messages (it is the unique binder value that is actually stored). The current Bloom filter is used for
WindowSize seconds to store new elements. At the end of the time window the Bloom filters are rotated (the current
Bloom filter becomes the old and an empty Bloom filter is set as current.

The Anti-Replay protection feature in stateless servers executes in the following steps when a new ClientHello is
received:

• Reported ticket age (obfuscated ticket age) shall be less than ticket lifetime.

• Actual ticket age shall be less than the ticket lifetime (stateless session tickets contain the servers timestamp when
the ticket was issued).

• Ticket shall be used within specified time window (freshness checks).

• If all above checks passed both current and old Bloom filters are checked to detect if binder was already seen.
Being a probabilistic data structure, false positives can occur and they trigger a full handshake.

8 | Ericsson AB. All Rights Reserved.: Secure Socket Layer



1.4  Using TLS for Erlang Distribution

• If the binder is not seen, the binder is validated. If the binder is valid, the server proceeds with the 0-RTT
handshake.

1.4  Using TLS for Erlang Distribution
This section describes how the Erlang distribution can use TLS to get extra verification and security.

The Erlang distribution can in theory use almost any connection-based protocol as bearer. However, a module
that implements the protocol-specific parts of the connection setup is needed. The default distribution module is
inet_tcp_dist in the Kernel application. When starting an Erlang node distributed, net_kernel uses this
module to set up listen ports and connections.

In the SSL application, an extra distribution module, inet_tls_dist, can be used as an alternative. All distribution
connections will use TLS and all participating Erlang nodes in a distributed system must use this distribution module.

The security level depends on the parameters provided to the TLS connection setup. Erlang node cookies are however
always used, as they can be used to differentiate between two different Erlang networks.

To set up Erlang distribution over TLS:

• Step 1: Build boot scripts including the SSL application.

• Step 2: Specify the distribution module for net_kernel.

• Step 3: Specify the security options and other SSL options.

• Step 4: Set up the environment to always use TLS.

The following sections describe these steps.

1.4.1  Building Boot Scripts Including the SSL Application
Boot scripts are built using the systools utility in the SASL application. For more information on systools, see
the SASL documentation. This is only an example of what can be done.

The simplest boot script possible includes only the Kernel and STDLIB applications. Such a script is located in the
bin directory of the Erlang distribution. The source for the script is found under the Erlang installation top directory
under releases/<OTP version>/start_clean.rel.

Do the following:

• Copy that script to another location (and preferably another name).

• Add the applications Crypto, Public Key, and SSL with their current version numbers after the STDLIB
application.

The following shows an example .rel file with TLS added:

      {release, {"OTP  APN 181 01","R15A"}, {erts, "5.9"},
      [{kernel,"2.15"},
      {stdlib,"1.18"},
      {crypto, "2.0.3"},
      {public_key, "0.12"},
      {asn1, "4.0"},
      {ssl, "5.0"}
      ]}.

The version numbers differ in your system. Whenever one of the applications included in the script is upgraded, change
the script.

Do the following:

• Build the boot script.

Ericsson AB. All Rights Reserved.: Secure Socket Layer | 9



1.4  Using TLS for Erlang Distribution

Assuming the .rel file is stored in a file start_ssl.rel in the current directory, a boot script can be
built as follows:

   1> systools:make_script("start_ssl",[]).    

There is now a start_ssl.boot file in the current directory.

Do the following:

• Test the boot script. To do this, start Erlang with the -boot command-line parameter specifying this boot script
(with its full path, but without the .boot suffix). In UNIX it can look as follows:

$ erl -boot /home/me/ssl/start_ssl
Erlang (BEAM) emulator version 5.0
 
Eshell V5.0  (abort with ^G)
1> whereis(ssl_manager).
<0.41.0>    

The whereis function-call verifies that the SSL application is started.

As an alternative to building a bootscript, you can explicitly add the path to the SSL ebin directory on the command
line. This is done with command-line option -pa. This works as the SSL application does not need to be started for the
distribution to come up, as a clone of the SSL application is hooked into the Kernel application. So, as long as the SSL
application code can be reached, the distribution starts. The -pa method is only recommended for testing purposes.

Note:

The clone of the SSL application must enable the use of the SSL code in such an early bootstage as needed to set
up the distribution. However, this makes it impossible to soft upgrade the SSL application.

1.4.2  Specifying Distribution Module for net_kernel
The distribution module for TLS is named inet_tls_dist and is specified on the command line with option -
proto_dist. The argument to -proto_dist is to be the module name without suffix _dist. So, this distribution
module is specified with -proto_dist inet_tls on the command line.

Extending the command line gives the following:

$ erl -boot /home/me/ssl/start_ssl -proto_dist inet_tls    

For the distribution to be started, give the emulator a name as well:

$ erl -boot /home/me/ssl/start_ssl -proto_dist inet_tls -sname ssl_test
Erlang (BEAM) emulator version 5.0 [source]
 
Eshell V5.0  (abort with ^G)
(ssl_test@myhost)1>     

However, a node started in this way refuses to talk to other nodes, as no TLS parameters are supplied (see the next
section).

1.4.3  Specifying TLS Options
The TLS distribution options can be written into a file that is consulted when the node is started. This file name is then
specified with the command line argument -ssl_dist_optfile.

Any available TLS option can be specified in an options file, but note that options that take a fun() has to use the
syntax fun Mod:Func/Arity since a function body cannot be compiled when consulting a file.

10 | Ericsson AB. All Rights Reserved.: Secure Socket Layer



1.4  Using TLS for Erlang Distribution

Do not tamper with the socket options list, binary, active, packet, nodelay and deliver since they
are used by the distribution protocol handler itself. Other raw socket options such as packet_size may interfere
severely, so beware!

For TLS to work, at least a public key and a certificate must be specified for the server side. In the following example,
the PEM file "/home/me/ssl/erlserver.pem" contains both the server certificate and its private key.

Create a file named for example "/home/me/ssl/ssl_test@myhost.conf":

[{server,
  [{certfile, "/home/me/ssl/erlserver.pem"},
   {secure_renegotiate, true}]},
 {client,
  [{secure_renegotiate, true}]}].

And then start the node like this (line breaks in the command are for readability, and shall not be there when typed):

$ erl -boot /home/me/ssl/start_ssl -proto_dist inet_tls
  -ssl_dist_optfile "/home/me/ssl/ssl_test@myhost.conf"
  -sname ssl_test

The options in the {server, Opts} tuple are used when calling ssl:ssl_accept/3, and the options in the
{client, Opts} tuple are used when calling ssl:connect/4.

For the client, the option {server_name_indication, atom_to_list(TargetNode)} is added when
connecting. This makes it possible to use the client option {verify, verify_peer}, and the client will verify
that the certificate matches the node name you are connecting to. This only works if the the server certificate is issued
to the name atom_to_list(TargetNode).

For the server it is also possible to use the option {verify, verify_peer} and the server will only accept
client connections with certificates that are trusted by a root certificate that the server knows. A client that presents
an untrusted certificate will be rejected. This option is preferably combined with {fail_if_no_peer_cert,
true} or a client will still be accepted if it does not present any certificate.

A node started in this way is fully functional, using TLS as the distribution protocol.

1.4.4  Specifying TLS Options (Legacy)
As in the previous section the PEM file "/home/me/ssl/erlserver.pem" contains both the server certificate
and its private key.

On the erl command line you can specify options that the TLS distribution adds when creating a socket.

The simplest TLS options in the following list can be specified by adding the prefix server_ or client_ to the
option name:

• certfile

• keyfile

• password

• cacertfile

• verify

• verify_fun (write as {Module, Function, InitialUserState})

• crl_check

• crl_cache (write as Erlang term)

• reuse_sessions

• secure_renegotiate

• depth

Ericsson AB. All Rights Reserved.: Secure Socket Layer | 11



1.4  Using TLS for Erlang Distribution

• hibernate_after

• ciphers (use old string format)

Note that verify_fun needs to be written in a different form than the corresponding TLS option, since funs are
not accepted on the command line.

The server can also take the options dhfile and fail_if_no_peer_cert (also prefixed).

client_-prefixed options are used when the distribution initiates a connection to another node. server_-prefixed
options are used when accepting a connection from a remote node.

Raw socket options, such as packet and size must not be specified on the command line.

The command-line argument for specifying the TLS options is named -ssl_dist_opt and is to be followed by
pairs of SSL options and their values. Argument -ssl_dist_opt can be repeated any number of times.

An example command line doing the same as the example in the previous section can now look as follows (line breaks
in the command are for readability, and shall not be there when typed):

$ erl -boot /home/me/ssl/start_ssl -proto_dist inet_tls
  -ssl_dist_opt server_certfile "/home/me/ssl/erlserver.pem"
  -ssl_dist_opt server_secure_renegotiate true client_secure_renegotiate true
  -sname ssl_test
Erlang (BEAM) emulator version 5.0 [source]

Eshell V5.0  (abort with ^G)
(ssl_test@myhost)1>

1.4.5  Setting up Environment to Always Use TLS (Legacy)
A convenient way to specify arguments to Erlang is to use environment variable ERL_FLAGS. All the flags needed
to use the TLS distribution can be specified in that variable and are then interpreted as command-line arguments for
all subsequent invocations of Erlang.

In a Unix (Bourne) shell, it can look as follows (line breaks are for readability, they are not to be there when typed):

$ ERL_FLAGS="-boot /home/me/ssl/start_ssl -proto_dist inet_tls
  -ssl_dist_opt server_certfile /home/me/ssl/erlserver.pem
  -ssl_dist_opt server_secure_renegotiate true client_secure_renegotiate true"
$ export ERL_FLAGS
$ erl -sname ssl_test
Erlang (BEAM) emulator version 5.0 [source]
 
Eshell V5.0  (abort with ^G)
(ssl_test@myhost)1> init:get_arguments().
[{root,["/usr/local/erlang"]},
 {progname,["erl "]},
 {sname,["ssl_test"]},
 {boot,["/home/me/ssl/start_ssl"]},
 {proto_dist,["inet_tls"]},
 {ssl_dist_opt,["server_certfile","/home/me/ssl/erlserver.pem"]},
 {ssl_dist_opt,["server_secure_renegotiate","true",
                "client_secure_renegotiate","true"]
 {home,["/home/me"]}]    

The init:get_arguments() call verifies that the correct arguments are supplied to the emulator.

1.4.6  Using TLS distribution over IPv6
It is possible to use TLS distribution over IPv6 instead of IPv4. To do this, pass the option -proto_dist
inet6_tls instead of -proto_dist inet_tls when starting Erlang, either on the command line or in the
ERL_FLAGS environment variable.

12 | Ericsson AB. All Rights Reserved.: Secure Socket Layer



1.5  Standards Compliance

An example command line with this option would look like this:

$ erl -boot /home/me/ssl/start_ssl -proto_dist inet6_tls
  -ssl_dist_optfile "/home/me/ssl/ssl_test@myhost.conf"
  -sname ssl_test

A node started in this way will only be able to communicate with other nodes using TLS distribution over IPv6.

1.5  Standards Compliance
1.5.1  Purpose
This section describes the current state of standards compliance of the ssl application.

1.5.2  Common (pre TLS 1.3)
• For security reasons RSA key exchange cipher suites are no longer supported by default, but can be configured.

(OTP 21)

• For security reasons DES cipher suites are no longer supported by default, but can be configured. (OTP 20)

• For security reasons 3DES cipher suites are no longer supported by default, but can be configured. (OTP 21)

• Renegotiation Indication Extension RFC 5746 is supported

• Ephemeral Diffie-Hellman cipher suites are supported, but not Diffie Hellman Certificates cipher suites.

• Elliptic Curve cipher suites are supported if the Crypto application supports it and named curves are used.

• Export cipher suites are not supported as the U.S. lifted its export restrictions in early 2000.

• IDEA cipher suites are not supported as they have become deprecated by the TLS 1.2 specification so it is not
motivated to implement them.

• Compression is not supported.

1.5.3  Common
• CRL validation is supported.

• Policy certificate extensions are not supported.

• 'Server Name Indication' extension (RFC 6066) is supported.

• Application Layer Protocol Negotiation (ALPN) and its successor Next Protocol Negotiation (NPN) are
supported.

• It is possible to use Pre-Shared Key (PSK) and Secure Remote Password (SRP) cipher suites, but they are not
enabled by default.

