ERLANG

Simple Network Management Protocol
(SNMP)

Copyright © 1997-2020 Ericsson AB. All Rights Reserved.
Simple Network Management Protocol (SNMP) 5.6.1
September 22, 2020

Copyright © 1997-2020 Ericsson AB. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance
with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless
required by applicable law or agreed to in writing, software distributed under the License is distributed on an
"AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See

the License for the specific language governing permissions and limitations under the License. Ericsson AB. All
Rights Reserved..

September 22, 2020

1.1 SNMP Introduction

1 SNMP User's Guide

A multilingual Simple Network Management Protocol application, featuring an Extensible Agent, a simple manager
and aMIB compiler and facilities for implementing SNMP MIBs etc.

1.1 SNMP Introduction

The SNMP devel opment toolkit contains the following parts:

e An Extensible multi-lingual SNMP agent, which understands SNMPv1 (RFC1157), SNMPv2c (RFC1901,
1905, 1906 and 1907), SNMPv3 (RFC2271, 2272, 2273, 2274 and 2275), or any combination of these
protocols.

e A multi-lingual SNMP manager.

e A MIB compiler, which understands SMIv1 (RFC1155, 1212, and 1215) and SMIv2 (RFC1902, 1903, and
1904).

The SNMP development tool provides an environment for rapid agent/manager prototyping and construction. With
the following information provided, thistool is used to set up a running multi-lingual SNMP agent/manager:

* adescription of a Management Information Base (MIB) in Abstract Syntax Notation One (ASN.1)
e instrumentation functions for the managed objectsin the MIB, written in Erlang.

The advantage of using an extensible (agent/manager) toolkit isto remove details such astype-checking, accessrights,
Protocol Data Unit (PDU), encoding, decoding, and trap distribution from the programmer, who only has to write
the instrumentation functions, which implement the MIBs. The get - next function only has to be implemented for
tables, and not for every variable in the global naming tree. This information can be deduced from the ASN.1 file.

1.1.1 Scope and Purpose

This manual describes the SNMP development tool, as a component of the Erlang/Open Telecom Platform
development environment. It is assumed that the reader is familiar with the Erlang Development Environment, which
is described in a separate User's Guide.

1.1.2 Prerequisites
The following prerequisitesis required for understanding the material in the SNMP User's Guide:

» thebasics of the Simple Network Management Protocol version 1 (SNMPv1)

» thebasics of the community-based Simple Network Management Protocol version 2 (SNMPv2c)
» thebasics of the Simple Network Management Protocol version 3 (SNMPv3)

» theknowledge of defining MIBsusing SMIv1 and SMIv2

» familiarity with the Erlang system and Erlang programming

The tool requires Erlang release 4.7 or later.

1.1.3 Definitions
The following definitions are used in the SNMP User's Guide.

Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP) | 1

1.1 SNMP Introduction

MIB
The conceptual repository for management information is called the Management Information Base (MIB).
It does not hold any data, merely a definition of what data can be accessed. A definition of an MIB isa
description of a collection of managed objects.

SMI
The MIB is specified in an adapted subset of the Abstract Syntax Notation One (ASN.1) language. This
adapted subset is called the Structure of Management Information (SMI).

ASN.1
ASN.1isused in two different waysin SNMP. The SMI is based on ASN.1, and the messages in the protocol
are defined by using ASN.1.

Managed object

A resource to be managed is represented by a managed object, which resides in the MIB. In an SNMP MIB, the
managed objects are either:

« scalar variables, which have only one instance per context. They have single values, not multiple values
like vectors or structures.
» tables, which can grow dynamically.
e atableeement, whichisaspecia type of scalar variable.
Operations
SNMP relies on the three basic operations: get (object), set (object, value) and get-next (object).
Instrumentation function
An instrumentation function is associated with each managed object. Thisis the function, which actually
implements the operations and will be called by the agent when it receives arequest from the management
station.
Manager
A manager generates commands and receives notifications from agents. There usually are only afew managers
in asystem.
Agent
An agent responds to commands from the manager, and sends notification to the manager. There are potentially
many agentsin a system.

1.1.4 About This Manual

In addition to this introductory chapter, the SNMP User's Guide contains the following chapters:

e Chapter 2: "Functional Description" describes the features and operation of the SNMP development toolkit. It
includes topics on Sub-agents and MIB loading, Internal MIBs, and Traps.

e Chapter 3: "The MIB Compiler" describes the features and the operation of the MIB compiler.

» Chapter 4: "Running the application” describes how to start and configure the application. Topics on how to
debug the application are also included.

« Chapter 5: "Definition of Agent Configuration Files" is areference chapter, which contains more detailed
information about the agent configuration files.

* Chapter 6: "Definition of Manager Configuration Files" is areference chapter, which contains more detailed
information about the manager configuration files.

e Chapter 7: "Agent Implementation Example" describes how an MIB can be implemented with the SNMP
Development Toolkit. Implementation examples are included.

* Chapter 8: "Instrumentation Functions" describes how instrumentation functions should be defined in Erlang for
the different operations.

e Chapter 9: "Definition of Instrumentation Functions" is areference chapter which contains more detailed
information about the instrumentation functions.

2 | Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP)

1.2 Agent Functional Description

» Chapter 10: "Definition of Agent Net if" is areference chapter, which describes the Agent Net if function in
detail.

e Chapter 11: "Definition of Manager Net if" is a reference chapter, which describes the Manager Net if function
in detail.

e Chapter 12: "Advanced Agent Topics' describes sub-agents, agent semantics, audit trail logging, and the
consideration of distributed tables.

* Appendix A describes the conversion of SNMPv2 to SNMPv1 error messages.

* Appendix B contains the RFC1903 text on RowSt at us.

1.1.5 Where to Find More Information

Refer to the following documentation for more information about SNMP and about the Erlang/OTP devel opment
system:

e Marshal T. Rose (1991), "The Simple Book - An Introduction to Internet Management”, Prentice-Hall
e Evan McGinnis and David Perkins (1997), "Understanding SNMP MIBs", Prentice-Hall

e RFC1155, 1157, 1212 and 1215 (SNMPv1)

* RFC1901-1907 (SNMPv2c)

e RFC1908, 2089 (coexistence between SNMPv1 and SNMPv2)

 RFC2271, RFC2273 (SNMP std MIBs)

e theMnesiaUser's Guide

* theErlang 4.4 Extensions User's Guide

» the Reference Manua

* the Erlang Embedded Systems User's Guide

« the System Architecture Support Libraries (SASL) User's Guide

e thelnstallation Guide

e theAsnl User's Guide

e Concurrent Programming in Erlang, 2nd Edition (1996), Prentice-Hall, ISBN 0-13-508301-X.

1.2 Agent Functional Description

The SNMP agent system consists of one Master Agent and optional Sub-agents.

The tool makes it easy to dynamically extend an SNMP agent in run-time. M1Bs can be loaded and unloaded at any
time. It is also easy to change the implementation of an MIB in run-time, without having to recompile the MIB. The
MIB implementation is clearly separated from the agent.

To facilitate incremental MI1B implementation, the tool can generate a prototype implementation for awhole MIB, or
parts thereof. This allows different MIBs and management applications to be developed at the same time.

1.2.1 Features

To implement an agent, the programmer writes instrumentation functions for the variables and the tablesin the MIBs
that the agent is going to support. A running prototype which handles set , get, and get - next can be created
without any programming.

The toolkit provides the following:

e multi-lingual multi-threaded extensible SNMP agent
e easy writing of instrumentation functions with a high-level programming language
» basic fault handling such as automatic type checking

Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP) | 3

1.2 Agent Functional Description

* access control

+ authentication

e privacy through encryption

* loading and unloading of MIBsin run-time

» theability to change instrumentation functions without recompiling the MIB

* rapid prototyping environment where the MIB compiler can use generic instrumentation functions, which later
can be refined by the programmer

e asimpleand extensible model for transaction handling and consistency checking of set-requests
» support of the sub-agent concept via distributed Erlang

e amechanism for sending natifications (traps and informs)

e support for implementing SNMP tables in the Mnesia DBMS.

1.2.2 SNMPv1, SNMPv2 and SNMPv3

The SNM P devel opment tool kit workswith all three versions of Standard | nternet Management Framework; SNMPv1,
SNMPv2 and SNMPv3. They all share the same basic structure and components. And they follow the same
architecture.

The versions are defined in following RFCs

* SNMPv1 RFC 1555, 1157 1212, 1213 and 1215

* SNMPv2 RFC 1902 - 1907

* SNMPv3 RFC 2570 - 2575

Over time, as the Framework has evolved from SNMPv1 , through SNMPv2, to SNMPv3 the definitions of each of

these architectural components have become richer and more clearly defined, but the fundamental architecture has
remained consistent.

The main features of SNMPv2 compared to SNMPv1 are;

e Theget - bul k operation for transferring large amounts of data.

* Enhanced error codes.

* A more precise language for MIB specification

The standard documents that define SNMPv2 are incomplete, in the sense that they do not specify how an SNMPv2
message looks like. The message format and security issues are left to a special Administrative Framework. One

such framework isthe Community-based SNMPv2 Framework (SNM Pv2c), which uses the same message format and
framework as SNMPv1. Other experimental frameworks as exist, e.g. SNMPv2u and SNMPv2*,

The SNM Pv3 specifications take a modular approach to SNMP. All modules are separated from each other, and can
be extended or replaced individually. Examples of modules are M essage definition, Security and Access Control. The
main features of SNMPv3 are:

» Encryption and authentication is added.

» MIBsfor agent configuration are defined.

All these specifications are commonly referred to as "SNMPv3", but it is actually only the Message module, which
defines a new message format, and Security module, which takes care of encryption and authentication, that cannot
be used with SNMPv1 or SNMPv2c. In thisversion of the agent toolkit, all the standard MIBsfor agent configuration
are used. Thisincludes MIBs for definition of management targets for notifications. These MIBs are used regardless
of which SNMP version the agent is configured to use.

The extensible agent in this toolkit understands the SNMPv1, SNMPv2c and SNMPv3. Recall that SNMP consists
of two separate parts, the MIB definition language (SMI), and the protocol. On the protocol level, the agent can be
configured to speak v1, v2c, v3 or any combination of them at the same time, i.e. av1 request gets an v1 reply, av2c

4 | Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP)

1.2 Agent Functional Description

request getsav2c reply, and av3 request getsav3 reply. Onthe MIB level, the MIB compiler can compile both SM1v1
and SMIv2 MIBs. Once compiled, any of the formats can beloaded into the agent, regardl ess of which protocol version
the agent is configured to use. This means that the agent translates from v2 notifications to v1 traps, and vice versa.
For example, v2 MIBs can be loaded into an agent that speaks v1 only. The procedures for the tranglation between
the two protocols are described in RFC 1908 and RFC 2089.

In order for an implementation to make full use of the enhanced SNMPv2 error codes, it is essential that the
instrumentation functions always return SNMPv2 error codes, in case of error. These are trandated into the
corresponding SNMPv1 error codes by the agent, if necessary.

The trandation from an SMIvl MIB to an SNMPv2c or SNMPv3 reply is always very straightforward, but
the trandation from a v2 MIB to a v1 reply is somewhat more complicated. There is one data type in SMIv2,
called Count er 64, that an SNMPv1 manager cannot decode correctly. Therefore, an agent may never send a
Count er 64 object to an SNMPv1 manager. The common practice in these situations is to simple ignore any
Count er 64 objects, when sending areply or atrap to an SNMPv1 manager. For example, if an SNMPv1 manager
triesto GET an object of type Count er 64, hewill get anoSuchNane error, while an SNMPv2 manager would
get acorrect value.

1.2.3 Operation

The following steps are needed to get a running agent:

e Writeyour MIB in SMI in atext file.

e Write the instrumentation functions in Erlang and compile them.

e Put their namesin the association file.

* Runthe MIB together with the association file through the MIB compiler.
e Configure the application (agent).

* Start the application (agent).

e Load the compiled MIB into the agent.

Thefiguresin this section illustrate the steps involved in the development of an SNMP agent.

MIB in ASN.1 file.mity
eyaContact OBJECT-TYPE Association file file.funcs
SYMTAX DisplayString isysContact, [mymod, sysCFung, [1}).
MIE
Compiler

EBimary| file.bin
Representation
Figure 2.1: MIB Compiler Principles

Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP) | 5

1.2 Agent Functional Description

The compiler parsesthe SMI file and associ ates each table or variable with an instrumentation function (see the figure
MIB Compiler Principles). The actual instrumentation functionsare not needed at MIB compiletime, only their names.

Thebinary output file produced by the compiler isread by the agent at M1B load time (seethefigure Starting the Agent).
The instrumentation is ordinary Erlang code which isloaded explicitly or automatically the first timeit is called.

Instrumentation mymod. beam
sysCPFunciget, ...] -=
< Ccodex;
Binary | file.bin aysCFunci{set, ...) -»
Fepresentation <codex,

Figure 2.2: Starting the Agent

The SNMP agent system consists of one Master Agent and optional sub-agents. The Master Agent can be seen as a
special kind of sub-agent. It implements the core agent functionality, UDP packet processing, type checking, access
control, trap distribution, and so on. From a user perspective, it isused as an ordinary sub-agent.

Sub-agents are only needed if your application requires special support for distribution from the SNMP toolkit. A
sub-agent can also be used if the application requires a more complex set transaction scheme than is found in the

master agent.
The following illustration shows how a system can look in runtime.

6 | Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP)

1.2 Agent Functional Description

_ _Node3d _
Node 1 | !
------------- T I Appl, !
Appl | B '
1 Appl. | :

Standard

FJ
///p
'//'wg_
&

e
|
= |

o
oo

i
R
1 I

U ——— |

/r
Erl Erl
Mle ' T“g Distributed Erlang r Elmg

Metwork
Figure 2.3: Architecture

A typical operation could include the following steps:

e The Manager sends arequest to the Agent.
e The Master Agent decodes the incoming UDP packet.

e The Master Agent determines which items in the request that should be processed here and which items should
be forwarded to its subagent.

e Step 3isrepeated by al subagents.

» Each sub-agent calls the instrumentation for its loaded MIBs.

« Theresults of calling the instrumentation are propagated back to the Master Agent.

» Theanswer to the request is encoded to a UDP Protocol Data Unit (PDU).

The sequence of steps shown is probably more complex than normal, but it illustrates the amount of functionality
which is available. The following points should be noted:

e An agent can have many MIBs loaded at the same time.

» Sub-agents can a so have sub-agents. Each sub-agent can have an arbitrary number of child sub-agents
registered, forming a hierarchy.

e OneMIB can communicate with many applications.
e Instrumentation can use Distributed Erlang to communicate with an application.

Most applications only need the Master Agent because an agent can have multiple MIBs loaded at the same time.

Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP) | 7

1.2 Agent Functional Description

1.2.4 Sub-agents and MIB Loading

Since applications tend to be transient (they are dynamically loaded and unloaded), the management of these
applications must be dynamic as well. For example, if we have an equipment MIB for arack and different MIBs for
boards, which can beinstalled in the rack, the MIB for acard should be loaded when the card isinserted, and unloaded
when the card is removed.

In this agent system, there are two ways to dynamicaly install management information. The most common way
isto load an MIB into an agent. The other way is to use a sub-agent, which is controlled by the application and is
able to register and unregister itself. A sub-agent can register itself for managing a sub-tree (not to be mixed up with
erl ang: r egi st er). The sub-tree is identified by an Object Identifier. When a sub-agent is registered, it receives
all requests for this particular sub-tree and it is responsible for answering them. It should also be noted that a sub-
agent can be started and stopped at any time.

Compared to other SNMP agent packages, there is a significant difference in this way of using sub-agents. Other
packages hormally use sub-agents to load and unload MIBsin run-time. In Erlang, it is easy to load code in run-time
and it is possible to load an MIB into an existing sub-agent. It is not necessary to create a new process for handling
anew MIB.