1.5.4  SSL 2.0
For security reasons SSL-2.0 is not supported. Interoperability with SSL-2.0 enabled clients dropped. (OTP 21)

1.5.5  SSL 3.0
For security reasons SSL-3.0 is no longer supported at all. (OTP 23)

For security reasons SSL-3.0 is no longer supported by default, but can be configured. (OTP 19)

1.5.6  TLS 1.0
For security reasons TLS-1.0 is no longer supported by default, but can be configured. (OTP 22)

Ericsson AB. All Rights Reserved.: Secure Socket Layer | 13

href
href


1.5  Standards Compliance

1.5.7  TLS 1.1
For security reasons TLS-1.1 is no longer supported by default, but can be configured. (OTP 22)

1.5.8  TLS 1.2
Supported

1.5.9  DTLS 1.0
For security reasons DTLS-1.0 (based on TLS 1.1) is no longer supported by default, but can be configured. (OTP 22)

1.5.10  DTLS 1.2
Supported (based on TLS 1.2)

1.5.11  DTLS 1.3
Not yet supported

1.5.12  TLS 1.3
OTP-22 introduces support for TLS 1.3. The current implementation supports a selective set of cryptographic
algorithms:

• Key Exchange: ECDHE

• Groups: all standard groups supported for the Diffie-Hellman key exchange

• Ciphers: all cipher suites are supported

• Signature Algorithms: All algorithms form RFC 8446

• Certificates: RSA and ECDSA keys

Other notable features:

• PSK and session resumption is supported (stateful and stateless tickets)

• Anti-replay protection using Bloom-filters with stateless tickets

• Early data and 0-RTT not supported

• Key and Initialization Vector Update is supported

For more detailed information see the Standards Compliance below.

The following table describes the current state of standards compliance for TLS 1.3.

(C = Compliant, NC = Non-Compliant, PC = Partially-Compliant, NA = Not Applicable)

Section Feature State Since

1.3. Updates Affecting
TLS 1.2

C 22

Version downgrade
protection mechanism

C 22

RSASSA-PSS signature
schemes

PC 23

14 | Ericsson AB. All Rights Reserved.: Secure Socket Layer

href
href


1.5  Standards Compliance

supported_versions
(ClientHello) extension

C 22

signature_algorithms_cert
extension

C 22

2. Protocol Overview PC 22

(EC)DHE C 22

PSK-only NC

PSK with (EC)DHE C 22.2

2.1. Incorrect DHE
share

HelloRetryRequest C 22

2.2. Resumption and
Pre-Shared Key (PSK)

C 22.2

2.3. 0-RTT Data NC

4.1.1. Cryptographic
Negotiation

C 22.2

supported_groups
extension

C 22

signature_algorithms
extension

C 22

pre_shared_key extension C 22.2

4.1.2. Client Hello Client PC 22.1

server_name (RFC6066) PC 22.2

max_fragment_length
(RFC6066)

C 23.0

status_request (RFC6066) NC

supported_groups
(RFC7919)

C 22.1

signature_algorithms
(RFC8446)

C 22.1

use_srtp (RFC5764) NC

heartbeat (RFC6520) NC

Ericsson AB. All Rights Reserved.: Secure Socket Layer | 15

href
href
href
href
href
href
href
href
href


1.5  Standards Compliance

application_layer_protocol_negotiation
(RFC7301)

C 22.1

signed_certificate_timestamp
(RFC6962)

NC

client_certificate_type
(RFC7250)

NC

server_certificate_type
(RFC7250)

NC

padding (RFC7685) NC

key_share (RFC8446) C 22.1

pre_shared_key
(RFC8446)

C 22.2

psk_key_exchange_modes
(RFC8446)

C 22.2

early_data (RFC8446) NC

cookie (RFC8446) C 23.1

supported_versions
(RFC8446)

C 22.1

certificate_authorities
(RFC8446)

NC

oid_filters (RFC8446) NC

post_handshake_auth
(RFC8446)

NC

signature_algorithms_cert
(RFC8446)

C 22.1

Server PC 22

server_name (RFC6066) PC 22.2

max_fragment_length
(RFC6066)

C 23.0

status_request (RFC6066) NC

supported_groups
(RFC7919)

C 22

16 | Ericsson AB. All Rights Reserved.: Secure Socket Layer



1.5  Standards Compliance

signature_algorithms
(RFC8446)

C 22

use_srtp (RFC5764) NC

heartbeat (RFC6520) NC

application_layer_protocol_negotiation
(RFC7301)

C 22.1

signed_certificate_timestamp
(RFC6962)

NC

client_certificate_type
(RFC7250)

NC

server_certificate_type
(RFC7250)

NC

padding (RFC7685) NC

key_share (RFC8446) C 22

pre_shared_key
(RFC8446)

C 22.2

psk_key_exchange_modes
(RFC8446)

C 22.2

early_data (RFC8446) NC

cookie (RFC8446) C 23.1

supported_versions
(RFC8446)

C 22

certificate_authorities
(RFC8446)

NC

oid_filters (RFC8446) NC

post_handshake_auth
(RFC8446)

NC

signature_algorithms_cert
(RFC8446)

C 22

4.1.3. Server Hello Client C 22.2

Version downgrade
protection

C 22.1

key_share (RFC8446) C 22.1

Ericsson AB. All Rights Reserved.: Secure Socket Layer | 17

href


1.5  Standards Compliance

pre_shared_key
(RFC8446)

C 22.2

supported_versions
(RFC8446)

C 22.1

Server C 22.2

Version downgrade
protection

C 22

key_share (RFC8446) C 22

pre_shared_key
(RFC8446)

C 22.2

supported_versions
(RFC8446)

C 22

4.1.4. Hello Retry
Request

Server C 22

key_share (RFC8446) C 22

cookie (RFC8446) C 23.1

supported_versions
(RFC8446)

C 22

4.2.1. Supported
Versions

Client C 22.1

Server C 22

4.2.2. Cookie Client C 23.1

Server C 23.1

4.2.3. Signature
Algorithms

Client C 23

rsa_pkcs1_sha256 C 22.1

rsa_pkcs1_sha384 C 22.1

rsa_pkcs1_sha512 C 22.1

ecdsa_secp256r1_sha256 C 22.1

ecdsa_secp384r1_sha384 C 22.1

ecdsa_secp521r1_sha512 C 22.1

18 | Ericsson AB. All Rights Reserved.: Secure Socket Layer

href
href
href
href
href
href
href


1.5  Standards Compliance

rsa_pss_rsae_sha256 C 22.1

rsa_pss_rsae_sha384 C 22.1

rsa_pss_rsae_sha512 C 22.1

ed25519 NC

ed448 NC

rsa_pss_pss_sha256 C 23

rsa_pss_pss_sha384 C 23

rsa_pss_pss_sha512 C 23

rsa_pkcs1_sha1 C 22.1

ecdsa_sha1 C 22.1

Server PC 22

rsa_pkcs1_sha256 C 22

rsa_pkcs1_sha384 C 22

rsa_pkcs1_sha512 C 22

ecdsa_secp256r1_sha256 C 22.1

ecdsa_secp384r1_sha384 C 22.1

ecdsa_secp521r1_sha512 C 22.1

rsa_pss_rsae_sha256 C 22

rsa_pss_rsae_sha384 C 22

rsa_pss_rsae_sha512 C 22

ed25519 NC

ed448 NC

rsa_pss_pss_sha256 C 23

rsa_pss_pss_sha384 C 23

rsa_pss_pss_sha512 C 23

rsa_pkcs1_sha1 C 22

ecdsa_sha1 C 22

Ericsson AB. All Rights Reserved.: Secure Socket Layer | 19



1.5  Standards Compliance

4.2.4. Certificate
Authorities

Client NC

Server NC

4.2.5. OID Filters Client NC

Server NC

4.2.6. Post-Handshake
Client Authentication

Client NC

Server NC

4.2.7. Supported Groups Client C 22.1

secp256r1 C 22.1

secp384r1 C 22.1

secp521r1 C 22.1

x25519 C 22.1

x448 C 22.1

ffdhe2048 C 22.1

ffdhe3072 C 22.1

ffdhe4096 C 22.1

ffdhe6144 C 22.1

ffdhe8192 C 22.1

Server C 22

secp256r1 C 22

secp384r1 C 22

secp521r1 C 22

x25519 C 22

x448 C 22

ffdhe2048 C 22

ffdhe3072 C 22

ffdhe4096 C 22

20 | Ericsson AB. All Rights Reserved.: Secure Socket Layer

href
href
href
href
href
href


1.5  Standards Compliance

ffdhe6144 C 22

ffdhe8192 C 22

4.2.8. Key Share Client C 22.1

Server C 22

4.2.9. Pre-Shared Key
Exchange Modes

Client C 22.2

Server C 22.2

4.2.10. Early Data
Indication

Client NC

Server NC

4.2.11. Pre-Shared Key
Extension

Client C 22.2

Server C 22.2

4.2.11.1. Ticket Age Client C 22.2

Server C 22.2

4.2.11.2. PSK Binder Client C 22.2

Server C 22.2

4.2.11.3. Processing
Order

Client NC

Server NC

4.3.1. Encrypted
Extensions

Client PC 22.1

server_name (RFC6066) NC

max_fragment_length
(RFC6066)

C 23.0

supported_groups
(RFC7919)

NC

use_srtp (RFC5764) NC

heartbeat (RFC6520) NC

application_layer_protocol_negotiation
(RFC7301)

NC

Ericsson AB. All Rights Reserved.: Secure Socket Layer | 21

href
href
href
href
href
href
href
href
href
href
href
href
href


1.5  Standards Compliance

client_certificate_type
(RFC7250)

NC

server_certificate_type
(RFC7250)

NC

early_data (RFC8446) NC

supported_versions
(RFC8446)

NC

Server PC 22

server_name (RFC6066) NC

max_fragment_length
(RFC6066)

C 23.0

supported_groups
(RFC7919)

NC

use_srtp (RFC5764) NC

heartbeat (RFC6520) NC

application_layer_protocol_negotiation
(RFC7301)

NC

client_certificate_type
(RFC7250)

NC

server_certificate_type
(RFC7250)

NC

early_data (RFC8446) NC

supported_versions
(RFC8446)

NC

4.3.2. Certificate
Request

Client PC 22.1

status_request (RFC6066) NC

signature_algorithms
(RFC8446)

C 22.1

signed_certificate_timestamp
(RFC6962)

NC

certificate_authorities
(RFC8446)

NC

22 | Ericsson AB. All Rights Reserved.: Secure Socket Layer

href
href


1.5  Standards Compliance

oid_filters (RFC8446) NC

signature_algorithms_cert
(RFC8446)

C 22.1

Server PC 22

status_request (RFC6066) NC

signature_algorithms
(RFC8446)

C 22

signed_certificate_timestamp
(RFC6962)

NC

certificate_authorities
(RFC8446)

NC

oid_filters (RFC8446) NC

signature_algorithms_cert
(RFC8446)

C 22

4.4.1. The Transcript
Hash

C 22

4.4.2. Certificate Client PC 22.1

status_request (RFC6066) NC

signed_certificate_timestamp
(RFC6962)

NC

Server PC 22

status_request (RFC6066) NC

signed_certificate_timestamp
(RFC6962)

NC

4.4.2.1. OCSP Status and
SCT Extensions

Client NC

Server NC

4.4.2.2. Server
Certificate Selection

PC 22

The certificate type
MUST be X.509v3, unless
explicitly negotiated
otherwise

C 22

Ericsson AB. All Rights Reserved.: Secure Socket Layer | 23

href
href
href
href
href
href
href


1.5  Standards Compliance

The server's end-entity
certificate's public
key (and associated
restrictions) MUST be
compatible with the
selected authentication
algorithm from the client's
"signature_algorithms"
extension (currently RSA,
ECDSA, or EdDSA).

C 22

The certificate MUST
allow the key to be
used for signing with
a signature scheme
indicated in the client's
"signature_algorithms"/"signature_algorithms_cert"
extensions

C 22

The "server_name" and
"certificate_authorities"
extensions are used to
guide certificate selection.
As servers MAY require
the presence of the
"server_name" extension,
clients SHOULD send
this extension, when
applicable.

NC

4.4.2.3. Client Certificate
Selection

PC 22.1

The certificate type
MUST be X.509v3, unless
explicitly negotiated
otherwise

C 22.1

If the
"certificate_authorities"
extension in the
CertificateRequest
message was present, at
least one of the certificates
in the certificate chain
SHOULD be issued by one
of the listed CAs.

NC

The certificates MUST be
signed using an acceptable
signature algorithm

C 22.1

24 | Ericsson AB. All Rights Reserved.: Secure Socket Layer

href
href


1.5  Standards Compliance

If the CertificateRequest
message contained a
non-empty "oid_filters"
extension, the end-entity
certificate MUST match
the extension OIDs that are
recognized by the client

NC

4.4.2.4. Receiving a
Certificate Message

Client C 22.1

Server C 22

4.4.3. Certificate Verify Client C 22.1

Server C 22

4.4.4. Finished Client C 22.1

Server C 22

4.5. End of Early Data Client NC

Server NC

4.6.1. New Session Ticket
Message

Client PC 22.2

early_data (RFC8446) NC

Server PC 22.2

early_data (RFC8446) NC

4.6.2. Post-Handshake
Authentication

Client NC

Server NC

4.6.3. Key and
Initialization Vector
Update

Client C 22.3

Server C 22.3

5.1. Record Layer C 22

MUST NOT be interleaved
with other record types

C 22

MUST NOT span key
changes

C 22

Ericsson AB. All Rights Reserved.: Secure Socket Layer | 25

href
href
href
href
href
href
href
href
href
href
href
href
href


1.5  Standards Compliance

MUST NOT send zero-
length fragments

C 22

Alert messages MUST
NOT be fragmented

C 22

5.2. Record Payload
Protection

C 22

5.3. Per-Record Nonce C 22

5.4. Record Padding PC 22

MAY choose to pad NC

MUST NOT send
Handshake and
Alert records that
have a zero-length
TLSInnerPlaintext.content

NC

The padding sent is
automatically verified

C 22

5.5. Limits on Key Usage C 22.3

6.1. Closure Alerts NC

close_notify NC

user_cancelled NC

6.2. Error Alerts PC 22

7.1. Key Schedule C 22

7.2. Updating Traffic
Secrets

C 22

7.3. Traffic Key
Calculation

C 22

7.5. Exporters NC

8. 0-RTT and Anti-
Replay

C 22.2

8.1. Single-Use Tickets C 22.2

8.2. Client Hello
Recording

C 22.2

8.3. Freshness Checks C 22.2

26 | Ericsson AB. All Rights Reserved.: Secure Socket Layer

href
href
href
href
href
href
href
href
href
href
href
href
href
href
href
href
href
href
href


1.5  Standards Compliance

9.1. Mandatory-to-
Implement Cipher Suites

C 22.1

MUST implement the
TLS_AES_128_GCM_SHA256

C 22

SHOULD implement the
TLS_AES_256_GCM_SHA384

C 22

SHOULD implement the
TLS_CHACHA20_POLY1305_SHA256

C 22

Digital signatures C 22.1

MUST support
rsa_pkcs1_sha256 (for
certificates)

C 22

MUST support
rsa_pss_rsae_sha256 (for
CertificateVerify and
certificates)

C 22

MUST support
ecdsa_secp256r1_sha256

C 22.1

Key Exchange C 22

MUST support key
exchange with secp256r1

C 22

SHOULD support key
exchange with X25519

C 22

9.2. Mandatory-to-
Implement Extensions

PC 22

Supported Versions C 22

Cookie C 23.1

Signature Algorithms C 22

Signature Algorithms
Certificate

C 22

Negotiated Groups C 22

Key Share C 22

Server Name Indication NC

Ericsson AB. All Rights Reserved.: Secure Socket Layer | 27

href
href
href
href


1.5  Standards Compliance

MUST send and use
these extensions

C 22.2

"supported_versions"
is REQUIRED for
ClientHello, ServerHello
and HelloRetryRequest

C 22.1

"signature_algorithms" is
REQUIRED for certificate
authentication

C 22

"supported_groups"
is REQUIRED for
ClientHello messages
using (EC)DHE key
exchange

C 22

"key_share" is
REQUIRED for (EC)DHE
key exchange

C 22

"pre_shared_key" is
REQUIRED for PSK key
agreement

C 22.2

"psk_key_exchange_modes"
is REQUIRED for PSK
key agreement

C 22.2

TLS 1.3 ClientHello C 22.1

If not containing a
"pre_shared_key"
extension, it MUST
contain both a
"signature_algorithms"
extension and a
"supported_groups"
extension.

C 22.1

If containing a
"supported_groups"
extension, it MUST also
contain a "key_share"
extension, and vice
versa. An empty
KeyShare.client_shares
vector is permitted.

C 22.1

TLS 1.3 ServerHello PC 22

28 | Ericsson AB. All Rights Reserved.: Secure Socket Layer



1.5  Standards Compliance

MUST support the use
of the "server_name"
extension

NC

9.3. Protocol Invariants C 22.1

MUST correctly handle
extensible fields

C 22.1

A client sending a
ClientHello MUST support
all parameters advertised
in it. Otherwise, the server
may fail to interoperate
by selecting one of those
parameters.

C 22.1

A server receiving a
ClientHello MUST
correctly ignore all
unrecognized cipher suites,
extensions, and other
parameters. Otherwise, it
may fail to interoperate
with newer clients. In
TLS 1.3, a client receiving
a CertificateRequest
or NewSessionTicket
MUST also ignore all
unrecognized extensions.

C 22.1

A middlebox which
terminates a TLS
connection MUST behave
as a compliant TLS server

NA

A middlebox which
forwards ClientHello
parameters it does not
understand MUST NOT
process any messages
beyond that ClientHello.
It MUST forward all
subsequent traffic
unmodified. Otherwise,
it may fail to interoperate
with newer clients and
servers.

NA

B.4. Cipher Suites C 23

TLS_AES_128_GCM_SHA256C 22

Ericsson AB. All Rights Reserved.: Secure Socket Layer | 29

href
href


1.5  Standards Compliance

TLS_AES_256_GCM_SHA384C 22

TLS_CHACHA20_POLY1305_SHA256C 22

TLS_AES_128_CCM_SHA256C 22

TLS_AES_128_CCM_8_SHA256C 23

C.1. Random Number
Generation and Seeding

C 22

C.2. Certificates and
Authentication

C 22

C.3. Implementation
Pitfalls

PC 22

C.4. Client Tracking
Prevention

C 22.2

C.5. Unauthenticated
Operation

C 22

D.1. Negotiating with an
Older Server

C 22.2

D.2. Negotiating with an
Older Client

C 22

D.3. 0-RTT Backward
Compatibility

NC

D.4. Middlebox
Compatibility Mode

C 23

D.5. Security
Restrictions Related to
Backward Compatibility

C 22

Table 5.1:   Standards Compliance

30 | Ericsson AB. All Rights Reserved.: Secure Socket Layer

href
href
href
href
href
href
href
href
href
href
href
href
href
href
href
href
href
href
href
href
href


1.5  Standards Compliance

2    Reference Manual

Ericsson AB. All Rights Reserved.: Secure Socket Layer | 31



ssl

ssl
Application

The ssl application is an implementation of the SSL, TLS and DTLS protocols in Erlang.

For current statement of standards compliance see the User's Guide.

DEPENDENCIES
The SSL application uses the public_key, asn1 and Crypto application to handle public keys and encryption,
hence these applications must be loaded for the SSL application to work. In an embedded environment this means
they must be started with application:start/[1,2] before the SSL application is started.

CONFIGURATION
The application environment configuration parameters in this section are defined for the SSL application. For more
information about configuration parameters, see the application(3) manual page in Kernel.

The environment parameters can be set on the command line, for example:

erl -ssl protocol_version "['tlsv1.2', 'tlsv1.1']"

protocol_version = ssl:ssl_tls_protocol()<optional>

Protocol supported by started clients and servers. If this option is not set, it defaults to all TLS protocols currently
supported, more might be configurable, by the SSL application. This option can be overridden by the version
option to ssl:connect/[2,3] and ssl:listen/2.

dtls_protocol_version = ssl:dtls_protocol()<optional>

Protocol supported by started clients and servers. If this option is not set, it defaults to all DTLS protocols currently
supported, more might be configurable, by the SSL application. This option can be overridden by the version
option to ssl:connect/[2,3] and ssl:listen/2.

session_lifetime = integer() <optional>

Maximum lifetime of the session data in seconds. Defaults to 24 hours which is the maximum recommended
lifetime by RFC 5246. However sessions may be invalidated earlier due to the maximum limitation of the session
cache table.

session_cb = atom() <optional>

Name of the session cache callback module that implements the ssl_session_cache_api behavior.
Defaults to ssl_session_cache.

session_cb_init_args = proplist:proplist() <optional>

List of extra user-defined arguments to the init function in the session cache callback module. Defaults to [].

session_cache_client_max = integer() <optional>

Limits the growth of the clients session cache, that is how many sessions towards servers that are cached to be
used by new client connections. If the maximum number of sessions is reached, the current cache entries will
be invalidated regardless of their remaining lifetime. Defaults to 1000. Recommended ssl-8.2.1 or later for this
option to work as intended.

session_cache_server_max = integer() <optional>

Limits the growth of the servers session cache, that is how many client sessions are cached by the server. If the
maximum number of sessions is reached, the current cache entries will be invalidated regardless of their remaining
lifetime. Defaults to 1000. Recommended ssl-8.2.1 or later for this option to work as intended.

32 | Ericsson AB. All Rights Reserved.: Secure Socket Layer

href


ssl

ssl_pem_cache_clean = integer() <optional>

Number of milliseconds between PEM cache validations. Defaults to 2 minutes.

ssl:clear_pem_cache/0
bypass_pem_cache = boolean() <optional>

Introduced in ssl-8.0.2. Disables the PEM-cache. Can be used as a workaround for the PEM-cache bottleneck
before ssl-8.1.1. Defaults to false.

alert_timeout = integer() <optional>

Number of milliseconds between sending of a fatal alert and closing the connection. Waiting a little while
improves the peers chances to properly receiving the alert so it may shutdown gracefully. Defaults to 5000
milliseconds.

internal_active_n = integer() <optional>

For TLS connections this value is used to handle the internal socket. As the implementation was changed from
an active once to an active N behavior (N = 100), for performance reasons, this option exist for possible tweaking
or restoring of the old behavior (internal_active_n = 1) in unforeseen scenarios. The option will not affect erlang
distribution over TLS that will always run in active N mode. Added in ssl-9.1 (OTP-21.2).

server_session_tickets_amount = integer() <optional>

Number of session tickets sent by the server. It must be greater than 0. Defaults to 3.

server_session_ticket_lifetime = integer() <optional>

Lifetime of session tickets sent by the server. Servers must not use any value greater than 604800 seconds (7
days). Expired tickets are automatically removed. Defaults to 7200 seconds (2 hours).

server_session_ticket_store_size = integer() <optional>

Sets the maximum size of the server session ticket store (stateful tickets). Defaults to 1000. Size limit is enforced
by dropping old tickets.

client_session_ticket_lifetime = integer() <optional>

Lifetime of session tickets in the client ticket store. Expired tickets are automatically removed. Defaults to 7200
seconds (2 hours).

client_session_ticket_store_size = integer() <optional>

Sets the maximum size of the client session ticket store. Defaults to 1000. Size limit is enforced by dropping
old tickets.

ERROR LOGGER AND EVENT HANDLERS
The SSL application uses OTP logger. TLS/DTLS alerts are logged on notice level. Unexpected errors are logged on
error level. These log entries will by default end up in the default Erlang log. The option log_level may be used
to in run-time to set the log level of a specific TLS connection, which is handy when you want to use level debug to
inspect the TLS handshake setup.

SEE ALSO
application(3)

Ericsson AB. All Rights Reserved.: Secure Socket Layer | 33



ssl

ssl
Erlang module

This module contains interface functions for the TLS/DTLS protocol. For detailed information about the supported
standards see ssl(6).

Data Types
Types used in TLS/DTLS
socket() = gen_tcp:socket()
sslsocket() = any()
An opaque reference to the TLS/DTLS connection, may be used for equality matching.

tls_option() = tls_client_option() | tls_server_option()
tls_client_option() =
    client_option() |
    common_option() |
    socket_option() |
    transport_option()
tls_server_option() =
    server_option() |
    common_option() |
    socket_option() |
    transport_option()
socket_option() =
    gen_tcp:connect_option() |
    gen_tcp:listen_option() |
    gen_udp:option()
The default socket options are [{mode,list},{packet, 0},{header, 0},{active, true}].

For valid options, see the inet(3), gen_tcp(3) and gen_udp(3) manual pages in Kernel. Note that stream oriented options
such as packet are only relevant for TLS and not DTLS

active_msgs() =
    {ssl, sslsocket(), Data :: binary() | list()} |
    {ssl_closed, sslsocket()} |
    {ssl_error, sslsocket(), Reason :: any()} |
    {ssl_passive, sslsocket()}
When a TLS/DTLS socket is in active mode (the default), data from the socket is delivered to the owner of the socket
in the form of messages as described above.