Sub-agents are used for the following reasons:

* to provide amore complex set-transaction scheme than master agent

e toavoid unnecessary process communication

e to provide amore lightweight mechanism for loading and unloading MIBs in run-time
* to provide interaction with other SNMP agent toolkits.

Refer to the chapter Advanced Agent Topicsin this User's Guide for more information about these topics.

The communication protocol between sub-agents is the normal message passing which is used in distributed Erlang
systems. Thisimplies that sub-agent communication is very efficient compared to SMUX, DPI, AgentX, and similar
protocols.

1.2.5 Contexts and Communities

A context is a collection of management information accessible by an SNMP entity. An instance of a management
object may exist in more than one context. An SNMP entity potentially has access to many contexts.

Each managed object can exist in many instanceswithin a SNMP entity. To identify theinstances, specified by an MIB
module, a method to distinguish the actual instance by its 'scope’ or context is used. Often the context is a physical or
alogica device. It can include multiple devices, a subset of a single device or a subset of multiple devices, but the
context is always defined as a subset of a single SNMP entity. To be able to identify a specific item of management
information within an SNMP entity, the context, the object type and its instance must be used.

For example, the managed object type i f Descr from RFC1573, is defined as the description of a network
interface. To identify the description of device-X's first network interface, four pieces of information are needed:
the snmpEnginelD of the SNMP entity which provides access to the management information at device-X, the
cont ext Nane (device-X), the managed object type (i f Descr), and theinstance ("1").

In SNMPv1 and SNMPv2c, the community string in the message was used for (at least) three different purposes:

e toidentify the context

* to provide authentication

e toidentify aset of trap targets

In SNMPv3, each of these usage areas has its own unique mechanism. A context is identified by the name of the

SNMP entity, cont ext Engi nel D, and the name of the context, cont ext Nare. Each SNM Pv3 message contains
values for these two parameters.

8 | Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP)

1.2 Agent Functional Description

There is a MIB, SNMP-COMMUNITY-MIB, which maps a community string to a cont ext Engi nel D and
cont ext Name. Thus, each message, an SNMPv1, SNMPv2c or an SNMPv3 message, always uniquely identifies
a context.

For an agent, the cont ext Engi nel Didentified by a received message, is always equal to the snnpEngi nel D
of the agent. Otherwise, the message was not intended for the agent. If the agent is configured with more than one
context, the instrumentation code must be able to figure out for which context the request was intended. There is a
function snipa: cur r ent _cont ext / O provided for this purpose.

By default, the agent has no knowledge of any other contexts than the default context, " " . If it is to support more
contexts, these must be explicitly added, by using an appropriate configuration file Agent Configuration Files.

1.2.6 Management of the Agent

Thereis aset of standard MIBs, which are used to control and configure an SNMP agent. All of these MIBs, with the
exception of the optional SNMP-PROXY -MIB (which is only used for proxy agents), are implemented in this agent.
Further, it is configurable which of these MIBs are actually loaded, and thus made visible to SNMP managers. For
example, in a non-secure environment, it might be a good idea to not make MIBs that define access control visible.
Note, the datathe MIBs define is used internally in the agent, even if the MIBs not are |oaded. This chapter describes
these standard M1Bs, and some aspects of their implementation.

Any SNMP agent must implement the sy st emgroup and thesnnp group, defined in MIB-I1. The definitions of these
groups have changed from SNMPv1 to SNMPv2. MIBsand implementationsfor both of these versionsare Provided in
the distribution. The MIB file for SNMPv1iscaled STANDARD-MIB, and the corresponding for SNMPv2 is called
SNMPv2-MIB. If the agent is configured for SNMPv1 only, the STANDARD-MIB is loaded by default; otherwise,
the SNMPv2-MIB is loaded by default. It is possible to override this default behavior, by explicitly loading another
version of this MIB, for example, you could choose to implement the union of all objectsin these two MIBs.

An SNMPv3 agent must implement the SNMP-FRAMEWORK-MIB and SNMP-MPD-MIB. These MIBs are loaded
by default, if the agent is configured for SNMPv3. These MIBs can be loaded for other versions as well.

There are five other standard MIBs, which also may be loaded into the agent. These MIBs are:

* SNMP-TARGET-MIB and SNMP-NOTIFICATION-MIB, which defines managed objects for configuration of
management targets, i.e. receivers of notifications (traps and informs). These MIBs can be used with any SNMP
version.

« SNMP-VIEW-BASED-ACM-MIB, which defined managed objects for access control. This MIB can be used
with any SNMP version.

e SNMP-COMMUNITY-MIB, which defines managed objects for coexistence of SNMPv1 and SNMPv2c with
SNMPv3. ThisMIB isonly useful if SNMPv1 or SNMPv2c is used, possibly in combination with SNMPv3.

* SNMP-USER-BASED-SM-MIB, which defines managed objects for authentication and privacy. This MIB is
only useful with SNMPv3.

All of these MIBs should beloaded into the M aster Agent. Onceloaded, these MIBsareawaysavailablein all contexts.

The ASN.1 code, the Erlang source code, and the generated . hr | filesfor them are provided in the distribution and
are placed in the directoriesm bs, src,andi ncl ude, respectively, in the snnp application.

The. hr| files are generated with snnpc: mi b_to_hrl/ 1. Include these files in your code as in the following
example:

-include lib("snmp/include/SNMPv2-MIB.hrl").

Theinitial valuesfor the managed objects defined in these tables, are read at start-up from a set of configuration files.
These are described in Configuration Files.

Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP) | 9

1.2 Agent Functional Description

STANDARD-MIB and SNMPv2-MIB

These MIBs containthesnp- and sy st emgroupsfrom MIB-11 whichisdefined in RFC1213 (STANDARD-MIB)
or RFC1907 (SNMPv2-MIB). They are implemented in the snnp_st andar d_ni b module. The snnp counters
all reside in volatile memory and the syst emand snnpEnabl eAut henTr aps variables in persistent memory,
using the SNMP built-in database (refer to the Reference Manual, section snnp, module snnpa_| ocal _db for
more details).

If another implementation of any of these variablesisneeded, e.g. to storethe persistent variablesin aMnesia database,
an own implementation of the variables must be made. That MIB will be compiled and loaded instead of the default
MIB. The new compiled MIB must have the same name as the original MIB (i.e. STANDARD-MIB or SNMPv2-
MIB), and be located in the SNMP configuration directory (see Configuration Files.)

One of these MIBsisawaysloaded. If only SNMPv1 isused, STANDARD-MIB isloaded, otherwise SNMPv2-MIB
isloaded.

Data Types

There are some new data typesin SNMPv2 that are useful in SNMPv1 as well. In the STANDARD-MIB, three data
typesaredefined, RowSt at us, Tr ut hVal ue and Dat e AndTi e. Thesedatatypesareoriginaly defined astextual
conventionsin SNMPv2-TC (RFC1903).

SNMP-FRAMEWORK-MIB and SNMP-MPD-MIB

The SNMP-FRAMEWORK-MIB and SNMP-MPD-MIB define additional read-only managed objects, which is used
in the generic SNMP framework defined in RFC2271 and the generic message processing and dispatching module
defined in RFC2272. They are generic in the sense that they are not tied to any specific SNMP version.

The objectsin these MIBs are implemented in the modulessnnp_f r anewor k_m b andsnnp_st andar d_ni b,
respectively. All objects reside in volatile memory, and the configuration files are always reread at start-up.

If SNMPv3is used, these MIBs are loaded by defaullt.

SNMP-TARGET-MIB and SNMP-NOTIFICATION-MIB

The SNMP-TARGET-MIB and SNMP-NOTIFICATION-MIB define managed objects for configuration of
notification receivers. They are described in detail in RFC2273. Only a brief description is given here.

All tables in these MIBs have a column of type St or ageType. The value of this column specifies how each row
is stored, and what happens in case of a restart of the agent. The implementation supports the values vol ati | e
and nonVol ati | e. When the tables are initially filled with data from the configuration files, these rows will
automatically havestoragetypenonVol at i | e. Shouldtheagent restart, all nonVol at i | e rowssurvivetherestart,
whilethevol ati | e rowsarelost. The configuration files are not read at restart, by default.

These MIBs are not loaded by default.
snmpNotifyTable

An entry in the snnpNot i f yTabl e selects a set of management targets, which should receive notifications, as
well as the type (trap or inform) of notification that should be sent to each selected management target. When an
application sends a notification using the function send_noti fi cation/5 or the function send_t r ap the
parameter Not i f yName, specified in the call, is used as an index in the table. The notification is sent to the
management targets selected by that entry.

snmpTargetAddrTable

An entry in the snnpTar get Addr Tabl e defines transport parameters (such as IP address and UDP
port) for each management target. Each row in the snnpNot i f yTabl e refers to potentialy many rows
in the snnpTar get Addr Tabl e. Each row in the snnpTar get Addr Tabl e refers to an entry in the
snnpTar get Par ansTabl e.

10 | Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP)

1.2 Agent Functional Description

snmpTargetParamsTable

An entry in the snnpTar get Par anms Tabl e defines which SNMP version to use, and which security parameters
to use.

Which SNMP version to use is implicitly defined by specifying the Message Processing Model. This version of the
agent handles the modelsv1, v2c andv3.

Each row specifies which security model to use, along with security level and security parameters.

SNMP-VIEW-BASED-ACM-MIB

The SNMP-VIEW-BASED-ACM-MIB defines managed objects to control access to the the managed objects for the
managers. The View Based Access Control Module (VACM) can be used with any SNMP version. However, if it
is used with SNMPv1 or SNMPv2c, the SNMP-COMMUNITY -MIB defines additional objects to map community
stringsto VACM parameters.

All tables in this MIB have a column of type St or ageType. The value of this column specifies how each row
is stored, and what happens in case of arestart of the agent. The implementation supports the values vol ati | e
and nonVol ati | e. When the tables are initially filled with data from the configuration files, these rows will
automatically have storagetypenonVol at i | e. Shouldtheagent restart, all nonVol at i | e rowssurvivetherestart,
whilethevol at i | e rowsarelost. The configuration files are not read at restart by default.

ThisMIB is not loaded by default.
VACM isdescribed in detail in RFC2275. Hereis only abrief description given.

The basic concept is that of a MIB view. An MIB view is a subset of all the objects implemented by an agent. A
manager has access to a certain MIB view, depending on which security parameters are used, in which context the
request is made, and which type of request is made.

The following picture gives an overview of the mechanism to select an MIB view:

securityhd odel

who groupMame
securityMame

where contexaMare

viewMame

secuityhd odel

who
secmitylevel

why view Type (readferrite/notify)

Figure 2.4: Overview of the mechanism of MIB selection

Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP) | 11

1.2 Agent Functional Description

vacmContextTable

ThevacntCont ext Tabl e isaread-only table that lists al available contexts.
vacmSecurityToGroupTable

ThevacnBSecurityToG oupTabl e mapsasecurityMdel andasecurityNane toagroupNane.
vacmAccessTable

ThevacmAccessTabl e mapsthe gr oupNane (foundinvacnBSecurit yToG oupTabl e), cont ext Nane,
securityModel ,andsecuritylLevel toan MIB view for each type of operation (read, write, or notify). The
MIB view is represented as avi ewNane. The definition of the MIB view represented by the vi ewNane is found
inthevacnVi ewTr eeFami | yTabl e

vacmViewTreeFamilyTable

ThevacnmVi ewTr eeFam | yTabl e isindexed by the vi ewNane, and defines which objects are included in the
MIB view.

The MIB definition for the table |ooks as follows:

VacmViewTreeFamilyEntry ::= SEQUENCE

{
vacmViewTreeFamilyViewName SnmpAdminString,
vacmViewTreeFamilySubtree OBJECT IDENTIFIER,
vacmViewTreeFamilyMask OCTET STRING,
vacmViewTreeFamilyType INTEGER,
vacmViewTreeFamilyStorageType StorageType,
vacmViewTreeFamilyStatus RowStatus

}

INDEX { vacmViewTreeFamilyViewName,
vacmViewTreeFamilySubtree

}

EachvacnVi ewTr eeFani | yVi ewNane refersto a collection of sub-trees.
MIB View Semantics

AnMIB view isacollection of included and excluded sub-trees. A sub-treeisidentified by an OBJECT IDENTIFIER.
A mask is associated with each sub-tree.

For each possible MIB object instance, the instance belongs to a sub-tree if:

e the OBJECT IDENTIFIER name of that MIB object instance comprises at least as many sub-identifiers as does
the sub-tree, and

» each sub-identifier in the name of that MIB object instance matches the corresponding sub-identifier of the sub-
tree whenever the corresponding bit of the associated mask is 1 (0 isawild card that matches anything).

Membership of an object instancein an MIB view is determined by the following algorithm:

« |f an MIB object instance does not belong to any of the relevant sub-trees, then the instance is not in the MIB
view.

« |f an MIB object instance belongs to exactly one sub-tree, then the instanceis included in, or excluded from, the
relevant MIB view according to the type of that entry.

« |f an MIB object instance belongs to more than one sub-tree, then the sub-tree which comprises the greatest
number of sub-identifiers, and is the lexicographically greatest, is used.

12 | Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP)

1.2 Agent Functional Description

If the OBJECT IDENTIFIER is longer than an OBJECT IDENTIFIER of an object type in the MIB, it refers to
object instances. Because of this, it is possible to control whether or not particular rowsin atable shall be visible.

SNMP-COMMUNITY-MIB

The SNMP-COMMUNITY-MIB defines managed objects that is used for coexistence between SNMPv1 and
SNMPv2c with SNMPv3. Specifically, it contains objects for mapping between community strings and version-
independent SNM P message parameters. In addition, this MIB provides a mechanism for performing source address
validation on incoming requests, and for selecting community strings based on target addresses for outgoing
notifications.

All tables in this MIB have a column of type St or ageType. The value of this column specifies how each row
is stored, and what happens in case of arestart of the agent. The implementation supports the values vol ati | e
and nonVol ati | e. When the tables are initially filled with data from the configuration files, these rows will
automatically have storagetypenonVol at i | e. Shouldtheagent restart, all nonVol at i | e rowssurvivetherestart,
whilethevol ati | e rowsarelost. The configuration files are not read at restart, by default.

This MIB is not loaded by defauilt.

SNMP-USER-BASED-SM-MIB
The SNMP-USER-BASED-SM-MIB defines managed objects that is used for the User-Based Security Model.

All tables in this MIB have a column of type St or ageType. The value of the column specifies how each row
is stored, and what happens in case of arestart of the agent. The implementation supports the values vol ati | e
and nonVol at i | e. When the tables are initially filled with data from the configuration files, these rows will
automatically have storagetypenonVol at i | e. Shouldtheagent restart, all nonVol at i | e rowssurvivetherestart,
whilethevol ati | e rowsarelost. The configuration files are not read at restart, by default.

This MIB is not loaded by defaullt.

OTP-SNMPEA-MIB

The OTP-SNMPEA-MIB was used in earlier versions of the agent, before standard MIBs existed for access control,
MIB views, and trap target specification. All objectsin this MIB are now obsolete.

1.2.7 Notifications

Notifications are defined in SMIv1 with the TRAP-TY PE macro in the definition of an MIB (see RFC1215). The
corresponding macro in SMIv2isNOTIFICATION-TY PE. When an application decidesto send anotification, it calls
one of the following functions:

snmpa:send notification(Agent, Notification, Receiver
[, NotifyName, ContextName, Varbinds])
snmpa:send trap(Agent, Notification, Community [, Receiver, Varbinds])

providing the registered name or processidentifier of the agent wherethe M1B, which definesthe notification isloaded
and the symbolic name of the notification.

If thesend_noti fication/ 3, 4 function is used, al management targets are selected, as defined in RFC2273.
The Recei ver parameter defines where the agent should send information about the delivery of inform requests.

If thesend_noti ficati on/5 functionisused, an Not i f yName must be provided. This parameter isused as an
index inthesnnpNot i f yTabl e, and the management targets defined by that single entry is used.