The ssl_passive message is sent only when the socket is in {active, N} mode and the counter dropped to 0.
It indicates that the socket has transitioned to passive ({active, false}) mode.

transport_option() =
    {cb_info,
     {CallbackModule :: atom(),
      DataTag :: atom(),
      ClosedTag :: atom(),
      ErrTag :: atom()}} |

34 | Ericsson AB. All Rights Reserved.: Secure Socket Layer



ssl

    {cb_info,
     {CallbackModule :: atom(),
      DataTag :: atom(),
      ClosedTag :: atom(),
      ErrTag :: atom(),
      PassiveTag :: atom()}}
Defaults to {gen_tcp, tcp, tcp_closed, tcp_error, tcp_passive} for TLS (for backward
compatibility a four tuple will be converted to a five tuple with the last element "second_element"_passive) and
{gen_udp, udp, udp_closed, udp_error} for DTLS (might also be changed to five tuple in the future).
Can be used to customize the transport layer. The tag values should be the values used by the underlying transport
in its active mode messages. For TLS the callback module must implement a reliable transport protocol, behave as
gen_tcp, and have functions corresponding to inet:setopts/2, inet:getopts/2, inet:peername/1,
inet:sockname/1, and inet:port/1. The callback gen_tcp is treated specially and calls inet directly. For
DTLS this feature must be considered exprimental.

host() = hostname() | ip_address()
hostname() = string()
ip_address() = inet:ip_address()
protocol_version() = tls_version() | dtls_version()
tls_version() = 'tlsv1.2' | 'tlsv1.3' | tls_legacy_version()
dtls_version() = 'dtlsv1.2' | dtls_legacy_version()
tls_legacy_version() = tlsv1 | 'tlsv1.1'
dtls_legacy_version() = dtlsv1
prf_random() = client_random | server_random
verify_type() = verify_none | verify_peer
ciphers() = [erl_cipher_suite()] | string()
erl_cipher_suite() =
    #{key_exchange := kex_algo(),
      cipher := cipher(),
      mac := hash() | aead,
      prf := hash() | default_prf}
cipher() =
    aes_128_cbc | aes_256_cbc | aes_128_gcm | aes_256_gcm |
    aes_128_ccm | aes_256_ccm | aes_128_ccm_8 | aes_256_ccm_8 |
    chacha20_poly1305 |
    legacy_cipher()
legacy_cipher() = rc4_128 | des_cbc | '3des_ede_cbc'
cipher_filters() =
    [{key_exchange | cipher | mac | prf, algo_filter()}]
hash() = sha | sha2() | legacy_hash()
sha2() = sha224 | sha256 | sha384 | sha512
legacy_hash() = md5
old_cipher_suite() =
    {kex_algo(), cipher(), hash()} |
    {kex_algo(), cipher(), hash() | aead, hash()}
signature_algs() = [{hash(), sign_algo()}]
sign_algo() = rsa | dsa | ecdsa
sign_scheme() =

Ericsson AB. All Rights Reserved.: Secure Socket Layer | 35



ssl

    rsa_pkcs1_sha256 | rsa_pkcs1_sha384 | rsa_pkcs1_sha512 |
    ecdsa_secp256r1_sha256 | ecdsa_secp384r1_sha384 |
    ecdsa_secp521r1_sha512 | rsa_pss_rsae_sha256 |
    rsa_pss_rsae_sha384 | rsa_pss_rsae_sha512 |
    rsa_pss_pss_sha256 | rsa_pss_pss_sha384 | rsa_pss_pss_sha512 |
    rsa_pkcs1_sha1 | ecdsa_sha1
group() =
    secp256r1 | secp384r1 | secp521r1 | ffdhe2048 | ffdhe3072 |
    ffdhe4096 | ffdhe6144 | ffdhe8192
kex_algo() =
    rsa | dhe_rsa | dhe_dss | ecdhe_ecdsa | ecdh_ecdsa |
    ecdh_rsa | srp_rsa | srp_dss | psk | dhe_psk | rsa_psk |
    dh_anon | ecdh_anon | srp_anon | any
algo_filter() =
    fun((kex_algo() | cipher() | hash() | aead | default_prf) ->
            true | false)
named_curve() =
    sect571r1 | sect571k1 | secp521r1 | brainpoolP512r1 |
    sect409k1 | sect409r1 | brainpoolP384r1 | secp384r1 |
    sect283k1 | sect283r1 | brainpoolP256r1 | secp256k1 |
    secp256r1 | sect239k1 | sect233k1 | sect233r1 | secp224k1 |
    secp224r1 | sect193r1 | sect193r2 | secp192k1 | secp192r1 |
    sect163k1 | sect163r1 | sect163r2 | secp160k1 | secp160r1 |
    secp160r2
psk_identity() = string()
srp_identity() = {Username :: string(), Password :: string()}
srp_param_type() =
    srp_1024 | srp_1536 | srp_2048 | srp_3072 | srp_4096 |
    srp_6144 | srp_8192
app_level_protocol() = binary()
protocol_extensions() =
    #{renegotiation_info => binary(),
      signature_algs => signature_algs(),
      alpn => app_level_protocol(),
      srp => binary(),
      next_protocol => app_level_protocol(),
      max_frag_enum => 1..4,
      ec_point_formats => [0..2],
      elliptic_curves => [public_key:oid()],
      sni => hostname()}
error_alert() =
    {tls_alert, {tls_alert(), Description :: string()}}
tls_alert() =
    close_notify | unexpected_message | bad_record_mac |
    record_overflow | handshake_failure | bad_certificate |
    unsupported_certificate | certificate_revoked |
    certificate_expired | certificate_unknown |
    illegal_parameter | unknown_ca | access_denied |
    decode_error | decrypt_error | export_restriction |
    protocol_version | insufficient_security | internal_error |

36 | Ericsson AB. All Rights Reserved.: Secure Socket Layer



ssl

    inappropriate_fallback | user_canceled | no_renegotiation |
    unsupported_extension | certificate_unobtainable |
    unrecognized_name | bad_certificate_status_response |
    bad_certificate_hash_value | unknown_psk_identity |
    no_application_protocol
reason() = any()
bloom_filter_window_size() = integer()
bloom_filter_hash_functions() = integer()
bloom_filter_bits() = integer()
client_session_tickets() = disabled | manual | auto
server_session_tickets() = disabled | stateful | stateless

TLS/DTLS OPTION DESCRIPTIONS - COMMON for SERVER and CLIENT
common_option() =
    {protocol, protocol()} |
    {handshake, handshake_completion()} |
    {cert, cert()} |
    {certfile, cert_pem()} |
    {key, key()} |
    {keyfile, key_pem()} |
    {password, key_password()} |
    {ciphers, cipher_suites()} |
    {eccs, [named_curve()]} |
    {signature_algs_cert, signature_schemes()} |
    {supported_groups, supported_groups()} |
    {secure_renegotiate, secure_renegotiation()} |
    {depth, allowed_cert_chain_length()} |
    {verify_fun, custom_verify()} |
    {crl_check, crl_check()} |
    {crl_cache, crl_cache_opts()} |
    {max_handshake_size, handshake_size()} |
    {partial_chain, root_fun()} |
    {versions, protocol_versions()} |
    {user_lookup_fun, custom_user_lookup()} |
    {log_level, logging_level()} |
    {log_alert, log_alert()} |
    {hibernate_after, hibernate_after()} |
    {padding_check, padding_check()} |
    {beast_mitigation, beast_mitigation()} |
    {ssl_imp, ssl_imp()} |
    {session_tickets, session_tickets()} |
    {key_update_at, key_update_at()} |
    {middlebox_comp_mode, middlebox_comp_mode()}
protocol() = tls | dtls
Choose TLS or DTLS protocol for the transport layer security. Defaults to tls. For DTLS other transports than UDP
are not yet supported.

Ericsson AB. All Rights Reserved.: Secure Socket Layer | 37



ssl

handshake_completion() = hello | full
Defaults to full. If hello is specified the handshake will pause after the hello message and give the user a
possibility make decisions based on hello extensions before continuing or aborting the handshake by calling
handshake_continue/3 or handshake_cancel/1

cert() = public_key:der_encoded()
The DER-encoded users certificate. If this option is supplied, it overrides option certfile.

cert_pem() = file:filename()
Path to a file containing the user certificate on PEM format.

key() =
    {'RSAPrivateKey' | 'DSAPrivateKey' | 'ECPrivateKey' |
     'PrivateKeyInfo',
     public_key:der_encoded()} |
    #{algorithm := rsa | dss | ecdsa,
      engine := crypto:engine_ref(),
      key_id := crypto:key_id(),
      password => crypto:password()}
The DER-encoded user's private key or a map refering to a crypto engine and its key reference that optionally can
be password protected, seealso crypto:engine_load/4 and Crypto's Users Guide. If this option is supplied, it overrides
option keyfile.

key_pem() = file:filename()
Path to the file containing the user's private PEM-encoded key. As PEM-files can contain several entries, this option
defaults to the same file as given by option certfile.

key_password() = string()
String containing the user's password. Only used if the private keyfile is password-protected.

cipher_suites() = ciphers()
A list of cipher suites that should be supported

The function ssl:cipher_suites/2 can be used to find all cipher suites that are supported by default and all cipher suites
that may be configured.

If you compose your own cipher_suites() make sure they are filtered for cryptolib support
ssl:filter_cipher_suites/2 Additionaly the functions ssl:append_cipher_suites/2 , ssl:prepend_cipher_suites/2,
ssl:suite_to_str/1, ssl:str_to_suite/1, and ssl:suite_to_openssl_str/1 also exist to help creating customized cipher suite
lists.

Note:

Note that TLS-1.3 and TLS-1.2 cipher suites are not overlapping sets of cipher suites so to support both these
versions cipher suites from both versions need to be included. If supporting TLS-1.3 versions prior to TLS-1.2
can not be supported.

Non-default cipher suites including anonymous cipher suites (PRE TLS-1.3) are supported for interop/testing purposes
and may be used by adding them to your cipher suite list. Note that they must also be supported/enabled by the peer
to actually be used.

signature_schemes() = [sign_scheme()]
In addition to the signature_algorithms extension from TLS 1.2, TLS 1.3 (RFC 5246 Section 4.2.3)adds the
signature_algorithms_cert extension which enables having special requirements on the signatures used in the

38 | Ericsson AB. All Rights Reserved.: Secure Socket Layer

href


ssl

certificates that differs from the requirements on digital signatures as a whole. If this is not required this extension
is not needed.

The client will send a signature_algorithms_cert extension (ClientHello), if TLS version 1.3 or later is used, and the
signature_algs_cert option is explicitly specified. By default, only the signature_algs extension is sent.

The signature schemes shall be ordered according to the client's preference (favorite choice first).

supported_groups() = [group()]
TLS 1.3 introduces the "supported_groups" extension that is used for negotiating the Diffie-Hellman parameters in a
TLS 1.3 handshake. Both client and server can specify a list of parameters that they are willing to use.

If it is not specified it will use a default list ([x25519, x448, secp256r1, secp384r1]) that is filtered based on the installed
crypto library version.

secure_renegotiation() = boolean()
Specifies if to reject renegotiation attempt that does not live up to RFC 5746. By default secure_renegotiate is
set to true, that is, secure renegotiation is enforced. If set to false secure renegotiation will still be used if possible,
but it falls back to insecure renegotiation if the peer does not support RFC 5746.

allowed_cert_chain_length() = integer()
Maximum number of non-self-issued intermediate certificates that can follow the peer certificate in a valid certification
path. So, if depth is 0 the PEER must be signed by the trusted ROOT-CA directly; if 1 the path can be PEER, CA,
ROOT-CA; if 2 the path can be PEER, CA, CA, ROOT-CA, and so on. The default value is 1.

custom_verify() =
    {Verifyfun :: function(), InitialUserState :: any()}
The verification fun is to be defined as follows:

fun(OtpCert :: #'OTPCertificate'{}, Event :: {bad_cert, Reason :: atom() |
             {revoked, atom()}} |
      {extension, #'Extension'{}} | valid | valid_peer, InitialUserState :: term()) ->
 {valid, UserState :: term()} |
 {fail, Reason :: term()} | {unknown, UserState :: term()}.

The verification fun is called during the X509-path validation when an error or an extension unknown to the SSL
application is encountered. It is also called when a certificate is considered valid by the path validation to allow access
to each certificate in the path to the user application. It differentiates between the peer certificate and the CA certificates
by using valid_peer or valid as second argument to the verification fun. See the public_key User's Guide for
definition of #'OTPCertificate'{} and #'Extension'{}.

• If the verify callback fun returns {fail, Reason}, the verification process is immediately stopped, an alert
is sent to the peer, and the TLS/DTLS handshake terminates.

• If the verify callback fun returns {valid, UserState}, the verification process continues.

• If the verify callback fun always returns {valid, UserState}, the TLS/DTLS handshake does not terminate
regarding verification failures and the connection is established.

• If called with an extension unknown to the user application, return value {unknown, UserState} is to be
used.

Note that if the fun returns unknown for an extension marked as critical, validation will fail.

Default option verify_fun in verify_peer mode:

Ericsson AB. All Rights Reserved.: Secure Socket Layer | 39

href
href


ssl

{fun(_,{bad_cert, _} = Reason, _) ->
  {fail, Reason};
    (_,{extension, _}, UserState) ->
  {unknown, UserState};
    (_, valid, UserState) ->
  {valid, UserState};
    (_, valid_peer, UserState) ->
         {valid, UserState}
 end, []}

Default option verify_fun in mode verify_none:

{fun(_,{bad_cert, _}, UserState) ->
  {valid, UserState};
    (_,{extension, #'Extension'{critical = true}}, UserState) ->
  {valid, UserState};
    (_,{extension, _}, UserState) ->
  {unknown, UserState};
    (_, valid, UserState) ->
  {valid, UserState};
    (_, valid_peer, UserState) ->
         {valid, UserState}
 end, []}

The possible path validation errors are given on form {bad_cert, Reason} where Reason is:

unknown_ca

No trusted CA was found in the trusted store. The trusted CA is normally a so called ROOT CA, which is a self-
signed certificate. Trust can be claimed for an intermediate CA (trusted anchor does not have to be self-signed
according to X-509) by using option partial_chain.

selfsigned_peer

The chain consisted only of one self-signed certificate.

PKIX X-509-path validation error

For possible reasons, see public_key:pkix_path_validation/3

crl_check() = boolean() | peer | best_effort
Perform CRL (Certificate Revocation List) verification (public_key:pkix_crls_validate/3) on all the certificates during
the path validation (public_key:pkix_path_validation/3) of the certificate chain. Defaults to false.

peer
check is only performed on the peer certificate.

best_effort
if certificate revocation status cannot be determined it will be accepted as valid.

The CA certificates specified for the connection will be used to construct the certificate chain validating the CRLs.

The CRLs will be fetched from a local or external cache. See ssl_crl_cache_api(3).

crl_cache_opts() =
    {Module :: atom(),
     {DbHandle :: internal | term(), Args :: list()}}
Specify how to perform lookup and caching of certificate revocation lists. Module defaults to ssl_crl_cache with
DbHandle  being internal and an empty argument list.

There are two implementations available:

40 | Ericsson AB. All Rights Reserved.: Secure Socket Layer



ssl

ssl_crl_cache

This module maintains a cache of CRLs. CRLs can be added to the cache using the function ssl_crl_cache:insert/1,
and optionally automatically fetched through HTTP if the following argument is specified:

{http, timeout()}

Enables fetching of CRLs specified as http URIs inX509 certificate extensions. Requires the OTP inets
application.

ssl_crl_hash_dir

This module makes use of a directory where CRLs are stored in files named by the hash of the issuer name.

The file names consist of eight hexadecimal digits followed by .rN, where N is an integer, e.g. 1a2b3c4d.r0.
For the first version of the CRL, N starts at zero, and for each new version, N is incremented by one. The OpenSSL
utility c_rehash creates symlinks according to this pattern.

For a given hash value, this module finds all consecutive .r* files starting from zero, and those files taken
together make up the revocation list. CRL files whose nextUpdate fields are in the past, or that are issued by
a different CA that happens to have the same name hash, are excluded.

The following argument is required:

{dir, string()}

Specifies the directory in which the CRLs can be found.

root_fun() = function()

fun(Chain::[public_key:der_encoded()]) ->
 {trusted_ca, DerCert::public_key:der_encoded()} | unknown_ca}

Claim an intermediate CA in the chain as trusted. TLS then performs public_key:pkix_path_validation/3 with the
selected CA as trusted anchor and the rest of the chain.

protocol_versions() = [protocol_version()]
TLS protocol versions supported by started clients and servers. This option overrides the application environment
option protocol_version and dtls_protocol_version. If the environment option is not set, it defaults to
all versions, supported by the SSL application. See also ssl(6).

custom_user_lookup() =
    {Lookupfun :: function(), UserState :: any()}
The lookup fun is to defined as follows:

fun(psk, PSKIdentity :: binary(), UserState :: term()) ->
 {ok, SharedSecret :: binary()} | error;
fun(srp, Username :: binary(), UserState :: term()) ->
 {ok, {SRPParams :: srp_param_type(), Salt :: binary(),
       DerivedKey :: binary()}} | error.

For Pre-Shared Key (PSK) cipher suites, the lookup fun is called by the client and server to determine the shared secret.
When called by the client, PSKIdentity is set to the hint presented by the server or to undefined. When called by
the server, PSKIdentity is the identity presented by the client.

For Secure Remote Password (SRP), the fun is only used by the server to obtain parameters that it uses to generate
its session keys. DerivedKey is to be derived according to  RFC 2945 and  RFC 5054: crypto:sha([Salt,
crypto:sha([Username, <<$:>>, Password])])

session_id() = binary()
Identifies a TLS session.

Ericsson AB. All Rights Reserved.: Secure Socket Layer | 41

href
href


ssl

log_alert() = boolean()
If set to false, TLS/DTLS Alert reports are not displayed. Deprecated in OTP 22, use {log_level, logging_level()}
instead.

logging_level() = logger:level()
Specifies the log level for a TLS/DTLS connection. Alerts are logged on notice level, which is the default level.
The level debug triggers verbose logging of TLS/DTLS protocol messages. See also ssl(6)

hibernate_after() = timeout()
When an integer-value is specified, TLS/DTLS-connection goes into hibernation after the specified number of
milliseconds of inactivity, thus reducing its memory footprint. When undefined is specified (this is the default),
the process never goes into hibernation.

handshake_size() = integer()
Integer (24 bits unsigned). Used to limit the size of valid TLS handshake packets to avoid DoS attacks. Defaults to
256*1024.

padding_check() = boolean()
Affects TLS-1.0 connections only. If set to false, it disables the block cipher padding check to be able to interoperate
with legacy software.

Warning:

Using {padding_check, boolean()} makes TLS vulnerable to the Poodle attack.

beast_mitigation() = one_n_minus_one | zero_n | disabled
Affects TLS-1.0 connections only. Used to change the BEAST mitigation strategy to interoperate with legacy software.
Defaults to one_n_minus_one.

one_n_minus_one - Perform 1/n-1 BEAST mitigation.

zero_n - Perform 0/n BEAST mitigation.

disabled - Disable BEAST mitigation.

Warning:

Using {beast_mitigation, disabled} makes TLS-1.0 vulnerable to the BEAST attack.

ssl_imp() = new | old
Deprecated since OTP-17, has no affect.

session_tickets() =
    client_session_tickets() | server_session_tickets()
Configures the session ticket functionalty in TLS 1.3 client and server.

key_update_at() = integer() >= 1
Configures the maximum amount of bytes that can be sent on a TLS 1.3 connection before an automatic key update
is performed.

There are cryptographic limits on the amount of plaintext which can be safely encrypted under a given set of keys.
The current default ensures that data integrity will not be breached with probability greater than 1/2^57. For more
information see Limits on Authenticated Encryption Use in TLS.

42 | Ericsson AB. All Rights Reserved.: Secure Socket Layer

href


ssl

Warning:

The default value of this option shall provide the above mentioned security guarantees and it shall be reasonable
for most applications (~353 TB).

middlebox_comp_mode() = boolean()
Configures the middlebox compatibility mode on a TLS 1.3 connection.

A significant number of middleboxes misbehave when a TLS 1.3 connection is negotiated. Implementations can
increase the chance of making connections through those middleboxes by making the TLS 1.3 handshake more like
a TLS 1.2 handshake.

The middlebox compatibility mode is enabled (true) by default.

TLS/DTLS OPTION DESCRIPTIONS - CLIENT
client_option() =
    {verify, client_verify_type()} |
    {reuse_session, client_reuse_session()} |
    {reuse_sessions, client_reuse_sessions()} |
    {cacerts, client_cacerts()} |
    {cacertfile, client_cafile()} |
    {alpn_advertised_protocols, client_alpn()} |
    {client_preferred_next_protocols,
     client_preferred_next_protocols()} |
    {psk_identity, client_psk_identity()} |
    {srp_identity, client_srp_identity()} |
    {server_name_indication, sni()} |
    {max_fragment_length, max_fragment_length()} |
    {customize_hostname_check, customize_hostname_check()} |
    {signature_algs, client_signature_algs()} |
    {fallback, fallback()} |
    {session_tickets, client_session_tickets()} |
    {use_ticket, use_ticket()}
client_verify_type() = verify_type()
In mode verify_none the default behavior is to allow all x509-path validation errors. See also option verify_fun.

client_reuse_session() = session_id()
Reuses a specific session earlier saved with the option {reuse_sessions, save} since OTP-21.3

client_reuse_sessions() = boolean() | save
When save is specified a new connection will be negotiated and saved for later reuse. The session ID can be fetched
with connection_information/2 and used with the client option reuse_session The boolean value true specifies that if
possible, automatized session reuse will be performed. If a new session is created, and is unique in regard to previous
stored sessions, it will be saved for possible later reuse. Since OTP-21.3

client_cacerts() = [public_key:der_encoded()]
The DER-encoded trusted certificates. If this option is supplied it overrides option cacertfile.

client_cafile() = file:filename()
Path to a file containing PEM-encoded CA certificates. The CA certificates are used during server authentication and
when building the client certificate chain.

Ericsson AB. All Rights Reserved.: Secure Socket Layer | 43



ssl

client_alpn() = [app_level_protocol()]
The list of protocols supported by the client to be sent to the server to be used for an Application-Layer Protocol
Negotiation (ALPN). If the server supports ALPN then it will choose a protocol from this list; otherwise it will fail
the connection with a "no_application_protocol" alert. A server that does not support ALPN will ignore this value.

The list of protocols must not contain an empty binary.

The negotiated protocol can be retrieved using the negotiated_protocol/1 function.

client_preferred_next_protocols() =
    {Precedence :: server | client,
     ClientPrefs :: [app_level_protocol()]} |
    {Precedence :: server | client,
     ClientPrefs :: [app_level_protocol()],
     Default :: app_level_protocol()}
Indicates that the client is to try to perform Next Protocol Negotiation.

If precedence is server, the negotiated protocol is the first protocol to be shown on the server advertised list, which
is also on the client preference list.

If precedence is client, the negotiated protocol is the first protocol to be shown on the client preference list, which is
also on the server advertised list.

If the client does not support any of the server advertised protocols or the server does not advertise any protocols, the
client falls back to the first protocol in its list or to the default protocol (if a default is supplied). If the server does not
support Next Protocol Negotiation, the connection terminates if no default protocol is supplied.

max_fragment_length() = undefined | 512 | 1024 | 2048 | 4096
Specifies the maximum fragment length the client is prepared to accept from the server. See RFC 6066

client_psk_identity() = psk_identity()
Specifies the identity the client presents to the server. The matching secret is found by calling user_lookup_fun

client_srp_identity() = srp_identity()
Specifies the username and password to use to authenticate to the server.

sni() = hostname() | disable
Specify the hostname to be used in TLS Server Name Indication extension. If not specified it will default to the Host
argument of connect/[3,4] unless it is of type inet:ipaddress().

The HostName will also be used in the hostname verification of the peer certificate using
public_key:pkix_verify_hostname/2.

The special value disable prevents the Server Name Indication extension from being sent and disables the hostname
verification check public_key:pkix_verify_hostname/2

customize_hostname_check() = list()
Customizes the hostname verification of the peer certificate, as different protocols that use TLS such as HTTP or
LDAP may want to do it differently, for possible options see public_key:pkix_verify_hostname/3

fallback() = boolean()
Send special cipher suite TLS_FALLBACK_SCSV to avoid undesired TLS version downgrade. Defaults to false

44 | Ericsson AB. All Rights Reserved.: Secure Socket Layer

href


ssl

Warning:

Note this option is not needed in normal TLS usage and should not be used to implement new clients. But legacy
clients that retries connections in the following manner

ssl:connect(Host, Port, [...{versions, ['tlsv2', 'tlsv1.1', 'tlsv1']}])

ssl:connect(Host, Port, [...{versions, [tlsv1.1', 'tlsv1']}, {fallback,
true}])

ssl:connect(Host, Port, [...{versions, ['tlsv1']}, {fallback, true}])

may use it to avoid undesired TLS version downgrade. Note that TLS_FALLBACK_SCSV must also be supported
by the server for the prevention to work.

client_signature_algs() = signature_algs()
In addition to the algorithms negotiated by the cipher suite used for key exchange, payload encryption, message
authentication and pseudo random calculation, the TLS signature algorithm extension Section 7.4.1.4.1 in RFC 5246
may be used, from TLS 1.2, to negotiate which signature algorithm to use during the TLS handshake. If no lower TLS
versions than 1.2 are supported, the client will send a TLS signature algorithm extension with the algorithms specified
by this option. Defaults to

[
%% SHA2
{sha512, ecdsa},
{sha512, rsa},
{sha384, ecdsa},
{sha384, rsa},
{sha256, ecdsa},
{sha256, rsa},
{sha224, ecdsa},
{sha224, rsa},
%% SHA
{sha, ecdsa},
{sha, rsa},
{sha, dsa},
]

The algorithms should be in the preferred order. Selected signature algorithm can restrict which hash functions that
may be selected. Default support for {md5, rsa} removed in ssl-8.0

client_session_tickets() = disabled | manual | auto
Configures the session ticket functionality. Allowed values are disabled, manual and auto. If it is set to manual
the client will send the ticket information to user process in a 3-tuple:

{ssl, session_ticket, {SNI, TicketData}}

where SNI is the ServerNameIndication and TicketData is the extended ticket data that can be used in subsequent
session resumptions.