The send_notificati on/ 6 function is the most genera version of the function. A Cont ext Nane must be
specified, from which the naotification will be sent. If this parameter is not specified, the default context (" ") is used.

Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP) | 13

1.2 Agent Functional Description

Thefunctionsend_t r ap iskept for backwards compatibility and should not be used in new code. Applications that
use this function will continue to work. The snnpNot i f yNane is used as the community string by the agent when
anotification is sent.

Notification Sending

The simplest way to send a notification is to call the function snnpa: send_noti fi cati on(Agent,

Notification, no_receiver). Inthiscase the agent performs a get-operation to retrieve the object values
that are defined in the notification specification (with the TRAP-TYPE or NOTIFICATION-TYPE macros). The
notification is sent to al managers defined in the target and notify tables, either unacknowledged as traps, or
acknowledged as inform requests.

If the caller of the function wants to know whether or not acknowledgments are received for a certain notification
(provided it is sent as an inform), the Recei ver parameter can be specified as{ Tag, ProcessNane} (refer
to the Reference Manual, section snmp, module snnp for more details). In this case, the agent send a message
{snnp_notification, Tag, {got _response, ManagerAddr}} or{snnp_notification, Tag,
{no_response, Manager Addr}} for each management target.

Sometimesit is not possible to retrieve the values for some of the objects in the notification specification with a get-
operation. However, they are knownwhenthesend_noti fi cati on functioniscalled. Thisisthe caseif an object
isan element in atable. It is possible to give the values of some objects to the send_not i fi cati on function
snnpa: send_notification(Agent, Notification, Receiver, Varbinds). In thisfunction,
Var bi nds isalist of Var bi nd, where each Var bi nd is one of:

e {Variable, Value},whereVari abl e isthesymbolic name of ascalar variable referred to in the
notification specification.

e {Colum, Row ndex, Val ue},whereCol um isthe symbolic name of a column variable. Rowl ndex
isalist of indices for the specified element. If thisisthe case, the OBJECT IDENTIFIER sent in the trap isthe
Rowl ndex appended to the OBJECT IDENTIFIER for the table column. Thisisthe OBJECT IDENTIFIER
which specifies the element.

« {AD, Value},whered Disthe OBJECT IDENTIFIER for an instance of an object, scalar variable or
column variable.

For example, to specify that sysLocat i on should have the value " upst ai r s" in the notification, we could use
one of:

e {syslLocation, "upstairs"} or
« {[1,3,6,1,2,1,1,6,0], "upstairs"}

It is also possible to specify names and values for extra variables that should be sent in the notification, but were not
defined in the notification specification.

The notification is sent to all management targets found in the tables. However, make sure that each manager has
accessto the variablesin the notification. If avariable is outside a manager's MIB view, this manager will not receive
the notification.

By definition, it is not possible to send objects with ACCESS not - accessi bl e in notifications. However,
historically this is often done and for this reason we alow it in notification sending. If a variable has ACCESS
not - accessi bl e, the user must provide a value for the variable in the Var bi nds list. It is not possible for
the agent to perform a get-operation to retrieve this value.

14 | Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP)

1.3 Manager Functional Description

Notification Filters

Itis possibleto add notification filter sto an agent. These filters will be called when a notification isto be sent. Their
purpose is to allow modification, suppression or other type of actions.

A notification filter isamodule implementing the snmpa._notification_filter behaviour. A filter is added/deleted using
the functions: snmparegister_notification_filter and snmpa:unregister_notification filter.

Unless otherwise specified, the order of the registered filters will be the order in which they are registered.

Sub-agent Path

If avaluefor anobjectisnot giventothesend_not i f i cat i on function, the sub-agent will perform aget-operation
to retrieve it. If the object is not implemented in this sub-agent, its parent agent tries to perform a get-operation to
retrieveit. If the object isnot implemented in this agent either, it forwards the object to its parent, and so on. Eventually
the Master Agent isreached and at this point all unknown object values must be resolved. If some object is unknown
even to the Master Agent, thisisregarded as an error and is reported with acall touser _er r/ 2 of the error report
module. No notifications are sent in this case.

For agiven natification, the variables, which are referred to in the notification specification, must be implemented by
the agent that has the MIB loaded, or by some parent to this agent. If not, the application must provide values for the
unknown variables. The application must also provide values for al elementsin tables.

1.2.8 Discovery

Thesender isauthoritativefor messages containing payload which doesnot expect aresponse (for example SNM Pv2-
Trap, Response or Report PDU).

Thereceiver isauthoritative for messages containing payload which expects aresponse (for example Get, GetNext,
Get-Bulk, Set or Inform PDU).

The agent can both perform and respond to discovery.
The agent responds to discovery autonomously, without interaction by the user.

Initiating discovery towards a manager is done by calling the discovery function. The Engi nel d field of the target
(manager) entry in the target_addr.conf file has to have the value di scover y. Note that if the manager does not
respond, the Ti meout and Ret r yCount fields decide how long the function will hang before it returns.

Discovery can only be performed towards one manager at atime.

1.3 Manager Functional Description

1.3.1 Features

The manager provided with the tool is a lightweight manager that basically provides a means to communicate with
agents.

It does not really implement any management capabilities by itself. That is up to the user.

A user inthiscontext isbasically amodule implementing the snmpm_user behaviour. A user can issue snmp requests
and receive notification/traps.

Agents to be accessed by the manager needs to be registered by a user. Once registered, they can be accessed by all
registered users.

Notifications/traps from an agent is delivered to the user that did the registration.
Any message from an agent that is not registered is delivered to the default user.

Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP) | 15

1.4 The MIB Compiler

By default, the default user is set to the snnpm_user _def aul t module, which simply sends an info message
to the error_logger. It is however highly recommended that this module be replaced by another that does something
useful (see configuration params for more info).

When using version 3, then (at least one) usm user hasto be registered.

Requests can beissued in two different ways. Synchronous (seesync_set, sync_get, sync_get_next and sync_get_bulk)
and asynchronous (see async_set, async_get, async_get_next and async_get_bulk). With synchronous the snmp reply
is returned by the function. With asynchronous, the reply will instead be delivered through a call to one of the
handl e_pdu callback function defined by the handle_pdu behaviour.

1.3.2 Operation

The following steps are needed to get the manager running:

» [optional] Implement the default user.
e Implement the user(s).

» Configure the application (manager).
e Start the application (manager).

* Register the user(s).

* Theuser(s) register their agents.

1.3.3 MIB loading

Itis possible to load mibs into the manager, but thisis not necessary for normal operation, and not recommended.

1.4 The MIB Compiler

The chapter The M1B Compiler describes the MIB compiler and contains the following topics:
e Operation

e Import

» Consistency checking between MIBs

e hrl file generation

e Emacsintegration

» Deviations from the standard

When importing M1Bs, ensure that the imported MIBs as well asthe importing MIB are compiled using the same
version of the SNM P-compiler.

1.4.1 Operation

The MIB must be written as atext filein SMIv1 or SMIv2 using an ASN.1 notation before it will be compiled. This
text file must have the same name as the MIB, but with the suffix . mi b. Thisis necessary for handling the | MPORT
statement.

The association file, which contains the names of instrumentation functions for the MIB, should have the suffix
. funcs. If thecompiler does not find the association file, it gives awarning message and uses default instrumentation
functions. (See Default Instrumentation for more details).

The MIB compiler is started with acall to snipc: conpi | e(<mi bnane>) . For example:

16 | Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP)

1.4 The MIB Compiler

snmpc:compile("RFC1213-MIB").

The output isanew filewhichis called <ni bnane>. bi n.

The MIB compiler understands both SMIvl and SMIv2 MIBs. It uses the MODULE-IDENTITY statement to
determinate if the MIB iswritten in SMI version 1 or 2.

1.4.2 Importing MIBs

The compiler handles the | MPORT statement. It isimportant to import the compiled file and not the ASN.1 (source)
file. A MIB must be recompiled to make changes visible to other MIBs importing it.

The compiled files of the imported MIBs must be present in the current directory, or a directory in the current path.
The pathis supplied withthe{i , Pat h} option, for example:

snmpc:compile("MY-MIB",
[{i, ["friend mibs/", "../standard mibs/"1}1).

It is also possible to import MIBs from OTP applicationsinan " i ncl ude_l i b" like fashion with thei | option.
Example:

snmpc:compile("MY-MIB",
[{il, ["snmp/priv/mibs/", "myapp/priv/mibs/"1}1).

findsthelatest version of thesnnp and my app applicationsin the OTP system and uses the expanded paths asinclude
paths.

Note that an SMIv2 MIB can import an SMIv1l MIB and vice versa

The following MIBs are built-ins of the Erlang SNMP compiler: SNMPv2-SMI, RFC-1215, RFC-1212, SNMPv2-
TC, SNMPv2-CONF, and RFC1155-SMI. They cannot therefore be compiled separately.

1.4.3 MIB Consistency Checking

When an MIB is compiled, the compiler detects if several managed objects use the same OBJECT | DENTI FI ER
If that is the case, it issues an error message. However, the compiler cannot detect Oid conflicts between different
MIBs. These kinds of conflicts generate an error at load time. To avoid this, the following function can be used to
do consistency checking between MIBs:

erl>snmpc:is consistent(ListOfMibNames).

Li st O M bNanes isalist of compiled MIBs, for example[" RFC1213- M B", " MY-M B"] . Thefunction also
performs consistency checking of trap definitions.

1.4.4 .hrl File Generation

It ispossibleto generatean . hr | file which contains definitions of Erlang constants from a compiled MIB file. This
file can then be included in Erlang source code. The file will contain constants for:

e object Identifiersfor tables, table entries and variables
e column numbers

e enumerated values

e default valuesfor variables and table columns.

Use the following command to generate a .hrl file from an MIB:

Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP) | 17

1.4 The MIB Compiler

erl>snmpc:mib_to hrl(MibName) .

1.4.5 Emacs Integration

With the Emacs editor, thenext - er r or (G- X ™) function can be used indicate where a compilation error occurred,
provided the error message is described by aline number.

UseM x conpi | e to compile an MIB from inside Emacs, and enter:

erl -s snmpc compile <MibName> -noshell

An example of <M bNane>isRFC1213- M B.

1.4.6 Compiling from a Shell or a Makefile

Theer | ¢ commands can be used to compile SNMP MIBs. Example:

erlc MY-MIB.mib

All the standard er | ¢ flags are supported, e.g.

erlc -I mymibs -o mymibs -W MY-MIB.mib

The flags specific to the MIB compiler can be specified by using the + syntax:

erlc +'{group check, false}' MY-MIB.mib

1.4.7 Deviations from the Standard

In some aspects the Erlang MIB compiler does not follow or implement the SMI fully. Here are the differences:

Tables must be written in the following order: t abl eChj ect , ent ryQhj ect, col uimi, ..., col unmN (in
order).

Integer values, for example in the SI ZE expression must be entered in decimal syntax, not in hex or bit syntax.
Symbolic names must be unique within aMIB and within a system.

Hyphens are allowed in SMIv2 (a pragmatic approach). The reason for thisis that according to SM1v2, hyphens
are alowed for objects converted from SMIv1, but not for others. Thisisimpossible to check for the compiler.

If aword isakeyword in any of SMIv1 or SMIv2, it isakeyword in the compiler (deviates from SMIv1 only).
Indexes in atable must be objects, not types (deviates from SMiv1 only).

A subset of all semantic checks on types areimplemented. For example, strictly the Ti meTi cks may not be sub-
classed but the compiler allowsthis (standard M1Bs must pass through the compiler) (deviatesfrom SMIv2 only).

TheM B. Obj ect syntax is not implemented (since all objects must be unique anyway).
Two different names cannot define the same OBJECT IDENTIFIER.

The type checking in the SEQUENCE construct is non-strict (i.e. subtypes may be specified). The reason for this
isthat some standard MIBs use this.

18 | Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP)

1.5 Running the application

* A definition has normally a status field. When the status field has the value deprecated, then the MIB-compiler
will ignore this definition. With the M1B-compiler option { depr ecat ed, t r ue} the MIB-compiler does not
ignore the deprecated definitions.

e Anobject hasa DESCRIPTIONS field. The descriptions-field will not be included in the compiled mib by
default. In order to get the description, the mib must be compiled with the option descri pti on.

1.5 Running the application
The chapter Running the application describes how the application is configured and started. The topics include:

« configuration directories and parameters

« modifying the configuration files

e dtarting the application (agent and/or manager)

* debugging the application (agent and/or manager)

Refer also to the chapter(s) Definition of Agent Configuration Files and Definition of Manager Configuration Files
which contains more detailed information about the agent and manager configuration files.

1.5.1 Configuring the application
The following two directories must exist in the system to run the agent:

« the configuration directory stores all configuration files used by the agent (refer to the chapter Definition of
Agent Configuration Files for more information).

e thedatabasedirectory storestheinterna database files.
The following directory must exist in the system to run the manager:

« theconfiguration directory stores all configuration files used by the manager (refer to the chapter Definition of
Manager Configuration Files for more information).

* thedatabasedirectory storestheinternal database files.

The agent and manager uses (application) configuration parameters to find out where these directories are located.

The parameters should be defined in an Erlang system configuration file. The following configuration parameters are
defined for the SNMP application:

Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP) | 19

1.5 Running the application

agent options() = [agent option()]
agent option() = {restart type,

{agent_type,
{agent verbosity,
{versions,
{discovery,
{gb_max_vbs,
{priority,

{multi threaded,
{db dir,

{db_init error,
{local db,

{net if,

{mibs,

{mib storage,
{mib_server,
{audit trail log,

restart type()}
agent_type()}
verbosity()}
versions ()}

agent _discovery()}
gb _max_vbs()}
priority()}

multi threaded()}
db dir()}

db init error()}
local db()}
agent net if()}
mibs ()}

mib storage()}

mib server()}
audit trail log()}

{error_report mod, error _report mod()}

{note store, note store()}

{symbolic_store, symbolic store()}

{target cache, target cache()}

{config, agent config()}
manager _options() = [manager option()]

manager _option() = {restart type, restart type()}
(

{net_if, manager net if()}
{server, server()}

{note store, note store()}
{config, manager _config()}

{inform_request behaviour, manager irb()}

{mibs, manager _mibs()}
{priority, priority()}

{audit trail log, audit trail log()}
{versions, versions()}

{def user _mod,
{def user_data,

def user module()
def user data()}

Agent specific config options and types:
agent _type() = master | sub <optional >
If mast er , one master agent is started. Otherwise, no agents are started.
Default ismast er .
agent _di scovery() = [agent _discovery_opt()] <optional >

agent _di scovery_opt() = {term nating, agent_termni nating_discovery_opts()} |
{originating, agent _originating discovery opts()}

Thet er m nat i ng options effects discovery initiated by a manager.
Theori gi nat i ng options effects discovery initiated by this agent.
For defaults see the optionsin agent _di scovery_opt ().

agent _term nati ng_di scovery_opts()
<opti onal >

= [agent _term nating_di scovery_opt ()]

agent _term nating_di scovery_opt () = {enabl e, boolean()} | {stage2, discovery
| plain} | {trigger_usernane, string()}

These are options effecting discovery t er m nat i ng inthis agent (i.e. initiated by a manager).
The default values for thet er mi nat i ng discovery options are:

20 | Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP)

1.5 Running the application

e enabletrue
e dstage2: di scovery
e trigger_username: " "

agent _originating_di scovery opts() = [agent_originating discovery opt()]
<opti onal >

agent _originating_di scovery_opt() = {enable, bool ean()}
These are options effecting discovery or i gi nat i ng in this agent.
The default valuesfor the or i gi nat i ng discovery options are:

e enable:true
mul ti _threaded() = bool () <optional >

If t r ue, the agent is multi-threaded, with one thread for each get request.
Defaultisf al se.

db _dir() = string() <mandatory>
Defines where the SNMP agent internal db files are stored.

gb_max_vbs() = pos_integer() | infinity <optional >
Defines the maximum number of varbinds allowed in a Get-BULK response.
Default is1000.

| ocal _db() = [local _db_opt()] <optional >

| ocal _db_opt() = {repair, agent_repair()} | {auto_save, agent_auto_save()}
| {verbosity, verbosity()}

Defines options specific for the SNMP agent local database.
For defaults see the optionsin| ocal _db_opt ().
agent _repair() = false | true | force <optional >

When starting snmpa_local_db it always tries to open an existing database. If f al se, and some errors occur, a
new database is created instead. If t r ue, an existing file will be repaired. If f or ce, the table will be repaired
even if it was properly closed.