If it is set to auto, the client automatically handles received tickets and tries to use them when making new TLS
connections (session resumption with pre-shared keys).

Note:

This option is supported by TLS 1.3 and above. See also SSL's Users Guide, Session Tickets and Session
Resumption in TLS 1.3

Ericsson AB. All Rights Reserved.: Secure Socket Layer | 45

href


ssl

use_ticket() = [binary()]
Configures the session tickets to be used for session resumption. It is a mandatory option in manual mode
(session_tickets = manual).

Note:

Session tickets are only sent to user if option session_tickets is set to manual

This option is supported by TLS 1.3 and above. See also SSL's Users Guide, Session Tickets and Session
Resumption in TLS 1.3

TLS/DTLS OPTION DESCRIPTIONS - SERVER
server_option() =
    {cacerts, server_cacerts()} |
    {cacertfile, server_cafile()} |
    {dh, dh_der()} |
    {dhfile, dh_file()} |
    {verify, server_verify_type()} |
    {fail_if_no_peer_cert, fail_if_no_peer_cert()} |
    {reuse_sessions, server_reuse_sessions()} |
    {reuse_session, server_reuse_session()} |
    {alpn_preferred_protocols, server_alpn()} |
    {next_protocols_advertised, server_next_protocol()} |
    {psk_identity, server_psk_identity()} |
    {honor_cipher_order, boolean()} |
    {sni_hosts, sni_hosts()} |
    {sni_fun, sni_fun()} |
    {honor_cipher_order, honor_cipher_order()} |
    {honor_ecc_order, honor_ecc_order()} |
    {client_renegotiation, client_renegotiation()} |
    {signature_algs, server_signature_algs()} |
    {session_tickets, server_session_tickets()} |
    {anti_replay, anti_replay()} |
    {cookie, cookie()}
server_cacerts() = [public_key:der_encoded()]
The DER-encoded trusted certificates. If this option is supplied it overrides option cacertfile.

server_cafile() = file:filename()
Path to a file containing PEM-encoded CA certificates. The CA certificates are used to build the server certificate
chain and for client authentication. The CAs are also used in the list of acceptable client CAs passed to the client when
a certificate is requested. Can be omitted if there is no need to verify the client and if there are no intermediate CAs
for the server certificate.

dh_der() = binary()
The DER-encoded Diffie-Hellman parameters. If specified, it overrides option dhfile.

Warning:

The dh_der option is not supported by TLS 1.3. Use the supported_groups option instead.

46 | Ericsson AB. All Rights Reserved.: Secure Socket Layer



ssl

dh_file() = file:filename()
Path to a file containing PEM-encoded Diffie Hellman parameters to be used by the server if a cipher suite using Diffie
Hellman key exchange is negotiated. If not specified, default parameters are used.

Warning:

The dh_file option is not supported by TLS 1.3. Use the supported_groups option instead.

server_verify_type() = verify_type()
A server only does x509-path validation in mode verify_peer, as it then sends a certificate request to the
client (this message is not sent if the verify option is verify_none). You can then also want to specify option
fail_if_no_peer_cert.

fail_if_no_peer_cert() = boolean()
Used together with {verify, verify_peer} by an TLS/DTLS server. If set to true, the server fails if the
client does not have a certificate to send, that is, sends an empty certificate. If set to false, it fails only if the client
sends an invalid certificate (an empty certificate is considered valid). Defaults to false.

server_reuse_sessions() = boolean()
The boolean value true specifies that the server will agree to reuse sessions. Setting it to false will result in an empty
session table, that is no sessions will be reused. See also option reuse_session

server_reuse_session() = function()
Enables the TLS/DTLS server to have a local policy for deciding if a session is to be reused or not. Meaningful only
if reuse_sessions is set to true. SuggestedSessionId is a binary(), PeerCert is a DER-encoded
certificate, Compression is an enumeration integer, and CipherSuite is of type ciphersuite().

server_alpn() = [app_level_protocol()]
Indicates the server will try to perform Application-Layer Protocol Negotiation (ALPN).

The list of protocols is in order of preference. The protocol negotiated will be the first in the list that matches
one of the protocols advertised by the client. If no protocol matches, the server will fail the connection with a
"no_application_protocol" alert.

The negotiated protocol can be retrieved using the negotiated_protocol/1 function.

server_next_protocol() = [app_level_protocol()]
List of protocols to send to the client if the client indicates that it supports the Next Protocol extension. The client can
select a protocol that is not on this list. The list of protocols must not contain an empty binary. If the server negotiates
a Next Protocol, it can be accessed using the negotiated_next_protocol/1 method.

server_psk_identity() = psk_identity()
Specifies the server identity hint, which the server presents to the client.

honor_cipher_order() = boolean()
If set to true, use the server preference for cipher selection. If set to false (the default), use the client preference.

sni_hosts() =
    [{hostname(), [server_option() | common_option()]}]
If the server receives a SNI (Server Name Indication) from the client matching a host listed in the sni_hosts option,
the specific options for that host will override previously specified options. The option sni_fun, and sni_hosts
are mutually exclusive.

Ericsson AB. All Rights Reserved.: Secure Socket Layer | 47



ssl

sni_fun() = function()
If the server receives a SNI (Server Name Indication) from the client, the given function will be called to retrieve
[server_option()] for the indicated server. These options will be merged into predefined [server_option()] list. The
function should be defined as: fun(ServerName :: string()) -> [server_option()] and can be specified as a fun or as
named fun module:function/1 The option sni_fun, and sni_hosts are mutually exclusive.

client_renegotiation() = boolean()
In protocols that support client-initiated renegotiation, the cost of resources of such an operation is higher for the server
than the client. This can act as a vector for denial of service attacks. The SSL application already takes measures to
counter-act such attempts, but client-initiated renegotiation can be strictly disabled by setting this option to false.
The default value is true. Note that disabling renegotiation can result in long-lived connections becoming unusable
due to limits on the number of messages the underlying cipher suite can encipher.

honor_cipher_order() = boolean()
If true, use the server's preference for cipher selection. If false (the default), use the client's preference.

honor_ecc_order() = boolean()
If true, use the server's preference for ECC curve selection. If false (the default), use the client's preference.

server_signature_algs() = signature_algs()
The algorithms specified by this option will be the ones accepted by the server in a signature algorithm negotiation,
introduced in TLS-1.2. The algorithms will also be offered to the client if a client certificate is requested. For more
details see the corresponding client option.

server_session_tickets() = disabled | stateful | stateless
Configures the session ticket functionality. Allowed values are disabled, stateful and stateless.

If it is set to stateful or stateless, session resumption with pre-shared keys is enabled and the server will send
stateful or stateless session tickets to the client after successful connections.

A stateful session ticket is a database reference to internal state information. A stateless session ticket is a self-encrypted
binary that contains both cryptographic keying material and state data.

Note:

This option is supported by TLS 1.3 and above. See also SSL's Users Guide, Session Tickets and Session
Resumption in TLS 1.3

anti_replay() =
    '10k' | '100k' |
    {bloom_filter_window_size(),
     bloom_filter_hash_functions(),
     bloom_filter_bits()}
Configures the server's built-in anti replay feature based on Bloom filters.

Allowed values are the pre-defined '10k', '100k' or a custom 3-tuple that defines the properties of the bloom
filters: {WindowSize, HashFunctions, Bits}. WindowSize is the number of seconds after the current
Bloom filter is rotated and also the window size used for freshness checks. HashFunctions is the number hash
functions and Bits is the number of bits in the bit vector. '10k' and '100k' are simple defaults with the following
properties:

• '10k': Bloom filters can hold 10000 elements with 3% probability of false positives. WindowSize: 10,
HashFunctions: 5, Bits: 72985 (8.91 KiB).

48 | Ericsson AB. All Rights Reserved.: Secure Socket Layer



ssl

• '100k': Bloom filters can hold 100000 elements with 3% probability of false positives. WindowSize: 10,
HashFunctions: 5, Bits: 729845 (89.09 KiB).

Note:

This option is supported by TLS 1.3 and above and only with stateless session tickets. Ticket lifetime, the number
of tickets sent by the server and the maximum number of tickets stored by the server in stateful mode are configured
by application variables. See also SSL's Users Guide, Anti-Replay Protection in TLS 1.3

cookie() = boolean()
If true (default), the server sends a cookie extension in its HelloRetryRequest messages.

Note:

The cookie extension has two main purposes. It allows the server to force the client to demonstrate reachability
at their apparent network address (thus providing a measure of DoS protection). This is primarily useful for non-
connection-oriented transports. It also allows to offload the server's state to the client. The cookie extension is
enabled by default as it is a mandatory extension in RFC8446.

connection_info() =
    [common_info() |
     curve_info() |
     ssl_options_info() |
     security_info()]
common_info() =
    {protocol, protocol_version()} |
    {session_id, session_id()} |
    {session_resumption, boolean()} |
    {selected_cipher_suite, erl_cipher_suite()} |
    {sni_hostname, term()} |
    {srp_username, term()}
curve_info() = {ecc, {named_curve, term()}}
ssl_options_info() = tls_option()
security_info() =
    {client_random, binary()} |
    {server_random, binary()} |
    {master_secret, binary()}
connection_info_items() = [connection_info_item()]
connection_info_item() =
    protocol | session_id | session_resumption |
    selected_cipher_suite | sni_hostname | srp_username | ecc |
    client_random | server_random | master_secret |
    tls_options_name()
tls_options_name() = atom()

Exports

append_cipher_suites(Deferred, Suites) -> ciphers()
Types:

Ericsson AB. All Rights Reserved.: Secure Socket Layer | 49



ssl

Deferred = ciphers() | cipher_filters()
Suites = ciphers()

Make Deferred suites become the least preferred suites, that is put them at the end of the cipher suite list Suites
after removing them from Suites if present. Deferred may be a list of cipher suites or a list of filters in which
case the filters are use on Suites to extract the Deferred cipher list.

cipher_suites() -> [old_cipher_suite()] | [string()]
cipher_suites(Type) -> [old_cipher_suite() | string()]
Types:

Type = erlang | openssl | all
Deprecated in OTP 21, use cipher_suites/2 instead.

cipher_suites(Description, Version) -> ciphers()
Types:

Description = default | all | exclusive | anonymous
Version = protocol_version()

Lists all possible cipher suites corresponding to Description that are available. The exclusive option will
exclusively list cipher suites introduced in Version whereas the the other options are inclusive from the lowest
possible version to Version. The all options includes all suites except the anonymous.

Note:

TLS-1.3 has no overlapping cipher suites with previous TLS versions, that is the result of
cipher_suites(all, 'tlsv1.3'). contains a separate set of suites that can be used with TLS-1.3 an
other set that can be used if a lower version is negotiated. No anonymous suites are supported by TLS-1.3.

Also note that the cipher suites returned by this function are the cipher suites that the OTP ssl application
can support provided that they are supported by the cryptolib linked with the OTP crypto application. Use
ssl:filter_cipher_suites(Suites, []). to filter the list for the current cryptolib. Note that cipher suites may be filtered
out because they are too old or too new depending on the cryptolib

cipher_suites(Description, Version, StringType :: rfc | openssl) ->
                 [string()]
Types:

Description = default | all | exclusive | anonymous
Version = protocol_version()

Same as cipher_suites/2 but lists RFC or OpenSSL string names instead of erl_cipher_suite()

eccs() -> NamedCurves
eccs(Version) -> NamedCurves
Types:

Version = protocol_version()
NamedCurves = [named_curve()]

Returns a list of supported ECCs. eccs() is equivalent to calling eccs(Protocol) with all supported protocols
and then deduplicating the output.

50 | Ericsson AB. All Rights Reserved.: Secure Socket Layer



ssl

clear_pem_cache() -> ok
PEM files, used by ssl API-functions, are cached. The cache is regularly checked to see if any cache entries should be
invalidated, however this function provides a way to unconditionally clear the whole cache.

connect(TCPSocket, TLSOptions) ->
           {ok, sslsocket()} |
           {error, reason()} |
           {option_not_a_key_value_tuple, any()}
connect(TCPSocket, TLSOptions, Timeout) ->
           {ok, sslsocket()} | {error, reason()}
Types:

TCPSocket = socket()
TLSOptions = [tls_client_option()]
Timeout = timeout()

Upgrades a gen_tcp, or equivalent, connected socket to a TLS socket, that is, performs the client-side TLS
handshake.

Note:

If the option verify is set to verify_peer the option server_name_indication shall also be specified,
if it is not no Server Name Indication extension will be sent, and public_key:pkix_verify_hostname/2 will be called
with the IP-address of the connection as ReferenceID, which is proably not what you want.

If the option {handshake, hello} is used the handshake is paused after receiving the server hello message and
the success response is {ok, SslSocket, Ext} instead of {ok, SslSocket}. Thereafter the handshake is
continued or canceled by calling handshake_continue/3 or handshake_cancel/1.