Defaultist r ue.

agent _auto_save() = integer() | infinity <optional >
The auto save interval. Thetableis flushed to disk whenever not accessed for this amount of time.
Default is5000.

agent _net_if() = [agent_net _if_opt()] <optional >

agent _net if_option() = {nodule, agent_net if_module()} | {verbosity,
verbosity()} | {options, agent_net_if_options()}

Defines options specific for the SNMP agent network interface entity.
For defaults seethe optionsinagent _net i f _opt ().
agent _net if _nodule() = atonm() <optional >

Module which handles the network interface part for the SNMP agent. Must implement the
snmpa_network_interface behaviour.

Defaultissnnpa_net _i f.

Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP) | 21

1.5 Running the application

agent _net _if_options() = [agent_net_if_option()] <optional >

agent _net _if_option() ={bind_to, bind_to()} | {sndbuf, sndbuf()} | {recbuf,
recbuf ()} | {no_reuse, no_reuse()} | {req_ limt, req limt()} | {filter,
agent _net _if filter_options()} | {extra_sock opts, extra_socket options()}

These options are actually specific to the used module. The ones shown here are applicable to the default
agent _net _if_nodul e().

For defaults seethe optionsinagent _net i f _option().
req limt() = integer() | infinity <optional >
Max number of simultaneous requests handled by the agent.
Defaultisi nfinity.
agent _net _if _filter_options() = [agent_net if _filter_option()] <optional >
agent _net _if _filter_option() = {nodule, agent_net if filter_nodul e()}

These options are actually specific to the used module. The ones shown here are applicable to the default
agent _net if filter_nodul e().

For defaults seethe optionsinagent _net _if filter_option().
agent _net if filter_nodule() = atom() <optional >

Module which handles the network interface filter part for the SNMP agent. Must implement the
snmpa_network_interface filter behaviour.

Defaultissnnpa_net _if_filter.

agent _mbs() = [string()] <optional>
Specifiesalist of MIBs (including path) that defineswhich MIBsareinitially loaded into the SNMP master agent.
Note that the following will always be |oaded:

« vesionvl: STANDARD- M B
e versionv2: SNVPv 2
e version v3: SNVPv 2, SNVP- FRAMEWORK- M B and SNVP- MPD- M B

Defaultis[] .
mb_storage() = [m b_storage_opt()] <optional >
m b_storage_opt () = { modul e, m b_storage_nodul e()} | {options,

nm b_storage _options()}

This option specifies how basic mib datais stored. This option is used by two parts of the snmp agent: The mib-
server and the symbolic-store.

Defaultis[{ modul e, snnpa_ni b_storage ets}].

m b_storage_nodul e() = snnpa_nib data ets | snnpa_ni b _data dets |
snnmpa_ni b_data_mesia | nodul e()

Defines the mib storage module of the SNMP agent as defined by the snmpa_mib_storage behaviour.

Several entities (i b- ser ver viatheitsdatamoduleand thesynbol i c- st or e) of the snmp agent usesthis
for storage of miscelaneous mib related data dataretrieved while loading amib.

There are several implementations provided with the agent: snnpa_m b_storage ets,
snnpa_m b_storage_dets andsnnpa_ni b_st orage_mmesi a.

Default moduleissnnpa_mni b_st orage_et s.

22 | Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP)

1.5 Running the application

m b_storage_options() = list() <optional>

This is implementattion depended. That is, it depends on the module. For each module a specific set of options
are valid. For the module provided with the app, these options are supported:

e snnpa_mb_storage_ets: {dir, filename()} | {action, keep | clear},
{checksum bool ean()}

e dir -If present, pointsto adirectory where afile to which all datain the etstableis"synced".
Also, when atableis opened thisfileisread, if it exists.
By default, thiswill not be used.

e acti on - Specifies the behaviour when a non-empty fileis found: Keep its content or clear it out.
Default iskeep.

¢ checksum- Definesif the fileis checksummed or not.

Default isf al se.

e snnpa_nb_storage dets: {dir, filenane()} | {action, keep | clear},
{auto_save, default | pos_integer()} | {repair, force | boolean()}

e dir - Thismandatory option pointsto adirectory where to place the file of a detstable.

e acti on - Specifies the behaviour when a non-empty fileis found: Keep its content or clear it out.
Defaultiskeep.

e aut o_save - Defines the dets auto-save frequency.
Defaultisdef aul t .

e repair - Definesthe detsrepair behaviour.
Default isf al se.

e snnpa_m b_storage_mesi a:{action, keep | clear}, {nodes, [node()]}

e acti on - Specifies the behaviour when a non-empty, already existing, table: Keep its content or clear
it out.

Defaultiskeep.

¢ nodes - A list of node names (or an atom describing alist of nodes) defining where to open the table.
Its up to the user to ensure that mnesiais actually running on the specified nodes.

The following distinct values are recogni sed:

e« [] - Trandated into alist of the own node: [node()]
e all -erlang: nodes()
e vVvisible-erlang: nodes(visible)
e connected-erl ang: nodes(connect ed)
e db_nodes - mesi a: system i nf o(db_nodes)
Default istheresult of thecall: er | ang: nodes() .

m b_server() = [m b_server_opt()] <optional >

m b_server_opt () = {m bentry_override, m bentry_override()} |

{trapentry_override, trapentry_ override()} | {verbosity, verbosity()} |
{cache, mbs_cache()} | {data_nodule, mb_server_data_nodul e()}

Defines options specific for the SNMP agent mib server.
For defaults see the optionsinmi b_server _opt ().

Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP) | 23

1.5 Running the application

m bentry_override() = bool () <optional >

If this value is false, then when loading a mib each mib- entry is checked prior to installation of the mib. The
purpose of the check isto prevent that the same symbolic mibentry name is used for different oid's.

Default isf al se.
trapentry _override() = bool () <optional >

If thisvaue is false, then when loading a mib each trap is checked prior to installation of the mib. The purpose
of the check isto prevent that the same symbolic trap nameis used for different trap's.

Defaultisf al se.
m b_server_data_nodul e() = snnpa_mib_data tttn | nodul e() <optional >
Defines the backend data module of the SNMP agent mib-server as defined by the snmpa_mib_data behaviour.
At present only the default module is provided with the agent, snnpa_mi b_data_tttn.
Default moduleissnnpa_m b_data_tttn.
m bs_cache() = bool () | mibs_cache_opts() <optional >
Shall the agent utilize the mib server lookup cache or not.
Defaultist r ue (in which casetheni bs_cache_opt s() default values apply).
m bs_cache_opts() = [m bs_cache_opt()] <optional >

m bs_cache_opt () = {aut ogc, m bs_cache_aut ogc()} | {gclimt,
m bs_cache_gclimt()} | {age, m bs_cache_age()}

Defines options specific for the SNMP agent mib server cache.
For defaults seethe optionsinm bs_cache_opt () .
m bs_cache_aut ogc() = bool () <optional >
Definesif themib server shall perform cache gc automatically or leaveit to the user (seegc_mibs _cache/0,1,2,3).
Defaultist r ue.
m bs_cache_age() = integer() > 0 <optional >

Defines how old the entries in the cache will be allowed to become before they are GC'ed (assuming GC is
performed). Each entry in the cache is "touched" whenever it is accessed.

The age is defined in milliseconds.
Defaultis10 ti rmut es.
m bs_cache_gclinmt() = integer() >0 | infinity <optional >
When performing a GC, thisis the max number of cache entries that will be deleted from the cache.

Thereason for having thislimit isthat if the cacheislarge, the GC can potentially take along time, during which
the agent is locked.

Default is100.
error _report_nod() = atom() <optional >

Defines an error report module, implementing the snmpa_error_report behaviour. Two modules are provided
with the toolkit: snnpa_error | ogger andsnnpa_error _io.

Defaultissnnpa_error _| ogger.
synbolic_store() = [synbolic_store_opt()]
synmbolic_store_opt() = {verbosity, verbosity()}

24 | Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP)

1.5 Running the application

Defines options specific for the SNM P agent symbolic store.
For defaults see the optionsin synbol i c_store_opt ().
target _cache() = [target_cache_opt ()]
target _cache_opt() = {verbosity, verbosity()}
Defines options specific for the SNMP agent target cache.
For defaults see the optionsint ar get _cache_opt ().
agent _config() = [agent_config_opt()] <mandatory>

agent _config_opt() = {dir, agent_config dir()} | {force_load, force_load()}
| {verbosity, verbosity()}

Defines specific config related options for the SNMP agent.

For defaults seethe optionsinagent _confi g _opt ().
agent _config dir = dir() <mandatory>

Defines where the SNM P agent configuration files are stored.
force_load() = bool () <optional >

If t r ue the configuration files are re-read during start-up, and the contents of the configuration database ignored.
Thus, if t r ue, changes to the configuration database are lost upon reboot of the agent.

Default isf al se.
Manager specific config options and types:
server() = [server_opt()] <optional >

server_opt() = {tineout, server tinmeout()} | {verbosity, verbosity()} |
{cbproxy, server_cbproxy()} | {netif_sup, server_nis()}

Specifies the options for the manager server process.
Defaultissi | ence.
server_tineout() = integer() <optional>

Asynchronous request cleanup time. For every requests, some info is stored internally, in order to be able to
deliver the reply (when it arrives) to the proper destination. If the reply arrives, thisinfo will be deleted. But if
thereisno reply (in time), the info has to be deleted after the best befor e time has been passed. This cleanup will
be performed at regular intervals, defined by theser ver _ti meout () time. Theinformation will have abest
befor etime, defined by the Expi r e timegiven when calling the request function (seeasync_get, async_get_next
and async_set).

Time in milli-seconds.
Default is30000.
server_chbproxy() = tenporary (default) | permanent <optional >
This option specifies how the server will handle callback calls.
tenporary (default)
A temporary process will be created for each callback call.
per manent
With this the server will create a permanent (named) process that in effect serializes al callback calls.
Defaultist enpor ary.

Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP) | 25

1.5 Running the application

server_nis() = none (default) | {PingTO PongTG <optional >

This option specifiesif the server should actively supervise the net-if process. Note that thiswill only work if the
used net-if process actually supports the protocol. See snmpm_network_interface behaviour for more info.

none (default)
No active supervision of the net-if process.
{PingTO :: pos_integer(), PongTO :: pos_integer()}

The Pi ngTOtime specifies the between a successful ping (or start) and the time when a ping message isto
be sent to the net-if process (basically the time between ping:s).

The PongTOtime specifies how long time the net-if process has to respond to a ping message, with a pong
message. It starts counting when the ping message has been sent.

Both times arein milli seconds.

Default isnone.

manager _config() = [manager _config opt()] <mandatory>

manager _confi g _opt () = {dir, manager _config dir()} | {db_dir,
manager _db _dir ()} | {db_init_error, db_init_error()} | {repair,
manager _repair()} | {aut o_save, nmanager _aut o_save()} | {verbosity,

verbosity()}
Defines specific config related options for the SNMP manager.
For defaults see the optionsin manager _confi g_opt ().
manager _config dir = dir() <nandatory>
Defines where the SNMP manager configuration files are stored.
manager _db_dir = dir() <mandatory>
Defines where the SNMP manager store persistent data.
manager repair() = false | true | force <optional >
Defines the repair option for the persistent database (if and how the table is repaired when opened).
Defaultist r ue.

manager _auto_save() = integer() | infinity <optional >
The auto save interval. The table is flushed to disk whenever not accessed for this amount of time.
Default is5000.

manager _irb() = auto | user | {user, integer()} <optional >

This option defines how the manager will handle the sending of response (acknowledgment) to received inform-
reguests.

e aut o - Themanager will autonomously send response (acknowledgment> to inform-request messages.

« {user, integer()} - Themanager will send response (acknowledgment) to inform-request messages
when the handle_inform function completes. Theinteger isthe time, in milli-seconds, that the manager will
consider the stored inform-request info valid.

e user -Sameas{user, integer()},exceptthat thedefaulttime, 15000 milli-seconds, is used.
See snmpm_network_interface, handle_inform and definition of the manager net if for more info.
Defaultisaut o.

26 | Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP)

1.5 Running the application

manager _nmibs() = [string()] <optional >
Specifiesalist of MIBs (including path) and defines which MIBs areinitialy loaded into the SNMP manager.
Defaultis[] .

manager _net _if() = [manager_net if _opt()] <optional >

manager _net if opt() = {nmodule, manager _net if nodule()} | {verbosity,
verbosity()} | {options, manager _net if _options()}

Defines options specific for the SNMP manager network interface entity.
For defaults seethe optionsin manager _net i f _opt ().

manager _net if_options() = [nmanager_net if_option()] <optional >

manager _net i f_option() = {bind_to, bind_to()} | { sndbuf,
sndbuf ()} | {recbuf, recbuf ()} | {no_reuse, no_reuse()}
| {filter, manager_net if _filter_options()} | {extra_sock_opts,

extra_socket _options()}

These options are actually specific to the used module. The ones shown here are applicable to the default
manager _net i f_nodul e().

For defaults seethe optionsin manager _net i f _option().
manager _net if _nodul e() = atom() <optional >

The module which handles the network interface part for the SNMP manager. It must implement the
snmpm_network_interface behaviour.

Defaultissnnpm net _i f.
manager _net if _filter_options() = [manager_net _if _filter_option()] <optional >
manager _net if filter _option() = {nodule, manager _net if filter nodul e()}

These options are actually specific to the used module. The ones shown here are applicable to the default
manager _net if filter _nodul e().

For defaults see the optionsin manager _net _i f_filter_option().
manager _net _if_filter_nodul e() = atom() <optional >

Module which handles the network interface filter part for the SNMP manager. Must implement the
snmpm_network_interface filter behaviour.

Defaultissnnpm net _if_filter.

def _user _nodul e() = aton() <optional >
The module implementing the default user. See the snmpm_user behaviour.
Defaultissnnpm user _defaul t.

def _user_data() = tern() <optional >
Datafor the default user. Passed to the user when calling the callback functions.
Defaultisundef i ned.

Common config types:

restart_type() = permanent | transient | tenporary
See supervisor documentation for more info.

Default isper manent for theagent andt r ansi ent for the manager.

Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP) | 27

1.5 Running the application

db_init_error() =ternminate | create | create_db_and dir

Defines what to do if the agent is unable to open an existing database file. t er m nat e means that the agent/
manager will terminate, cr eat e means that the agent/manager will remove the faulty file(s) and create new
ones, and cr eat e_db_and_di r means that the agent/manager will create the database file along with any
missing parent directories for the database file.

Defaultist er mi nat e.
priority() = atom() <optional >
Definesthe Erlang priority for all SNMP processes.
Default isnor nmal .
versions() = [version()] <optional >
version() =vl1 | v2 | v3
Which SNMP versions shall be accepted/used.
Defaultis[v1, v2,v3].
verbosity() = silence | info | log | debug | trace <optional >
Verbosity for a SNMP process. This specifies now much debug info is printed.
Defaultissi | ence.
bind_to() = bool () <optional >
If t rue, net_if bindstothe IP address. If f al se, net_if listens on any IP address on the host whereiit is running.
Defaultisf al se.
no_reuse() = bool () <optional >

If t rue, net_if does not specify that the IP and port address should be reusable. If f al se, the address is set
to reusable.

Defaultisf al se.
recbuf () = integer() <optional>
Receive buffer size.
Default value is defined by gen_udp.
sndbuf () = integer() <optional >
Send buffer size.
Default value is defined by gen_udp.
extra_socket _options() = list() <optional>
A list of arbitrary socket options.