If the option active is set to once, true or an integer value, the process owning the sslsocket will receive messages
of type active_msgs()

connect(Host, Port, TLSOptions) ->
           {ok, sslsocket()} |
           {ok, sslsocket(), Ext :: protocol_extensions()} |
           {error, reason()} |
           {option_not_a_key_value_tuple, any()}
connect(Host, Port, TLSOptions, Timeout) ->
           {ok, sslsocket()} |
           {ok, sslsocket(), Ext :: protocol_extensions()} |
           {error, reason()} |
           {option_not_a_key_value_tuple, any()}
Types:

Host = host()
Port = inet:port_number()
TLSOptions = [tls_client_option()]
Timeout = timeout()

Opens a TLS/DTLS connection to Host, Port.

When the option verify is set to verify_peer the check public_key:pkix_verify_hostname/2 will be performed
in addition to the usual x509-path validation checks. If the check fails the error {bad_cert, hostname_check_failed}

Ericsson AB. All Rights Reserved.: Secure Socket Layer | 51



ssl

will be propagated to the path validation fun verify_fun, where it is possible to do customized checks by using the
full possibilities of the public_key:pkix_verify_hostname/3 API. When the option server_name_indication
is provided, its value (the DNS name) will be used as ReferenceID to public_key:pkix_verify_hostname/2. When
no server_name_indication option is given, the Host argument will be used as Server Name Indication
extension. The Host argument will also be used for the public_key:pkix_verify_hostname/2 check and if the Host
argument is an inet:ip_address() the ReferenceID used for the check will be {ip, Host} otherwise
dns_id will be assumed with a fallback to ip if that fails.

Note:

According to good practices certificates should not use IP-addresses as "server names". It would be very surprising
if this happen outside a closed network.

If the option {handshake, hello} is used the handshake is paused after receiving the server hello message and
the success response is {ok, SslSocket, Ext} instead of {ok, SslSocket}. Thereafter the handshake is
continued or canceled by calling handshake_continue/3 or handshake_cancel/1.

If the option active is set to once, true or an integer value, the process owning the sslsocket will receive messages
of type active_msgs()

close(SslSocket) -> ok | {error, Reason}
Types:

SslSocket = sslsocket()
Reason = any()

Closes a TLS/DTLS connection.

close(SslSocket, How) -> ok | {ok, port()} | {error, Reason}
Types:

SslSocket = sslsocket()
How = timeout() | {NewController :: pid(), timeout()}
Reason = any()

Closes or downgrades a TLS connection. In the latter case the transport connection will be handed over to the
NewController process after receiving the TLS close alert from the peer. The returned transport socket will have
the following options set: [{active, false}, {packet, 0}, {mode, binary}]

controlling_process(SslSocket, NewOwner) -> ok | {error, Reason}
Types:

SslSocket = sslsocket()
NewOwner = pid()
Reason = any()

Assigns a new controlling process to the SSL socket. A controlling process is the owner of an SSL socket, and receives
all messages from the socket.

connection_information(SslSocket) ->
                          {ok, Result} | {error, reason()}
Types:

52 | Ericsson AB. All Rights Reserved.: Secure Socket Layer



ssl

SslSocket = sslsocket()
Result = connection_info()

Returns the most relevant information about the connection, ssl options that are undefined will be filtered out.
Note that values that affect the security of the connection will only be returned if explicitly requested by
connection_information/2.

Note:

The legacy Item = cipher_suite was removed in OTP-23. Previously it returned the cipher suite on its
(undocumented) legacy format. It is replaced by selected_cipher_suite.

connection_information(SslSocket, Items) ->
                          {ok, Result} | {error, reason()}
Types:

SslSocket = sslsocket()
Items = connection_info_items()
Result = connection_info()

Returns the requested information items about the connection, if they are defined.

Note that client_random, server_random and master_secret are values that affect the security of connection.
Meaningful atoms, not specified above, are the ssl option names.

Note:

If only undefined options are requested the resulting list can be empty.

filter_cipher_suites(Suites, Filters) -> Ciphers
Types:

Suites = ciphers()
Filters = cipher_filters()
Ciphers = ciphers()

Removes cipher suites if any of the filter functions returns false for any part of the cipher suite. If no filter function
is supplied for some part the default behaviour regards it as if there was a filter function that returned true. For
examples see Customizing cipher suites Additionaly this function also filters the cipher suites to exclude cipher suites
not supported by the cryptolib used by the OTP crypto application. That is calling ssl:filter_cipher_suites(Suites, [])
will be equivalent to only applying the filters for cryptolib support.

format_error(Reason :: {error, Reason}) -> string()
Types:

Reason = any()
Presents the error returned by an SSL function as a printable string.

getopts(SslSocket, OptionNames) ->
           {ok, [gen_tcp:option()]} | {error, reason()}
Types:

Ericsson AB. All Rights Reserved.: Secure Socket Layer | 53



ssl

SslSocket = sslsocket()
OptionNames = [gen_tcp:option_name()]

Gets the values of the specified socket options.

getstat(SslSocket) -> {ok, OptionValues} | {error, inet:posix()}
getstat(SslSocket, Options) ->
           {ok, OptionValues} | {error, inet:posix()}
Types:

SslSocket = sslsocket()
Options = [inet:stat_option()]
OptionValues = [{inet:stat_option(), integer()}]

Gets one or more statistic options for the underlying TCP socket.

See inet:getstat/2 for statistic options description.

handshake(HsSocket) ->
             {ok, SslSocket} |
             {ok, SslSocket, Ext} |
             {error, Reason}
handshake(HsSocket, Timeout) ->
             {ok, SslSocket} |
             {ok, SslSocket, Ext} |
             {error, Reason}
Types:

HsSocket = sslsocket()
Timeout = timeout()
SslSocket = sslsocket()
Ext = protocol_extensions()
Reason = closed | timeout | error_alert()

Performs the TLS/DTLS server-side handshake.

Returns a new TLS/DTLS socket if the handshake is successful.

If the option active is set to once, true or an integer value, the process owning the sslsocket will receive messages
of type active_msgs()

handshake(Socket, Options) ->
             {ok, SslSocket} |
             {ok, SslSocket, Ext} |
             {error, Reason}
handshake(Socket, Options, Timeout) ->
             {ok, SslSocket} |
             {ok, SslSocket, Ext} |
             {error, Reason}
Types:

54 | Ericsson AB. All Rights Reserved.: Secure Socket Layer



ssl

Socket = socket() | sslsocket()
SslSocket = sslsocket()
Options = [server_option()]
Timeout = timeout()
Ext = protocol_extensions()
Reason = closed | timeout | {options, any()} | error_alert()

If Socket is a ordinary socket(): upgrades a gen_tcp, or equivalent, socket to an SSL socket, that is, performs
the TLS server-side handshake and returns a TLS socket.

Warning:

The Socket shall be in passive mode ({active, false}) before calling this function or else the behavior of this
function is undefined.

If Socket is an sslsocket() : provides extra TLS/DTLS options to those specified in listen/2 and then performs the
TLS/DTLS handshake. Returns a new TLS/DTLS socket if the handshake is successful.

If option {handshake, hello} is specified the handshake is paused after receiving the client hello message and
the success response is {ok, SslSocket, Ext} instead of {ok, SslSocket}. Thereafter the handshake is
continued or canceled by calling handshake_continue/3 or handshake_cancel/1.

If the option active is set to once, true or an integer value, the process owning the sslsocket will receive messages
of type active_msgs()

handshake_cancel(Sslsocket :: #sslsocket{}) -> any()
Cancel the handshake with a fatal USER_CANCELED alert.

handshake_continue(HsSocket, Options) ->
                      {ok, SslSocket} | {error, Reason}
handshake_continue(HsSocket, Options, Timeout) ->
                      {ok, SslSocket} | {error, Reason}
Types:

HsSocket = sslsocket()
Options = [tls_client_option() | tls_server_option()]
Timeout = timeout()
SslSocket = sslsocket()
Reason = closed | timeout | error_alert()

Continue the TLS handshake possiby with new, additional or changed options.

listen(Port, Options) -> {ok, ListenSocket} | {error, reason()}
Types:

Port = inet:port_number()
Options = [tls_server_option()]
ListenSocket = sslsocket()

Creates an SSL listen socket.

Ericsson AB. All Rights Reserved.: Secure Socket Layer | 55



ssl

negotiated_protocol(SslSocket) -> {ok, Protocol} | {error, Reason}
Types:

SslSocket = sslsocket()
Protocol = binary()
Reason = protocol_not_negotiated

Returns the protocol negotiated through ALPN or NPN extensions.

peercert(SslSocket) -> {ok, Cert} | {error, reason()}
Types:

SslSocket = sslsocket()
Cert = binary()

The peer certificate is returned as a DER-encoded binary. The certificate can be decoded with
public_key:pkix_decode_cert/2

peername(SslSocket) -> {ok, {Address, Port}} | {error, reason()}
Types:

SslSocket = sslsocket()
Address = inet:ip_address()
Port = inet:port_number()

Returns the address and port number of the peer.

prepend_cipher_suites(Preferred, Suites) -> ciphers()
Types:

Preferred = ciphers() | cipher_filters()
Suites = ciphers()

Make Preferred suites become the most preferred suites that is put them at the head of the cipher suite list Suites
after removing them from Suites if present. Preferred may be a list of cipher suites or a list of filters in which
case the filters are use on Suites to extract the preferred cipher list.

prf(SslSocket, Secret, Label, Seed, WantedLength) ->
       {ok, binary()} | {error, reason()}
Types:

SslSocket = sslsocket()
Secret = binary() | master_secret
Label = binary()
Seed = [binary() | prf_random()]
WantedLength = integer() >= 0

Uses the Pseudo-Random Function (PRF) of a TLS session to generate extra key material. It either takes user-generated
values for Secret and Seed or atoms directing it to use a specific value from the session security parameters.

recv(SslSocket, Length) -> {ok, Data} | {error, reason()}
recv(SslSocket, Length, Timeout) -> {ok, Data} | {error, reason()}
Types:

56 | Ericsson AB. All Rights Reserved.: Secure Socket Layer



ssl

SslSocket = sslsocket()
Length = integer()
Data = binary() | list() | HttpPacket
Timeout = timeout()
HttpPacket = any()
See the description of HttpPacket in erlang:decode_packet/3 in ERTS.

Receives a packet from a socket in passive mode. A closed socket is indicated by return value {error, closed}.

Argument Length is meaningful only when the socket is in mode raw and denotes the number of bytes to read. If
Length = 0, all available bytes are returned. If Length > 0, exactly Length bytes are returned, or an error; possibly
discarding less than Length bytes of data when the socket gets closed from the other side.

Optional argument Timeout specifies a time-out in milliseconds. The default value is infinity.

renegotiate(SslSocket) -> ok | {error, reason()}
Types:

SslSocket = sslsocket()
Initiates a new handshake. A notable return value is {error, renegotiation_rejected} indicating that the
peer refused to go through with the renegotiation, but the connection is still active using the previously negotiated
session.

update_keys(SslSocket, Type) -> ok | {error, reason()}
Types:

SslSocket = sslsocket()
Type = write | read_write

There are cryptographic limits on the amount of plaintext which can be safely encrypted under a given set of keys.
If the amount of data surpasses those limits, a key update is triggered and a new set of keys are installed. See also
the option key_update_at.

This function can be used to explicitly start a key update on a TLS 1.3 connection. There are two types of the key
update: if Type is set to write, only the writing key is updated; if Type is set to read_write, both the reading and
writing keys are updated.

send(SslSocket, Data) -> ok | {error, reason()}
Types:

SslSocket = sslsocket()
Data = iodata()

Writes Data to SslSocket.

A notable return value is {error, closed} indicating that the socket is closed.

setopts(SslSocket, Options) -> ok | {error, reason()}
Types:

SslSocket = sslsocket()
Options = [gen_tcp:option()]

Sets options according to Options for socket SslSocket.

Ericsson AB. All Rights Reserved.: Secure Socket Layer | 57



ssl

shutdown(SslSocket, How) -> ok | {error, reason()}
Types:

SslSocket = sslsocket()
How = read | write | read_write

Immediately closes a socket in one or two directions.

How == write means closing the socket for writing, reading from it is still possible.

To be able to handle that the peer has done a shutdown on the write side, option {exit_on_close, false}
is useful.

ssl_accept(SslSocket) -> ok | {error, Reason}
ssl_accept(Socket, TimeoutOrOptions) ->
              ok | {ok, sslsocket()} | {error, Reason}
Types:

Socket = sslsocket() | socket()
TimeoutOrOptions = timeout() | [tls_server_option()]
Reason = timeout | closed | {options, any()} | error_alert()

Deprecated in OTP 21, use handshake/[1,2] instead.

Note:

handshake/[1,2] always returns a new socket.

ssl_accept(Socket, Options, Timeout) ->
              ok | {ok, sslsocket()} | {error, Reason}
Types:

Socket = sslsocket() | socket()
Options = [tls_server_option()]
Timeout = timeout()
Reason = timeout | closed | {options, any()} | error_alert()

Deprecated in OTP 21, use handshake/[2,3] instead.