This list is not inspected by snmp (other then checking that its alist). Its the users responsibility to ensure that
these are valid options and does not conflict with the "normal" options.

Defaultis[] .
note_store() = [note_store_opt()] <optional >

note_store_opt () = {tinmeout, note store_tineout()} | {verbosity,
verbosity()}

Specifies the options for the SNM P note store.
For defaults seethe optionsinnot e_st ore_opt () .

28 | Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP)

1.5 Running the application

note_store_tinmeout() = integer() <optional>

Note cleanup time. When storing a note in the note store, each note is given lifetime. Every ti meout the
note_store process performs a GC to remove the expired note's. Time in milli-seconds.

Default is30000.
audit _trail _log() [audit _trail _log opt()] <optional>

audit trail _log opt() = {type, atl _type()} | {dir, atl _dir()} | {size,
atl _size()} | {repair, atl _repair()} | {seqgno, atl_seqno()}

If present, this option specifiesthe optionsfor the audit trail logging. Thedi sk_| og moduleisused to maintain
awrap log. If present, thedi r and si ze options are mandatory.

If not present, audit trail logging is not used.
atl _type() =read | wite | read_wite <optional >

Specifies what type of an audit trail log should be used. The effect of the type is actually different for the the
agent and the manager.

For the agent:

« Ifwiteisspecified, only set requests are logged.

* Ifread isspecified, only get requests are logged.

e Ifread_write,al requestsarelogged.

For the manager:

« Ifwriteisspecified, only sent messages are logged.

e Ifread isspecified, only received messages are logged.
 Ifread_writ e, both outgoing and incoming messages are logged.

Defaultisread_write.
atl _dir = dir() <nandatory>

Specifies where the audit trail 1og should be stored.

Ifaudit_trail | og specifiesthat logging should take place, this parameter must be defined.
atl _size() = {integer(), integer()} <mandatory>

Specifies the size of the audit trail log. This parameter issent todi sk_| og.

Ifaudit _trail | og specifiesthat logging should take place, this parameter must be defined.
atl _repair() =true | false | truncate | snnp_repair <optional >

Specifies if and how the audit trail log shall be repaired when opened. Unless this parameter has the value
snnp_repair itissent todi sk_| og. If, on the other hand, the valueissnnp_r epai r, snmp attempts to
handle certain faults on its own. And even if it cannot repair the file, it does not truncate it directly, but instead
movesit aside for later off-line analysis.

Defaultist r ue.
atl _seqno() = true | fal se <optional >

Specifiesif the audit trail log entries will be (sequence) numbered or not. The range of the sequence numbers are
according to RFC 5424, i.e. 1 through 2147483647.

Defaultisf al se.

Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP) | 29

1.5 Running the application

1.5.2 Modifying the Configuration Files

To to start the application (agent and/or manager), the configuration files must be modified and there are two ways of
doing this. Either edit the files manually, or run the configuration tool as follows.

If authentication or encryption is used (SNMPv3 only), start the cr ypt o application.

30 | Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP)

1.5 Running the application

1> snmp:config().

Simple SNMP configuration tool (version 4.0)

Note: Non-trivial configurations still has to be
done manually. IP addresses may be entered
as dront.ericsson.se (UNIX only) or
123.12.13.23

Configure an agent (y/n)? [y]

Agent system config:
1. Agent process priority (low/normal/high) [normal]
2. What SNMP version(s) should be used (1,2,3,1&2,1&2&3,2&3)7 [3] 1&2&3
3. Configuration directory (absolute path)? [/ldisk/snmp] /ldisk/snmp/agent/conf
4. Config verbosity (silence/info/log/debug/trace)? [silence]
5. Database directory (absolute path)? [/ldisk/snmp] /ldisk/snmp/agent/db
6. Mib storage type (ets/dets/mnesia)? [ets]
7. Target cache verbosity (silence/info/log/debug/trace)? [silencel
8. Symbolic store verbosity (silence/info/log/debug/trace)? [silence]
9. Local DB verbosity (silence/info/log/debug/trace)? [silence]
10. Local DB repair (true/false/force)? [true]
11. Local DB auto save (infinity/milli seconds)? [5000]
12. Error report module? [snmpa error_ logger]
13. Agent type (master/sub)? [master]
14. Master-agent verbosity (silence/info/log/debug/trace)? [silence] log
15. Shall the agent re-read the configuration files during startup
(and ignore the configuration database) (true/false)? [true]
16. Multi threaded agent (true/false)? [false] true
17. Check for duplicate mib entries when installing a mib (true/false)? [false]
18. Check for duplicate trap names when installing a mib (true/false)? [false]
19. Mib server verbosity (silence/info/log/debug/trace)? [silencel
20. Mib server cache (true/false)? [true]
21. Note store verbosity (silence/info/log/debug/trace)? [silence]
22. Note store GC timeout? [30000]
23. Shall the agent use an audit trail log (y/n)? [n] y
23b. Audit trail log type (write/read write)? [read write]
23c. Where to store the audit trail log? [/ldisk/snmp] /ldisk/snmp/agent/log
23d. Max number of files? [10]
23e. Max size (in bytes) of each file? [10240]
23f. Audit trail log repair (true/false/truncate)? [true]
24. Which network interface module shall be used? [snmpa net if]
25. Network interface verbosity (silence/info/log/debug/trace)? [silence] log
25a. Bind the agent IP address (true/false)? [falsel
25b. Shall the agents IP address and port be not reusable (true/false)? [falsel
25c. Agent request limit (used for flow control) (infinity/pos integer)? [infinity] 32
25d. Receive buffer size of the agent (in bytes) (default/pos integer)? [default]
25e. Send buffer size of the agent (in bytes) (default/pos integer)? [default]
25f. Do you wish to specify a network interface filter module (or use default) [default]

Agent snmp config:
1. System name (sysName standard variable) [bmk's agent]
2. Engine ID (snmpEngineID standard variable) [bmk's engine]
3. Max message size? [484]
4. The UDP port the agent listens to. (standard 161) [4000]
5. IP address for the agent (only used as id
when sending traps) [127.0.0.1]
6. IP address for the manager (only this manager
will have access to the agent, traps are sent
to this one) [127.0.0.1]
7. To what UDP port at the manager should traps

Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP) | 31

1.5 Running the application

be sent (standard 162)? [5000]
8. Do you want a none- minimum- or semi-secure configuration?
Note that if you chose vl or v2, you won't get any security for these
requests (none, minimum, semi_des, semi_aes) [minimum]
making sure crypto server is started...
8b. Give a password of at least length 8. It is used to generate
private keys for the configuration: kalle-anka
9. Current configuration files will now be overwritten. Ok (y/n)? [y]

Info: 1. SecurityName "initial" has noAuthNoPriv read access
and authenticated write access to the "restricted"
subtree.
2. SecurityName "all-rights" has noAuthNoPriv read/write
access to the "internet" subtree.
3. Standard traps are sent to the manager.
4. Community "public" is mapped to security name "initial".
5. Community "all-rights" is mapped to security name "all-rights".
The following agent files were written: agent.conf, community.conf,
standard.conf, target addr.conf, target params.conf,
notify.conf, vacm.conf and usm.conf

Configure a manager (y/n)? [yl

Manager system config:
1. Manager process priority (low/normal/high) [normal]
2. What SNMP version(s) should be used (1,2,3,1&82,1&2&3,2&3)7 [3] 1&2&3
3. Configuration directory (absolute path)? [/ldisk/snmp] /ldisk/snmp/manager/conf
4. Config verbosity (silence/info/log/debug/trace)? [silence] log
5. Database directory (absolute path)? [/ldisk/snmp] /ldisk/snmp/manager/db
6. Database repair (true/false/force)? [true]
7. Database auto save (infinity/milli seconds)? [5000]
8. Inform request behaviour (auto/user)? [auto]
9. Server verbosity (silence/info/log/debug/trace)? [silence] log
10. Server GC timeout? [30000]
11. Note store verbosity (silence/info/log/debug/trace)? [silence]
12. Note store GC timeout? [30000]
13. Which network interface module shall be used? [snmpm net if]
14. Network interface verbosity (silence/info/log/debug/trace)? [silence] log
15. Bind the manager IP address (true/false)? [false]
16. Shall the manager IP address and port be not reusable (true/false)? [false]
17. Receive buffer size of the manager (in bytes) (default/pos integer)? [default]
18. Send buffer size of the manager (in bytes) (default/pos integer)? [default]
19. Shall the manager use an audit trail log (y/n)? [n] y
19b. Where to store the audit trail log? [/ldisk/snmp] /ldisk/snmp/manager/log
19c. Max number of files? [10]
19d. Max size (in bytes) of each file? [10240]
19e. Audit trail log repair (true/false/truncate)? [true]
20. Do you wish to assign a default user [yes] or use
the default settings [no]l (y/n)? [n]

Manager snmp config:

1. Engine ID (snmpEngineID standard variable) [bmk's engine]

2. Max message size? [484]

3. IP address for the manager (only used as id
when sending requests) [127.0.0.1]

4. Port number (standard 162)? [5000]

5. Configure a user of this manager (y/n)? [y]

5b. User id? kalle

5c. User callback module? snmpm_user_default

5d. User (callback) data? [undefined]

5. Configure a user of this manager (y/n)? [y] n

32 | Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP)

1.5 Running the application

6. Configure an agent handled by this manager (y/n)? [y]

6b. User id? kalle

6c. Target name? [bmk's agent]

6d. Version (1/2/3)7 [1] 3

6e. Community string ? [public]

6f. Engine ID (snmpEngineID standard variable) [bmk's engine]

6g. IP address for the agent [127.0.0.1]

6h. The UDP port the agent listens to. (standard 161) [4000]

6i. Retransmission timeout (infinity/pos integer)? [infinity]

6j. Max message size? [484]

6k. Security model (any/v1/v2c/usm)? [any] usm

61. Security name? ["initial"]

6m. Security level (noAuthNoPriv/authNoPriv/authPriv)? [noAuthNoPriv] authPriv

6. Configure an agent handled by this manager (y/n)? [yl n

7. Configure an usm user handled by this manager (y/n)? [yl

7a. Engine ID [bmk's engine]

7b. User name? hobbes

7c. Security name? [hobbes]

7d. Authentication protocol (no/sha/md5)? [no] sha

7e Authentication [sha] key (length 06 or 20)? [""] [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16, \
17,18,19,20]

7d. Priv protocol (no/des/aes)? [no] des

7f Priv [des] key (length 0 or 16)? [""] 10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25

7. Configure an usm user handled by this manager (y/n)? [y] n

8. Current configuration files will now be overwritten. Ok (y/n)? [yl

Configuration directory for system file (absolute path)? [/ldisk/snmp]
ok

1.5.3 Starting the application

Start Erlang with the command:
erl -config /tmp/snmp/sys

If authentication or encryption is used (SNMPv3 only), start the cr ypt o application. If this step is forgotten, the
agent will not start, but report a{ confi g_error, {unsupported_crypto, }} error.

1> application:start(crypto).
ok

2> application:start(snmp).
ok

1.5.4 Debugging the application

It is possible to debug every (non-supervisor) process of the application (both agent and manager), possibly with
the exception of the net_if module(s), which could be supplied by a user of the application). Thisis done by calling
the snnpa: ver bosi ty/ 2 and snnpm ver bosi t y/ 2 function(s) and/or using configuration parameters. The
verbosity itself has several levels: silence | info | log | debug | trace. Forthelowest verbosity
si | ence, nothing is printed. The higher the verbosity, the moreis printed. Default valueisawayssi | ence.

Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP) | 33

1.5 Running the application

3> snmpa:verbosity(master agent, log).
ok
5> snmpa:verbosity(net if, log).
ok
6>
%% Example of output from the agent when a get-next-request arrives:
** SNMP NET-IF LOG:
got packet from {147,12,12,12}:5000

** SNMP NET-IF MPD LOG:
vl, community: all-rights

** SNMP NET-IF LOG:
got pdu from {147,12,12,12}:5000 {pdu, 'get-next-request',

62612569, noError,0,
[{varbind,[1,1], 'NULL", 'NULL',1}1}

** SNMP MASTER-AGENT LOG:
apply: snmp_generic,variable func, [get, {sysDescr,persistent}]

** SNMP MASTER-AGENT LOG:
returned: {value,"Erlang SNMP agent"}

** SNMP NET-IF LOG:
reply pdu: {pdu, 'get-response',62612569,no0Error,0,
[{varbind,[1,3,6,1,2,1,1,1,0],
"OCTET STRING',
"Erlang SNMP agent",1}]}

** SNMP NET-IF INFO: time in agent: 19711 mysec

Other useful function(s) for debugging the agent are:
snnmpa:info/0,1

info is used to retrieve alist of miscellaneous agent information.
snnpa: whi ch_al i asnanes/0

which_aliasnames is used to retrieve alist of al alias-names known to the agent.
snnpa: whi ch_t abl es/ 0

which_tablesisused to retrieve alist of al (MIB) tables known to the agent.
snnpa: whi ch_vari abl es/ 0

which_variablesisused to retrieve alist of all (MIB) variables known to the agent.
snnpa: whi ch_notifications/0

which_notificationsis used to retrieve alist of all (MIB) notifications/traps known to the agent.
snnpa: restart_worker/0, 1

restart_worker is used to restart the worker process of a multi-threaded agent.
snnpa: restart_set _worker/0, 1

restart_set_worker is used to restart the set-worker process of a multi-threaded agent.
snnpa_l ocal _db: print/0,1,2

For example, this function can show the counters snipl nPkt s and snnpQut Pkt s.

34 | Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP)

1.6 Definition of Agent Configuration Files

Another usefull way to debug the agent isto pretty-print the content of all the tables and/or variables handled directly
by the agent. This can be done by simply calling:

snnpa: print_mb_info()

See print_mib_info/0, print_mib_tables/0 or print_mib_variables/O for more info.

1.6 Definition of Agent Configuration Files

All configuration data must be included in configuration files that are located in the configuration directory. The
name of thisdirectory isgivenintheconfi g_di r configuration parameter. These files are read at start-up, and are
used to initialize the SNMPv2-MIB or STANDARD-MIB, SNMP-FRAMEWORK-MIB, SNMP-MPD-MIB, SNMP-
VIEW-BASED-ACM-MIB, SNMP-COMMUNITY-MIB, SNMP-USER-BASED-SM-MIB, SNMP-TARGET-MIB
and SNMP-NOTIFICATION-MIB (refer to the Management of the Agent for a description of the MIBS).

Thefiles are:

e agent. conf: see Agent Information

* standard. conf: see System Information

e context. conf: see Contexts

e communi ty. conf : see Communities

e target_addr. conf: see Target Address Definitions

e target_parans. conf: see Target Parameters Definitions
e« vacm conf: see MIB Viewsfor VACM

e usm conf : see Security datafor USM

* notify. conf: seeNotify Definitions

The directory where the configuration files are found is given as a parameter to the agent.

The entry format in all files are Erlang terms, separated by a'.' and a newline. In the following sections, the formats
of these terms are described. Comments may be specified as ordinary Erlang comments.

Syntax errorsin thesefiles are discovered and reported with the function conf i g_er r/ 2 of the error report module
at start-up.

1.6.1 Agent Information

The agent information should be stored in afile called agent . conf .
Each entry isatuple of size two:

{Agent Vari abl e, Val ue}.

 Agent Vari abl e is one of the variables is SNMP-FRAMEWORK-MIB or one of the interna variables
i nt Agent UDPPor t , which defines which UDP port the agent listensto, or i nt Agent Tr ansport s, which
defines the transport domains and addresses of the agent.

e Val ue isthevauefor the variable.
The following example shows an agent . conf file:

{intAgentUDPPort, 4000}.
{intAgentTransports,
[{transportDomainUdpIpv4, {141,213,11,24}},
{transportDomainUdpIpv6, {0,0,0,0,0,0,0,1}}1}.
{snmpEngineID, "mbj's engine"}.
{snmpEngineMaxPacketSize, 484}.

Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP) | 35

1.6 Definition of Agent Configuration Files

The value of i nt Agent Transports is a list of {Dormai n, Addr} tuples, where Donai n is either
t ransport Domai nUdpl pv4 ort r anspor t Domai nUdpl pv6, and Addr isthe address in the domain. Addr
can be specified either asan | pAddr orasan{| pAddr, | pPort} tuple. | pAddr iseither aregular Erlang/OTP
i p_address() oratraditional SNMP integer list and | pPor t isaninteger.

When the Addr value does not contain a port number, the value of i nt Agent UDPPor t is used.

The legacy and intermediate variables i nt Agent | pAddr ess and i nt Agent Tr ansport Domai n are still
supported so old agent . conf fileswill work.

Thevaue of snpEngi nel Disastring, which for a deployed agent should have avery specific structure. See RFC
2271/2571 for details.

1.6.2 Contexts

The context information should be storedinafilecalled cont ext . conf . Thedefault context" " need not be present.

Each row defines a context in the agent. This information is used in the table vacntCont ext Tabl e in the SNMP-
VIEW-BASED-ACM-MIB.

Each entry isaterm:
Cont ext Nane.
e Cont ext Nane isastring.

1.6.3 System Information

The system information should be stored in afile called st andar d. conf .
Each entry isatuple of size two:

{Systenvari abl e, Val ue}.

e Systenvari abl e isone of the variables in the system group, or snnpEnabl eAut henTr aps.
* Val ue isthevauefor the variable.

The following example shows avalid st andar d. conf file:

{sysDescr, "Erlang SNMP agent"}.

{sysObjectID, [1,2,3]}.

{sysContact, "(mbj,eklas)@erlang.ericsson.se"}.
{sysName, "test"}.

{sysServices, 72}.

{snmpEnableAuthenTraps, enabled}.

A value must be provided for all variables, which lack default valuesin the MIB.

1.6.4 Communities

The community information should be stored in afile called comuni t y. conf . It must be present if the agent is
configured for SNMPv1 or SNMPv2c.

An SNMP community is a relationship between an SNMP agent and a set of SNMP managers that defines
authentication, access control and proxy characteristics.

The corresponding tableis snnpComuni t yTabl e inthe SNMP-COMMUNITY -MIB.
Each entry isaterm:
{Communi tyl ndex, ConmunityNanme, SecurityNanme, ContextName, Transport Tag}.

36 | Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP)

1.6 Definition of Agent Configuration Files

e Communi t yl ndex isanon-empty string.
e Communi t yNane isastring.

e SecurityName isastring.

e Cont ext Name isastring.

e« Transport Tagisastring.

1.6.5 MIB Views for VACM
Theinformation about MIB Viewsfor VACM should be stored in afile called vacm conf .

The corresponding tables are vacnBecurityToG oupTabl e, vacmAccessTabl e and
vacnVi ewTr eeFani | yTabl e inthe SNMP-VIEW-BASED-ACM-MIB.

Each entry is one of the terms, one entry corresponds to one row in one of the tables.

{vacnBecurityToG oup, SecModel, SecNane, G oupNane}.

{vacmAccess, G oupName, Prefix, SecMddel, SecLevel, Match, ReadView, WiteView,
Noti fyVi ew}.

{vacnVi ewTreeFani |y, View ndex, ViewSubtree, ViewStatus, Viewvask}.

e SecMbdel isany,vl,v2c,orusm

e SecNane isastring.

* G oupNane isastring.

e« Prefixisastring.

e« SeclLevel isnoAut hNoPri v, aut hNoPri v, or aut hPri v
« Matchisprefix orexact.

 ReadVi ewisastring.

« WiteVi ewisastring.

* NotifyVi ewisastring.

e Vi ew ndex isaninteger.

* ViewSubtreeisalist of integer.

* Vi ewsSt at us iseitheri ncl uded or excl uded

Vi ewask iseither nul | or alist of ones and zeros. Ones nominate that an exact match is used for this sub-
identifier. Zeros are wild-cards which match any sub-identifier. If the mask is shorter than the sub-tree, the tail is
regarded as al ones. nul | isshorthand for amask with all ones.

1.6.6 Security data for USM

The information about Security datafor USM should be stored in afile called usm conf , which must be present if
the agent is configured for SNMPv3.

The corresponding tableisusmJser Tabl e in the SNMP-USER-BASED-SM-MIB.
Each entry isaterm:

{Engi nel D, UserName, SecNane, Cone, AuthP, AuthKeyC, OawnAuthKeyC, PrivP,
Pri vKeyC, OmPrivKeyC, Public, AuthKey, PrivKey}.

e Engi nel Disastring.

e User Nane isastring.

e SecNane isastring.

e (ConeiszeroDot Zer o or alist of integers.

Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP) | 37

1.6 Definition of Agent Configuration Files

e Aut hPisausniNoAut hPr ot ocol , usnHVACVD5Aut hPr ot ocol , or usmHMACSHAAuUt hPr ot ocol .
e Aut hKeyCisastring.

« OmAut hKeyCisastring.

e PrivPisausnNoPri vProtocol ,usnDESPri vProt ocol orusnmAesCf b128Pr ot ocol .

e PrivKeyCisastring.

e OmPrivKeyCisastring.

e Publicisastring.

* AuthKey is alist (of integer). This is the User's secret localized authentication key. It is not visible in
the MIB. The length of this key needs to be 16 if usnmHVACVD5AuUt hPr ot ocol is used, and 20 if
us mMHVACSHAAuUt hPr ot ocol isused.

« PrivKey isalist (of integer). Thisisthe User's secret |ocalized encryption key. It isnot visibleinthe MIB. The
length of this key needsto be 16 if usmDESPr i vPr ot ocol or usmAesCf b128Pr ot ocol isused.

1.6.7 Notify Definitions

The information about Notify Definitions should be stored in afilecalled not i fy. conf .
The corresponding tableissnnpNot i f yTabl e inthe SNMP-NOTIFICATION-MIB.
Each entry isaterm:

{Noti fyNanme, Tag, Type}.

* Noti f yNane isaunique non-empty string.

e Tagisastring.

e Typeistraporinform

1.6.8 Target Address Definitions

Theinformation about Target Address Definitions should be stored in afilecalledt ar get _addr . conf .

The corresponding tables are snnpTarget AddrTable in the SNMP-TARGET-MIB and
snnpTar get Addr Ext Tabl e inthe SNMP-COMMUNITY-MIB.

Each entry isaterm:;

{Tar get Nane, Donmi n, Addr, Tineout, RetryCount, TagList, ParansNane, Engi neld}.

or

{Target Nane, Donmi n, Addr, Tinmeout, RetryCount, TagList, ParansName, Engineld,

ThMask, MaxMessageSi ze}.

* Tar get Nane isaunigue non-empty string.

e Dommi nisoneof theatoms: t ranspor t Donmai nUdpl pv4 |t ransport Domai nUdpl pv6.

e Addr is either an | pAddr or an {| pAddr, |pPort} tuple | pAddr is either a regular Erlang/OTP
i p_address() oratraditional SNMP integer list, and | pPor t isan integer.
If | pPort isomitted 162 isused.

e Ti meout isaninteger.

* RetryCount isaninteger.

e TagLi st isastring.

e ParansNane isastring.

* Engi nel disastring or theatomdi scovery.

e TMask isspecified just as Addr or as[] . Notein particular that using alist of 6 bytesfor IPv4 or 8 words plus
2 bytesfor IPv6 are still valid address formats so old configurations will work.

38 | Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP)

1.7 Definition of Manager Configuration Files

* MaxMessageSi ze isaninteger (default: 2048).
The old tuple formats with | p address and Udp port number found in old configurations still work.

Note that if Engi nel d hasthe valuedi scover y, the agent cannot send i nf or mmessages to that manager until
it has performed the discovery process with that manager.

1.6.9 Target Parameters Definitions

Theinformation about Target Parameters Definitions should be stored in afile called t ar get _par ans. conf.
The corresponding tableissnnpTar get Par ans Tabl e in the SNMP-TARGET-MIB.

Each entry isaterm:

{Par amsNane, MPModel, SecurityModel, SecurityName, SecuritylLevel}.

e Par ansNane isaunique hon-empty string.

e MPModel isvl,v2c orv3

e SecurityModel isvl,v2c,orusm

e SecurityNane isastring.

e SecurityLevel isnoAut hNoPri v, aut hNoPri v oraut hPri v.

1.7 Definition of Manager Configuration Files

Configuration data may be included in configuration files that is located in the configuration directory. The name of
thisdirectory isgivenintheconf i g_di r configuration parameter. Thesefiles are read at start-up.

The directory where the configuration files are found is given as a parameter to the manager.

The entry format in all files are Erlang terms, separated by a'.' and a newline. In the following sections, the formats
of these terms are described. Comments may be specified as ordinary Erlang comments.

If syntax errors are discovered in these files they are reported with the function conf i g_er r/ 2 of the error report
module at start-up.

1.7.1 Manager Information
The manager information should be stored in afile called manager . conf .
Each entry isatuple of sizetwo:
{Vari abl e, Val ue}.
e Vari abl e isone of the following:
e transport s - which definesthe transport domains and their addresses for the manager. Mandatory
Val ue isalist of { Domai n, Addr} tuplesor Donai n atoms.

 Domai nisoneof t ransport Domai nUdpl pv4 ort ransport Domai nUdpl pv6.

e Addr is for the currently supported domains either an | pAddr or an {I pAddr, |pPort}
tuple.l pAddr iseither aregular Erlang/OTPi p_addr ess() or atraditional SNMP integer list and
| pPort isaninteger.

When Addr does not contain a port number, the value of por t isused.

When a Addr isnot specified i.e by using only a Dormai n atom, the host's name is resolved to find the
IP address, and the value of por t isused.

e port - which defines which UDP port the manager uses for communicating with agents. Mandatory if
t ransport s does not define aport number for every transport.

Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP) | 39

1.7 Definition of Manager Configuration Files

 engi ne_i d-TheSnnpEngi nel Dasdefinedin SNMP-FRAMEWORK-MIB. Mandatory.

e max_nessage_si ze - The snnpEngi neMaxMessageSi ze as defined in SNMP-FRAMEWORK -
MIB. Mandatory.

e Val ue isthevaluefor the variable.
The legacy and intermediate variablesaddr ess and domai n are still supported so old configurations will work.

The following example shows anmanager . conf file;

{transports, [{transportDomainUdpIpv4, {{141,213,11,24}, 5000}},
{transportDomainUdpIpv6, {{0,0,0,0,0,0,0,1}, 5000}}1}.
{engine id, "mgrEngine"}.

{max_message size, 484}.

Thevalue of engi ne_i d isastring, which should have avery specific structure. See RFC 2271/2571 for details.

1.7.2 Users

For each manager user, the manager needs some information. Thisinformation is either added intheuser s. conf
config file or by calling the register_user function in run-time.

Each row defines amanager user of the manager.
Each entry isatuple of size four:
{Userld, UserMd, UserData, DefaultAgentConfig}.

« User | disany term (used to uniquely identify the user).
* User Mod isthe user callback module (atom).
e User Dat a isany term (passed on to the user when calling the User Mod.

« Defaul t Agent Confi g isalist of default agent config's. These values are used as default values when this
user registers agents.

1.7.3 Agents

The information needed to handle agents should be stored in afile called agent s. conf . It is also possible to add
agents in run-time by calling the register_agent.

Each entry isatuple:

{Userld, TargetNane, Conm Donmain, Addr, EnginelD, Tineout, MaxMessageSi ze,
Ver si on, SecModel, SecNane, SeclLevel}.

* User | distheidentity of the manager user responsible for this agent (term).

e Tar get Nanme isaunique non-empty string.

* Conmisthe community string (string).

e Donmi n isthetransport domain, either t r anspor t Domai nUdpl pv4 ort ransport Donai nUdpl pv6.

e Addr istheaddressinthetransport domain, either an{ |1 pAddr, | pPort} tupleor atraditional SNMP integer
list containing port number. | pAddr is either aregular Erlang/OTP i p_addr ess() or atraditional SNMP
integer list not containing port number, and | pPor t isan integer.

* Engi nel Disthe engine-id of the agent (string).

e Ti meout isretransmission timeout (i nfi ni ty |integer).

* MaxMessageSi ze isthe max message size for outgoing messages to this agent (integer).
* Versionistheversion (vl]|v2|v3).

40 | Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP)

1.8 Agent Implementation Example

* SecMbdel isthe security model (any | v1|v2c | usm).
e SecNane isthe security name (string).
e SeclLevel issecurity level (noAuthNoPriv | authNoPriv | authPriv).

Legacy configurations using tuples without Domai n element, as well aswith al TDorai n, | p and Port elements
still work.

1.7.4 Security data for USM

The information about Security data for USM should be stored in afile called usm conf , which must be present
if the manager wishes to use SNMPv3 when communicating with agents. It is also possible to add usm data in run-
time by calling the register_usm_user.

The corresponding tableisusmJser Tabl e inthe SNMP-USER-BASED-SM-MIB.
Each entry isaterm:

{Engi nel D, User Nanme, AuthP, AuthKey, PrivP, PrivKey}.
{Engi nel D, User Name, SecNane, AuthP, AuthKey, PrivP, PrivKey}.

Thefirst case is when we have the identity-function (SecNane = User Nane).

e Engi nel Disastring.

e User Nane isastring.

e SecNane isastring.

e Aut hPisausniNoAut hPr ot ocol , usmHMACVD5AuUt hPr ot ocol or us MHMACSHAAUt hPr ot ocol .

* AuthKey is a list (of integer). This is the User's secret localized authentication key. It is not visible
in the MIB. The length of this key needs to be 16 if usmHMACVD5AuUt hPr ot ocol is used and 20 if
usmHVACSHAAUL hPr ot ocol isused.

e PrivPisausnNoPri vProtocol ,usnDESPri vProt ocol orusmAesCf b128Pr ot ocol .

* PrivKey isalist (of integer). Thisisthe User's secret localized encryption key. It isnot visiblein the MIB. The
length of thiskey needsto be 16 if usnDESPr i vPr ot ocol or usmAesCf b128Pr ot ocol isused.

1.8 Agent Implementation Example

This Implementation Example section describes how an MIB can be implemented with the SNMP Development
Toolkit.

The example shown can be found in the toolkit distribution.
The agent is configured with the configuration tool, using default suggestions for everything but the manager node.

1.8.1 MIB

The MIB used in this example is called EX1-MIB. It contains two objects, a variable with a name and a table with
friends.

Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP) | 41

1.8 Agent Implementation Example

EX1-MIB DEFINITIONS ::= BEGIN
IMPORTS
experimental FROM RFC1155-SMI
RowStatus FROM STANDARD-MIB

DisplayString FROM RFC1213-MIB
OBJECT-TYPE FROM RFC-1212

’

examplel OBJECT IDENTIFIER ::= { experimental 7 }

myName OBJECT-TYPE
SYNTAX DisplayString (SIZE (0..255))
ACCESS read-write
STATUS mandatory
DESCRIPTION
"My own name"
::= { examplel 1 }

friendsTable OBJECT-TYPE
SYNTAX SEQUENCE OF FriendsEntry
ACCESS not-accessible
STATUS mandatory
DESCRIPTION
"A list of friends."
::= { examplel 4 }

friendsEntry OBJECT-TYPE
SYNTAX FriendsEntry
ACCESS not-accessible
STATUS mandatory
DESCRIPTION
INDEX { fIndex }
::= { friendsTable 1 }

FriendsEntry ::=
SEQUENCE {

fIndex
INTEGER,

fName
DisplayString,

fAddress
DisplayString,

fStatus
RowStatus }

fIndex OBJECT-TYPE
SYNTAX INTEGER
ACCESS not-accessible
STATUS mandatory
DESCRIPTION
"number of friend"
::= { friendsEntry 1 }

fName OBJECT-TYPE
SYNTAX DisplayString (SIZE (0..255))
ACCESS read-write
STATUS mandatory
DESCRIPTION
"Name of friend"
::= { friendsEntry 2 }

fAddress OBJECT-TYPE
SYNTAX DisplayString (SIZE (0..255))

42 | Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP)

1.8 Agent Implementation Example

ACCESS read-write
STATUS mandatory
DESCRIPTION

"Address of friend"
::= { friendsEntry 3 }

fStatus OBJECT-TYPE

SYNTAX RowStatus

ACCESS read-write
STATUS mandatory

DESCRIPTION

"The status of this conceptual row."
::= { friendsEntry 4 }

fTrap TRAP-TYPE
ENTERPRISE examplel
VARIABLES { myName, fIndex }
DESCRIPTION
"This trap is sent when something happens to
the friend specified by fIndex."