Note:

handshake/[2,3] always returns a new socket.

sockname(SslSocket) -> {ok, {Address, Port}} | {error, reason()}
Types:

SslSocket = sslsocket()
Address = inet:ip_address()
Port = inet:port_number()

Returns the local address and port number of socket SslSocket.

start() -> ok | {error, reason()}
start(Type :: permanent | transient | temporary) ->

58 | Ericsson AB. All Rights Reserved.: Secure Socket Layer



ssl

         ok | {error, reason()}
Starts the SSL application. Default type is temporary.

stop() -> ok
Stops the SSL application.

str_to_suite(CipherSuiteName) -> erl_cipher_suite()
Types:

CipherSuiteName =
    string() |
    {error, {not_recognized, CipherSuiteName :: string()}}

Converts an RFC or OpenSSL name string to an erl_cipher_suite() Returns an error if the cipher suite is not supported
or the name is not a valid cipher suite name.

suite_to_openssl_str(CipherSuite) -> string()
Types:

CipherSuite = erl_cipher_suite()
Converts erl_cipher_suite() to OpenSSL name string.

PRE TLS-1.3 these names differ for RFC names

suite_to_str(CipherSuite) -> string()
Types:

CipherSuite = erl_cipher_suite()
Converts erl_cipher_suite() to RFC name string.

transport_accept(ListenSocket) ->
                    {ok, SslSocket} | {error, reason()}
transport_accept(ListenSocket, Timeout) ->
                    {ok, SslSocket} | {error, reason()}
Types:

ListenSocket = sslsocket()
Timeout = timeout()
SslSocket = sslsocket()

Accepts an incoming connection request on a listen socket. ListenSocket must be a socket returned from listen/2.
The socket returned is to be passed to handshake/[2,3] to complete handshaking, that is, establishing the TLS/DTLS
connection.

Warning:

Most API functions require that the TLS/DTLS connection is established to work as expected.

The accepted socket inherits the options set for ListenSocket in listen/2.

The default value for Timeout is infinity. If Timeout is specified and no connection is accepted within the
given time, {error, timeout} is returned.

Ericsson AB. All Rights Reserved.: Secure Socket Layer | 59



ssl

versions() -> [VersionInfo]
Types:

VersionInfo =
    {ssl_app, string()} |
    {supported | available | implemented, [tls_version()]} |
    {supported_dtls | available_dtls | implemented_dtls,
     [dtls_version()]}

Lists information, mainly concerning TLS/DTLS versions, in runtime for debugging and testing purposes.

app_vsn
The application version of the SSL application.

supported
TLS versions supported with current application environment and crypto library configuration. Overridden
by a version option on connect/[2,3,4], listen/2, and ssl_accept/[1,2,3]. For the negotiated TLS version, see
connection_information/1 .

supported_dtls
DTLS versions supported with current application environment and crypto library configuration. Overridden
by a version option on connect/[2,3,4], listen/2, and ssl_accept/[1,2,3]. For the negotiated DTLS version, see
connection_information/1 .

available
All TLS versions supported with the linked crypto library.

available_dtls
All DTLS versions supported with the linked crypto library.

implemented
All TLS versions supported by the SSL application if linked with a crypto library with the necessary support.

implemented_dtls
All DTLS versions supported by the SSL application if linked with a crypto library with the necessary support.

SEE ALSO
inet(3) and gen_tcp(3) gen_udp(3)

60 | Ericsson AB. All Rights Reserved.: Secure Socket Layer



ssl_crl_cache

ssl_crl_cache
Erlang module

Implements an internal CRL (Certificate Revocation List) cache. In addition to implementing the ssl_crl_cache_api
behaviour the following functions are available.

Data Types
DATA TYPES
crl_src() =
    {file, file:filename()} | {der, public_key:der_encoded()}
uri() = uri_string:uri_string()

Exports

delete(Entries) -> ok | {error, Reason}
Types:

Entries = crl_src()]}

Reason = crl_reason()

Delete CRLs from the ssl applications local cache.

insert(CRLSrc) -> ok | {error, Reason}
insert(URI, CRLSrc) -> ok | {error, Reason}
Types:

CRLSrc = crl_src()]}

URI = uri()

Reason = term()

Insert CRLs, available to fetch on DER format from URI, into the ssl applications local cache.

Ericsson AB. All Rights Reserved.: Secure Socket Layer | 61



ssl_crl_cache_api

ssl_crl_cache_api
Erlang module

When TLS performs certificate path validation according to RFC 5280  it should also perform CRL validation checks.
To enable the CRL checks the application needs access to CRLs. A database of CRLs can be set up in many different
ways. This module provides the behavior of the API needed to integrate an arbitrary CRL cache with the erlang ssl
application. It is also used by the application itself to provide a simple default implementation of a CRL cache.

Data Types
crl_cache_ref() = any()
Reference to the CRL cache.

dist_point() = #'DistributionPoint'{}
For description see X509 certificates records

logger_info() =
    {logger:level(),
     Report :: #{description => string(), reason => term()},
     logger:metadata()}
Information for ssl applications use of Logger(3)

Exports

fresh_crl(DistributionPoint, CRL) -> FreshCRL
fresh_crl(DistributionPoint, CRL) -> FreshCRL | {LoggerInfo, FreshCRL}
Types:

DistributionPoint = dist_point()

CRL = [public_key:der_encoded()]

FreshCRL = [public_key:der_encoded()]

LoggerInfo = {logger, logger_info() }}

fun fresh_crl/2  will be used as input option update_crl to public_key:pkix_crls_validate/3

It is possible to return logger info that will be used by the TLS connection to produce log events.

lookup(DistributionPoint, Issuer, DbHandle) -> not_available | CRLs |
{LoggerInfo, CRLs}
lookup(DistributionPoint, Issuer, DbHandle) -> not_available | CRLs
lookup(DistributionPoint, DbHandle) -> not_available | CRLs
Types:

DistributionPoint = dist_point()

Issuer = public_key:issuer_name()

DbHandle = crl_cache_ref()

CRLs = [public_key:der_encoded()]

LoggerInfo = {logger, logger_info() }}

62 | Ericsson AB. All Rights Reserved.: Secure Socket Layer

href


ssl_crl_cache_api

Lookup the CRLs belonging to the distribution point  Distributionpoint. This function may choose to only
look in the cache or to follow distribution point links depending on how the cache is administrated.

The Issuer argument contains the issuer name of the certificate to be checked. Normally the returned CRL should
be issued by this issuer, except if the cRLIssuer field of DistributionPoint has a value, in which case that
value should be used instead.

In an earlier version of this API, the lookup function received two arguments, omitting Issuer. For compatibility,
this is still supported: if there is no lookup/3 function in the callback module, lookup/2 is called instead.

It is possible to return logger info that will be used by the TLS connection to produce log events.

select(Issuer, DbHandle) -> CRLs | {LoggerInfo, CRLs}
select(Issuer, DbHandle) -> CRLs
Types:

Issuer = public_key:issuer_name() | list()

DbHandle = cache_ref()

LoggerInfo = {logger, logger_info() }

Select the CRLs in the cache that are issued by Issuer unless the value is a list of so called general names, see
X509 certificates records, originating form #'DistributionPoint'.cRLissuer and representing different
mechanism to obtain the CRLs. The cache callback needs to use the appropriate entry to retrive the CRLs or return
an empty list if it does not exist.

It is possible to return logger info that will be used by the TLS connection to produce log events.

Ericsson AB. All Rights Reserved.: Secure Socket Layer | 63



ssl_session_cache_api

ssl_session_cache_api
Erlang module

Defines the API for the TLS session cache so that the data storage scheme can be replaced by defining a new callback
module implementing this API.

Data Types
session_cache_ref() = any()
session_cache_key() = {partial_key(), ssl:session_id()}
A key to an entry in the session cache.

partial_key()
The opaque part of the key. Does not need to be handled by the callback.

session()
The session data that is stored for each session.

Exports

delete(Cache, Key) -> _
Types:

Cache = session_cache_ref()

Key = session_cache_key()

Deletes a cache entry. Is only called from the cache handling process.

foldl(Fun, Acc0, Cache) -> Acc
Types:

Fun = fun()

Acc0 = Acc = term()

Cache = session_cache_ref()

Calls Fun(Elem, AccIn) on successive elements of the cache, starting with AccIn == Acc0. Fun/2 must
return a new accumulator, which is passed to the next call. The function returns the final value of the accumulator.
Acc0 is returned if the cache is empty.

init(Args) -> Cache
Types:

Cache = session_cache_ref()

Args = proplists:proplist()

Includes property {role, client | server}. Currently this is the only predefined property, there can also be
user-defined properties. See also application environment variable session_cb_init_args.

Performs possible initializations of the cache and returns a reference to it that is used as parameter to the other API
functions. Is called by the cache handling processes init function, hence putting the same requirements on it as a
normal process init function. This function is called twice when starting the SSL application, once with the role
client and once with the role server, as the SSL application must be prepared to take on both roles.

64 | Ericsson AB. All Rights Reserved.: Secure Socket Layer



ssl_session_cache_api

lookup(Cache, Key) -> Entry
Types:

Cache = session_cache_ref()

Key = session_cache_key()

Session = session() | undefined

Looks up a cache entry. Is to be callable from any process.

select_session(Cache, PartialKey) -> [Session]
Types:

Cache = session_cache_ref()

PartialKey = partial_key()

Session = session()

Selects sessions that can be reused. Is to be callable from any process.

size(Cache) -> integer()
Types:

Cache = session_cache_ref()

Returns the number of sessions in the cache. If size exceeds the maximum number of sessions, the current cache entries
will be invalidated regardless of their remaining lifetime. Is to be callable from any process.

terminate(Cache) -> _
Types:

Cache = session_cache_ref()

As returned by init/0

Takes care of possible cleanup that is needed when the cache handling process terminates.

update(Cache, Key, Session) -> _
Types:

Cache = session_cache_ref()

Key = session_cache_key()

Session = session()

Caches a new session or updates an already cached one. Is only called from the cache handling process.

Ericsson AB. All Rights Reserved.: Secure Socket Layer | 65


	Secure Socket Layer 
	SSL User's Guide
	Introduction
	Purpose
	Prerequisites

	TLS/DTLS and TLS Predecessor, SSL
	Security Overview
	Data Privacy and Integrity
	Digital Certificates
	Peer Authentication
	TLS Sessions

	Using SSL application API
	Setting up Connections
	Minimal Example
	Upgrade Example - TLS only 

	Customizing cipher suites
	Using an Engine Stored Key
	Session Tickets and Session Resumption in TLS 1.3
	Anti-Replay Protection in TLS 1.3

	Using TLS for Erlang Distribution
	Building Boot Scripts Including the SSL Application
	Specifying Distribution Module for net_kernel
	Specifying TLS Options
	Specifying TLS Options (Legacy)
	Setting up Environment to Always Use TLS (Legacy)
	Using TLS distribution over IPv6

	Standards Compliance
	Purpose
	Common (pre TLS 1.3)
	Common
	SSL 2.0
	SSL 3.0
	TLS 1.0
	TLS 1.1
	TLS 1.2
	DTLS 1.0
	DTLS 1.2
	DTLS 1.3
	TLS 1.3


	Reference Manual
	ssl
	ssl
	append_cipher_suites/2
	cipher_suites/0
	cipher_suites/1
	cipher_suites/2
	cipher_suites/3
	eccs/0
	eccs/1
	clear_pem_cache/0
	connect/2
	connect/3
	connect/3
	connect/4
	close/1
	close/2
	controlling_process/2
	connection_information/1
	connection_information/2
	filter_cipher_suites/2
	format_error/1
	getopts/2
	getstat/1
	getstat/2
	handshake/1
	handshake/2
	handshake/2
	handshake/3
	handshake_cancel/1
	handshake_continue/2
	handshake_continue/3
	listen/2
	negotiated_protocol/1
	peercert/1
	peername/1
	prepend_cipher_suites/2
	prf/5
	recv/2
	recv/3
	renegotiate/1
	update_keys/2
	send/2
	setopts/2
	shutdown/2
	ssl_accept/1
	ssl_accept/2
	ssl_accept/3
	sockname/1
	start/0
	start/1
	stop/0
	str_to_suite/1
	suite_to_openssl_str/1
	suite_to_str/1
	transport_accept/1
	transport_accept/2
	versions/0

	ssl_crl_cache
	delete/1
	insert/1
	insert/2

	ssl_crl_cache_api
	fresh_crl/2
	fresh_crl/2
	lookup/3
	lookup/3
	lookup/2
	select/2
	select/2

	ssl_session_cache_api
	delete/2
	foldl/3
	init/1
	lookup/2
	select_session/2
	size/1
	terminate/1
	update/3