END

1.8.2 Default Implementation

Without writing any instrumentation functions, we can compile the MIB and use the default implementation of it.
Recall that MIBsimported by "EX1-MIB.mib" must be present and compiled inthe current directory (*./STANDARD-
MIB.bin"," /JRFC1213-MIB.bin") when compiling.

unix> erl -config ./sys

1> application:start(snmp).

ok

2> snmpc:compile("EX1-MIB").

No accessfunction for 'friendsTable', using default.
No accessfunction for 'myName', using default.

{ok, "EX1-MIB.bin"}

3> snmpa:load mibs(snmp master agent, ["EX1-MIB"]).
ok

This MIB is now loaded into the agent, and a manager can ask questions. As an example of this, we start another
Erlang system and the simple Erlang manager in the toolKkit:

Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP) | 43

1.8 Agent Implementation Example

1> snmp_test mgr:start link([{agent,"dront.ericsson.se"},{community,"all-rights"},
%% making it understand symbolic names: {mibs, ["EX1-MIB","STANDARD-MIB"]}]).
{ok, <0.89.0>}

%% a get-next request with one OID.

2> snmp_test mgr:gn([[1,3,6,1,3,7]1]).

ok

* Got PDU:

[myName, 0] = []

%% A set-request (now using symbolic names for convenience)

3> snmp_test mgr:s([{[myName,®], "Martin"}]).

ok

* Got PDU:

[myName, 0] = "Martin"

%% Try the same get-next request again

4> snmp_test mgr:gn([[1,3,6,1,3,71]).

ok

* Got PDU:

[myName, 0] = "Martin"

%% ... and we got the new value.

%% you can event do row operations. How to add a row:
5> snmp_test mgr:s([{[fName,0], "Martin"}, {[fAddress,0],"home"}, {[fStatus,0],4}]).
%% createAndGo

ok

* Got PDU:

[fName,0] = "Martin"

[fAddress,0] = "home"

[fStatus,0] = 4

6> snmp_test mgr:gn([[myName,0]]).
ok

* Got PDU:

[fName,0] = "Martin"

7> snmp_test mgr:gn().

ok

* Got PDU:

[fAddress,0] = "home"

8> snmp_test mgr:gn().

ok

* Got PDU:

[fStatus,0] =1

9>

1.8.3 Manual Implementation

The following example shows a"manual" implementation of the EX1-MIB in Erlang. In this example, the values of
the objects are stored in an Erlang server. The server has a 2-tuple as loop data, where the first element is the value of
variable my Nane, and the second is a sorted list of rowsinthetablef ri endsTabl e. Each row isa4-tuple.

There are more efficient ways to create tables manually, i.e. to use the module snnp_i ndex.

44 | Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP)

1.8 Agent Implementation Example

Code

-module(exl).

-author('dummy@flop.org').

%% External exports

-export([start/0, my name/l, my name/2, friends table/31]).
%% Internal exports
-export([init/0]).
-define(status col, 4).
-define(active, 1).
-define(notInService, 2).
-define(notReady, 3).

(Action; written, not read
(Action; written, not read
(Action; written, not read

-define(createAndGo, 4).
-define(createAndWait, 5).
-define(destroy, 6).
start() ->

spawn(exl, init, [1]).

d° o° o°

%

%% Instrumentation function for variable myName.
%% Returns: (get) {value, Name}

%% (set) noError

O/OO

my name(get) ->
exl_server ! {self(), get_my_name},
Name = wait answer(),
{value, Name}.
my name(set, NewName) ->
exl server ! {self(), {set my name, NewName}},
noError.

friends table(get, RowIndex, Cols) ->
case get row(RowIndex) of
{ok, Row} ->
get cols(Cols, Row);
->
{noValue, noSuchInstance}
end;
friends table(get next, RowIndex, Cols) ->
case get next row(RowIndex) of

{ok, Row} ->
get next cols(Cols, Row);
->
~ case get next row([]) of
{ok, Row} ->

% Get next cols from first row.
NewCols = add one to cols(Cols),
get next cols(NewCols, Row);

->

end of table(Cols)

end

% If RowStatus is set, then:

% *) If set to destroy, check that row does exist

% *) If set to createAndGo, check that row does not exist AND
% that all columns are given values.

% *) Otherwise, error (for simplicity).

% Otherwise, row is modified; check that row exists.

friends table(is set ok, RowIndex, Cols) ->
RowExists =
case get row(RowIndex) of
{ok, Row} -> true;

Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP) | 45

1.8 Agent Implementation Example

_ -> false
end,
case is row status col changed(Cols) of
{true, ?destroy} when RowExists == true ->
{noError, 0};
{true, ?createAndGo} when RowExists == false,
length(Cols) == ->
{noError, 0};
{true, } ->
{inconsistentValue, ?status col};
false when RowExists == true ->
{noError, 0};
7—>
[{Col, NewVal} | Cols] = Cols,
{inconsistentName, Col}
end;
friends table(set, RowIndex, Cols) ->
case is row status col changed(Cols) of
{true, ?destroy} ->
exl server ! {self(), {delete row, RowIndex}};
{true, ?createAndGo} ->
NewRow = make_row(RowIndex, Cols),
exl server ! {self(), {add row, NewRow}};
false ->
{ok, Row} = get row(RowIndex),
NewRow = merge rows(Row, Cols),
exl server ! {self(), {delete row, RowIndex}},
exl server ! {self(), {add row, NewRow}}
end,
{noError, 0}.

get cols([Col | Cols], Row) ->
[{value, element(Col, Row)} | get cols(Cols, Row)];
get cols([], Row) ->

%% As get cols, but the Cols list may contain invalid column
%% numbers. If it does, we must find the next valid column,
%% or return endOfTable.

get next cols([Col | Cols], Row) when Col < 2 ->
[{[2, element(1l, Row)], element(2, Row)} |
get next cols(Cols, Row)];

get next cols([Col | Cols], Row) when Col > 4 ->
[endOfTable |
get next cols(Cols, Row)];

get next cols([Col | Cols], Row) ->
[{[Col, element(1l, Row)], element(Col, Row)} |
get next cols(Cols, Row)];

get next cols([], Row) ->
[1.

end of table([Col | Cols]) ->
[endOfTable | end of table(Cols)];
end of table([]) ->
[1

add one to cols([Col | Cols]) ->

[Col + 1 | add one to cols(Cols)];
add one to cols([]) ->

[1.

46 | Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP)

1.8 Agent Implementation Example

is row status col changed(Cols) ->
case lists:keysearch(?status_col, 1, Cols) of
{value, {?status col, StatusVal}} ->
{true, StatusVal};
_ -> false
end.
get row(RowIndex) ->
exl server ! {self(), {get row, RowIndex}},
wait answer().
get_next_row(RowIndex) ->
exl server ! {self(), {get next row, RowIndex}},
wait answer().
wait answer() ->
receive
{ex1 server, Answer} ->
Answer
end.

init() ->
register(exl_server, self()),
Lloop("", [1).

loop(MyName, Table) ->
receive
{From, get my name} ->
From ! {ex1l server, MyName},
loop(MyName, Table);
{From, {set my name, NewName}} ->
loop (NewName, Table);
{From, {get row, RowIndex}} ->
Res = table get row(Table, RowIndex),
From ! {exl server, Res},
loop(MyName, Table);
{From, {get next row, RowIndex}} ->
Res = table get next row(Table, RowIndex),
From ! {exl server, Res},
loop(MyName, Table);
{From, {delete row, RowIndex}} ->
NewTable = table delete row(Table, RowIndex),
loop (MyName, NewTable);
{From, {add row, NewRow}} ->
NewTable = table add row(Table, NewRow),
loop (MyName, NewTable)
end.

unctions for table operations. The table is represented as
list of rows.

[]

table get row([{Index, Name, Address, Status} | 1, [Index]) ->
{ok, {Index, Name, Address, Status}};
table get row([H | T], RowIndex) ->
table get row(T, RowIndex);
table get row([], RowIndex) ->
no_such row.
table get next row([Row | T1, []) ->
{ok, Row};
table get next row([Row | T], [Index |])
when element(1l, Row) > Index ->
{ok, Row};
table get next row([Row | T], RowIndex) ->
table get next row(T, RowIndex);
table get next row([], RowIndex) ->
endOfTable.

Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP) | 47

1.8 Agent Implementation Example

table delete row([{Index, , , } | Tl, [Index]) ->
T;
table delete row([H | T], RowIndex) ->
[H | table delete row(T, RowIndex)];
table delete row([], RowIndex) ->
[1.
table add row([Row | T], NewRow)
when element(1l, Row) > element(l, NewRow) ->
[NewRow, Row | TI;
table add row([H | T], NewRow) ->
[H | table add row(T, NewRow)];
table add row([], NewRow) ->
[NewRow] .
make row([Index], [{2, Name}, {3, Address} | 1) ->
{Index, Name, Address, ?active}.
merge_rows (Row, [{Col, NewVal} | T]) ->
merge_rows (setelement(Col, Row, NewVal), T);
merge_rows(Row, []) ->
Row.

Association File
The association file EX1- M B. f uncs for the real implementation looks as follows:

{myName, {ex1, my name, []}}.
{friendsTable, {ex1l, friends table, []}}.

Transcript
To use the real implementation, we must recompile the MIB and load it into the agent.

1> application:start(snmp).

ok

2> snmpc:compile("EX1-MIB").

{ok,"EX1-MIB.bin"}

3> snmpa:load mibs(snmp master agent, ["EX1-MIB"]).

ok

4> exl:start().

.115.0>

Now all requests operates on this "real" implementation.
The output from the manager requests will *look* exactly the
same as for the default implementation.

o o o A
o o o @

Trap Sending

How to send a trap by sending the f Tr ap from the master agent is shown in this section. The master agent has the
MIB EX1- M B loaded, where the trap is defined. This trap specifies that two variables should be sent along with the
trap, myNane and f | ndex. f | ndex is atable column, so we must provide its value and the index for the row in
the call to snnpa: send_t r ap/ 4. In the example below, we assume that the row in question is indexed by 2 (the

row with f | ndex 2).
we use asimple Erlang SNMP manager, which can receive traps.

48 | Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP)

1.9 Manager Implementation Example

[MANAGER]

1> snmp test mgr:start link([{agent,"dront.ericsson.se"},{community, "public"}
%% does not have write-access

1>{mibs, ["EX1-MIB", "STANDARD-MIB"]}1]).

{ok, <0.100.0>}

2> snmp_test mgr:s([{[myName,0], "Klas"}1).

ok
* Got PDU:
Received a trap:
Generic: 4 %% authenticationFailure
Enterprise: [iso,2,3]
Specific: 0

Agent addr: [123,12,12,21]
TimeStamp: 42993

2>
[AGENT]
3> snmpa:send_trap(snmp master agent, fTrap,"standard trap", [{fIndex,[2],2}]).
[MANAGER]
2>
* Got PDU:
Received a trap:

Generic: 6

Enterprise: [examplell]
Specific: 1

Agent addr: [123,12,12,21]
TimeStamp: 69649
[myName, 0] "Martin"
[fIndex,2] 2
2>

1.9 Manager Implementation Example

This Implementation Example section describes how a simple manager can be implemented with the SNMP
Development Toolkit.

The example shown, ex2, can be found in the toolkit distribution.
This example has two functions:

e A simple example of how to use the manager component of the SNMP Development Toolkit.
* A simple example of how to write agent test cases, using the new manager.

1.9.1 The example manager

The example manager, snnp_ex2_nanager , isasimple example of how to implement an snmp manager using the
manager component of the SNMP Development ToolKkit.

The module exports the following functions:
o tart_link/O, start_link/1

e stop/0

e agent/2, agent/3

e sync_get/2, sync _get/3

e sync_get next/2, sync_get next/3

e sync_get bulk/4, sync_get bulk/5

e sync_set/2, sync_set/3

e oid to name/l

Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP) | 49

1.10 Instrumentation Functions

Thismoduleis aso used by the test module described in the next section.

1.9.2 A simple standard test

This simple standard test, snnp_ex2_sinpl e_standard_test, a module which, using the
snnp_ex2_nmanager described in the previous section, implements a simple agent test utility.

1.10 Instrumentation Functions

A user-defined instrumentation function for each object attaches the managed objectsto real resources. Thisfunctionis
called by theagent onaget or set operation. Thefunction could read some hardware register, perform acalculation,
or whatever is necessary to implement the semantics associated with the conceptual variable. These functions must
be written both for scalar variables and for tables. They are specified in the association file, which is a text file. In
thisfile, the OBJECT | DENTI FI ER, or symbolic name for each managed object, is associated with an Erlang tuple
{Modul e, Functi on, Li st Of Ext r aAr gunent s} .

When a managed object is referenced in an SNMP operation, the associated { Modul e, Functi on,
Li st OF Ext r aAr gunrent s} is called. The function is applied to some standard arguments (for example, the
operation type) and the extra arguments supplied by the user.

Instrumentation functions must be written for get and set for scalar variables and tables, and for get - next for
tablesonly. The get - bul k operation istrandated into a series of callsto get - next .
1.10.1 Instrumentation Functions

The following sections describe how the instrumentation functions should be defined in Erlang for the different
operations. In the following, Rowl ndex isalist of key values for the table, and Col umm is a column number.

These functions are described in detail in Definition of |nstrumentation Functions.

New / Delete Operations
For scalar variables:

variable access(new [, ExtraArgl, ...1])
variable access(delete [, ExtraArgl, ...1])
For tables:

table access(new [, ExtraArgl, ...])
table access(delete [, ExtraArgl, ...1)

These functions are called for each object in an MIB when the MIB is unloaded or loaded, respectively.
Get Operation

For scalar variables:

variable access(get [, ExtraArgl, ...1])
For tables:
table access(get,RowIndex,Cols [,ExtraArgl, ...1])

Col s isalist of Col umm. The agent will sort incoming variables so that all operations on one row (same index) will
be supplied at the same time. The reason for thisis that a database normally retrieves information row by row.

These functions must return the current values of the associated variables.

50 | Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP)

1.10 Instrumentation Functions

Set Operation

For scalar variables:

variable access(set, NewValue [, ExtraArgl, ...1)
For tables:

table access(set, RowIndex, Cols [, ExtraArgl,..])

Col s isalist of tuples{ Col umm, NewVal ue}.
These functions returns noEr r or if the assignment was successful, otherwise an error code.

Is-set-ok Operation

As acomplement to the set operation, it is possible to specify atest function. This function has the same syntax as
the set operation above, except that the first argument isi s_set ok instead of set . Thisfunction is called before
the variable is set. Its purposeisto ensure that it is permissible to set the variable to the new value.

variable access(is set ok, NewValue [, ExtraArgl, ...1)
For tables:

table access(set, RowIndex, Cols [, ExtraArgl,..])
Col s isalist of tuples{ Col umm, NewVal ue}.
Undo Operation

A function which has been called withi s_set ok will be called again, either with set if there was no error, or
with undo, if an error occurred. In thisway, resources can bereserved inthei s_set ok operation, released in the
undo operation, or made permanent inthe set operation.

variable access(undo, NewValue [, ExtraArgl, ...])
For tables:

table access(set, RowIndex, Cols [, ExtraArgl,..])
Col s isalist of tuples{ Col umm, NewVal ue}.

GetNext Operation

The GetNext Operation operation should only be defined for tables since the agent can find the next instance of plain
variablesin the MIB and call the instrumentation with the get operation.

table access(get next, RowIndex, Cols [, ExtraArgl, ...1)

Col s isalist of integers, all greater than or equal to zero. This indicates that the instrumentation should find the
next accessible instance. This function returnsthetuple { Next G d, Next Val ue}, or endO Tabl e. Next G d
should be thelexicographically next accessibleinstance of amanaged object in thetable. It should be alist of integers,
wherethefirst integer isthe column, and therest of thelist istheindicesfor the next row. If endOf Tabl e isreturned,
the agent continues to search for the next instance among the other variables and tables.

Rowl ndex may be an empty list, an incompletely specified row index, or the index for an unspecified row.
This operation is best described with an example.

Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP) | 51

1.10 Instrumentation Functions

GetNext Example

A table called my Tabl e hasfive columns. The first two are keys (not accessible), and the table has three rows. The
instrumentation function for thistableiscalled ny_t abl e.

key 1 key 2 col 3 cal 4 col B
1 1 a 4] [
1 2 d & f
? 1 a /A i

Figure 10.1: Contents of my_table

| N/A means not accessible. |

The manager issues the following get Next request:

getNext{ myTable.myTableEntry.3.1.1,
myTable.myTableEntry.5.1.1 }

Since both operations involve the 1.1 index, thisis transformed into one call to my _t abl e:
my_table(get next, [1, 1], [3, 5])

Inthiscal,[1, 1] isthe Row ndex, wherekey 1 hasvalue 1, and key 2 hasvalue 1, and [3, 5] isthelist of
reguested columns. The function should now return the lexicographically next elements:

({13, 1, 21, d}, {5, 1, 2], f}]
Thisisillustrated in the following table:

key 1 key 2 cal 3 cal 4 col B
1 2 N d; & "m:_f‘;
2 1 g N/A i

Figure 10.2: GetNext from [3,1,1]and [5,1,1].

The manager now issues the following get Next request:

52 | Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP)

1.10 Instrumentation Functions

getNext{ myTable.myTableEntry.3.2.1,
5.2.1

myTable.myTableEntry. }

Thisistransformed into one call tomy _t abl e:
my table(get next, [2, 1], [3, 5])
The function should now return:
[{[4, 1, 11, b}, endOfTable]

Thisisillustrated in the following table:

key 1 key 2 el 3 col 4 col B
1 1 a ‘b e
1 2 d J/r e f
2 1 (@) || wa A1)
A l
endCHTable

Figure 10.3: GetNext from [3,2,1] and [5,2,1].

The manager now issues the following get Next request:

getNext{ myTable.myTableEntry.3.1.2,
myTable.myTableEntry.4.1.2

}
Thiswill be transform into one call tory_t abl e:
my table(get next, [1, 21, [3, 4])
The function should now return:
({l3, 2, 11, g}, {[5, 1, 1], c}]

Thisisillustrated in the following table:

Ericsson AB. All Rights Reserved

.: Simple Network Management Protocol (SNMP) | 53

1.10 Instrumentation Functions

kay 1 key 2 col 3 col 4 col B
1 1 a b)

T o o 7
2 1 S .

_

Figure 10.4: GetNext from [3,1,2] and [4,1,2].

The manager now issues the following get Next request:

getNext{ myTable.myTableEntry,
myTable.myTableEntry.1.3.2 }

Thiswill be transform into two callstony_t abl e:

my_table(get_next, [], [0]) and
my table(get next, [3, 2], [1])

The function should now return:

[{r3, 1, 11, a}l and
[{[3, 1, 1], a}]

In both cases, the first accessible element in the table should be returned. Asthe key columns are not accessible, this
means that the third column is the first row.

Normally, the functions described above behave exactly as shown, but they are free to perform other actions. For
exampl e, aget-request may have side effects such as setting some other variable, perhapsaglobal | ast Accessed
variable.

1.10.2 Using the ExtraArgument

The Li st OfF Ext r aAr gunent s can be used to write generic functions. This list is appended to the standard
arguments for each function. Consider two read-only variables for adevice, i pAdr and nane with object identifiers
1.1.23.4and 1.1.7 respectively. To accessthese variables, one could implement the two Erlang functionsi p_access
and name_access, which will bein the MIB. The functions could be specified in atext file asfollows:

{ipAdr, {my module, ip access, []1}}.
% 0r using the oid syntax for ‘'name’
{[1,1,7], {my module, name access, [1}}.

TheExt r aAr gunent parameter isthe empty list. For example, when the agent receives aget-request for thei pAdr
variable, a call will be madetoi p_access(get). The value returned by this function is the answer to the get-
request.

54 | Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP)

1.10 Instrumentation Functions

Ifi p_access andnane_access areimplemented similarly, we could writeagener i c_access functionusing
theLi st OF Ext r aAr gunment s:

{ipAdr, {my module, generic access, ['IPADR']}}.
% The mnemonic 'name' is more convenient than 1.1.7
{name, {my module, generic access, ['NAME']}}.

When the agent receivesthe same get-request asabove, acall will bemadetogeneri c_access(get, 'l PADR).
Y et another possibility, closer to the hardware, could be:

{ipAdr, {my module, generic access, [16#2543]}}.
{name, {my module, generic access, [16#A2B3]1}}.

1.10.3 Default Instrumentation
When the MIB definition work is finished, there are two major issues | eft.

* Implementing the MIB
e Implementing a Manager Application.

Implementing an MIB can be a tedious task. Most probably, there is a need to test the agent before all tables and
variables are implemented. In this case, the default instrumentation functions are useful. The toolkit can generate
default instrumentation functions for variables as well as for tables. Consequently, a running prototype agent, which
canhandleset , get , get - next and table operations, is generated without any programming.

The agent stores the values in an interna volatile database, which is based on the standard module et s. However,
it is possible to let the MIB compiler generate functions which use an internal, persistent database, or the Mnesia
DBMS. Refer to the Mnesia User Guide and the Reference Manual, section SNMP, module snip_generi ¢ for
more information.

When parts of the MIB are implemented, you recompile it and continue on by using default functions. With this
approach, the SNMP agent can be devel oped incrementally.

The default instrumentation allows the application on the manager side to be developed and tested simultaneously
with the agent. As soon as the ASN.1 file is completed, let the MIB compiler generate a default implementation and
develop the management application from this.

Table Operations

The generation of default functions for tables works for tables which use the RowSt at us textual convention from
SNMPVv2, defined in STANDARD-MIB and SNMPv2-TC.

We strongly encourage the use of the RowSt at us convention for every table that can be modified from the
manager, even for newly designed SNMPv1 MIBs. In SNMPv1, everybody has invented their own scheme for
emulating table operations, which hasled to numerous inconsistencies. The convention in SNMPv2 isflexible and
powerful and has been tested successfully. If the table is read only, no RowStatus column should be used.

1.10.4 Atomic Set

In SNMP, the set operation is atomic. Either all variables which are specified in aset operation are changed, or
none are changed. Therefore, the set operation is divided into two phases. In the first phase, the new value of each
variable is checked against the definition of the variable in the MIB. The following definitions are checked:

e thetype
* thelength

Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP) | 55

1.11 Definition of Instrumentation Functions

» therange
* thevariableiswritable and within the MIB view.

At the end of phase one, the user defined i s_set ok functions are called for each scalar variable, and for each
group of table operations.

If no error occurs, the second phase is performed. This phase calls the user defined set function for all variables.

If an error occurs, either in the i s_set ok phase, or in the set phase, al functions which were called with
i s_set ok butnotset, arecaled with undo.

There are limitations with this transaction mechanism. If complex dependencies exist between variables, for example
between nont h and day, another mechanism is needed. Setting the date to 'Feb 31' can be avoided by a somewhat
more generic transaction mechanism. Y ou can continue and find more and more complex situations and construct an
N-phase set-mechanism. This toolkit only contains atrivial mechanism.

The most common application of transaction mechanisms is to keep row operations together. Since our agent sorts
row operations, the mechanism implemented in combination with the RowStatus (particularly 'createAndWait' value)
solve most problems elegantly.

1.11 Definition of Instrumentation Functions

The section Definition of 1nstrumentation Functions describes the user defined functions, which the agent calls at
different times.

1.11.1 Variable Instrumentation
For scalar variables, afunctionf (Oper ati on, ...) must bedefined.
The Oper ati on canbenew, del et e,get,i s_set ok, set,orundo.

In case of an error, al instrumentation functions may return either an SNMPv1 or an SNMPv2 error code. If it returns
an SNMPVv2 codg, it is converted into an SNMPv1 code before it is sent to a SNMPv1 manager. It is recommended
to use the SNMPVv2 error codes for all instrumentation functions, as these provide more details. See Appendix A for
adescription of error code conversions.

f(new [, ExtraArgs])

The function f (new [, ExtraArgs]) iscaled for each variable in the MIB when the MIB is loaded into the
agent. This makesit possible to perform necessary initialization.

This function is optional. The return value is discarded.

f(delete [, ExtraArgs])

Thefunctionf (del ete [, ExtraArgs]) iscaled for each object in an MIB when the MIB is unloaded from
the agent. This makes it possible to perform necessary clean-up.

Thisfunction is optional. The return value is discarded.

f(get [, ExtraArgs])
Thefunctionf (get [, ExtraArgs]) iscaled when aget-request or a get-next request refersto the variable.
This function is mandatory.

Valid Return Values

e {val ue, Value}.TheVal ue must beof correct type, length and within ranges, otherwise genEr r is
returned in the response PDU. If the object is an enumerated integer, the symbolic enum value may be used as
an atom. If the abject is of type BITS, the return value shall be an integer or alist of bits that are set.

56 | Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP)

1.11 Definition of Instrumentation Functions

« {noVal ue, noSuchNane} (SNMPv1)
e {noVal ue, noSuchObject | noSuchl nstance} (SNMPv2)

e genkErr.Usedif an error occurred. Note, this should be an internal processing error, e.g. a caused by a
programing fault somewhere. If the variable does not exist, use{ noVal ue, noSuchNane} or{noVal ue,
noSuchl nst ance}.

f(is_set_ok, NewValue [, ExtraArgs])

Thefunctionf (i s_set ok, Newval ue [, ExtraArgs]) iscalledinphaseone of the set-request processing
so that the new value can be checked for inconsistencies.

NewVal ue is guaranteed to be of the correct type, length and within ranges, as specified in the MIB. If the object is
an enumerated integer or of type BITS, the integer value is used.

Thisfunction is optional.
If thisfunction is called, it will be called again, either with undo or with set asfirst argument.

Valid return values

e noError

e badval ue | noSuchNane | genErr (SNMPv1)

* noAccess | noCreation | inconsistentValue | resourceUnavail able |

i nconsi st ent Name | genErr (SNMPv2)
f(undo, NewValue [, ExtraArgs])

If an error occurred, this function is called after thei s_set ok functioniscalled. If set iscalled for this object,
undo isnot called.

NewVal ue is guaranteed to be of the correct type, length and within ranges, as specified in the MIB. If the object is
an enumerated integer or of type BITS, the integer value is used.

Thisfunction is optional.

Valid return values

e noError

e genErr (SNMPv1)

e undoFail ed | genErr(SNMPv2)
f(set, NewValue [, ExtraArgs])

Thisfunctioniscalled to perform the set in phase two of the set-request processing. Itisonly called if the corresponding
i s_set ok function is present and returnsnoEr r or .

NewVal ue is guaranteed to be of the correct type, length and within ranges, as specified in the MIB. If the object is
an enumerated integer or of type BITS, the integer value is used.

This function is mandatory.

Valid return values

e noError

e genErr (SNMPv1)

e« comitFailed | undoFailed | genErr (SNMPv2)

1.11.2 Table Instrumentation
For tables, af (Operati on, ...) functionshould be defined (the function shown is exemplified with f).
The Oper ati on canbenew, del et e, get,next,i s_set_ ok,undo orset.

Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP) | 57

1.11 Definition of Instrumentation Functions

In case of an error, all instrumentation functions may return either an SNMPv1 or an SNMPv2 error code. If it returns
an SNMPv2 codg, it is converted into an SNMPv1 code before it is sent to a SNMPv1 manager. It is recommended
to use the SNMPVv2 error codes for all instrumentation functions, as these provide more details. See Appendix A for
adescription of error code conversions.

f(new [, ExtraArgs])

Thefunctionf (new [, ExtraArgs]) iscaledfor each objectin an MIB when the MIB isloaded into the agent.
This makes it possible to perform the necessary initialization.

Thisfunction is optional. The return value is discarded.

f(delete [, ExtraArgs])

Thefunctionf (del ete [, ExtraArgs]) iscaled for each object in an MIB when the MIB is unloaded from
the agent. This makesit possible to perform any necessary clean-up.

This function is optional. The return value is discarded.

f(get, Rowindex, Cols [, ExtraArgs])
Thefunctionf (get, Rowl ndex, Cols [, ExtraArgs]) iscaledwhen aget-request refersto atable.
This function is mandatory.

Arguments

 Rowl ndex isalist of integers which define the key values for the row. The Rowl ndex isthelist
representation (list of integers) which follow the Col s integer in the OBJECT IDENTIFIER.

* Col s isalist of integers which represent the column numbers. The Col s are sorted by increasing value and
are guaranteed to be valid column numbers.

Valid Return Values

* A list with as many elements as the Col s list, where each element is the value of the corresponding column.
Each element can be:

 {val ue, Val ue}.TheVal ue must beof correct type, length and within ranges, otherwise genEr r is
returned in the response PDU. If the object is an enumerated integer, the symbolic enum value may be used
(asan atom). If the object is of type BITS, the return value shall be an integer or alist of bitsthat are set.

« {noVal ue, noSuchNane} (SNMPv1)

* {noVal ue, noSuchObject | noSuchl nstance}(SNMPv2)

« {noVal ue, Error}.Iftherow doesnot exist, because all columnshave{ noVal ue, Error}),
thesingletuple{ noVal ue, Error} canbereturned. Thisisashorthand for alist with all elements
{noVval ue, Error}.

e genkErr.Usedif an error occurred. Note that this should be an internal processing error, e.g. a caused
by a programing fault somewhere. If some column does not exist, use{ noVal ue, noSuchNane} or
{noVal ue, noSuchl nstance}.

f(get_next, Rowlndex, Cols [, ExtraArgs])

The function f (get _next, Rowl ndex, Cols [, ExtraArgs]) iscaledwhen aget-next- or a get-bulk-
request refersto the table.

The Row ndex argument may refer to an existing row or anon-existing row, or it may be unspecified. The Col s list
may refer to inaccessible columns or non-existing columns. For each column in the Col s list, the corresponding next
instance is determined, and the last part of its OBJECT IDENTIFIER and its value is returned.

This function is mandatory.

58 | Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP)

1.11 Definition of Instrumentation Functions

Arguments

« Row ndex isalist of integers (possibly empty) that defines the key values for arow. The Row ndex isthe
list representation (list of integers), which follow the Col s integer in the OBJECT IDENTIFIER.

e Col sisalist of integers, greater than or equal to zero, which represents the column numbers.
Valid Return Values
* Alist with asmany elements asthe Col s list Each element can be:
« {NextQ d, NextVal ue},whereNext G d isthe lexicographic next OBJECT IDENTIFIER for the
corresponding column. This should be specified asthe OBJECT IDENTIFER part following the table

entry. This means that the first integer is the column number and the rest is a specification of the keys.
Next Val ue isthe value of this element.

« endO Tabl e if there are no accessible elements after this one.

e {genErr, Col um} where Col umm denotes the column that caused the error. Col urm must be one
of the columnsin the Col s list. Note that this should be an internal processing error, e.g. acaused by a
programing fault somewhere. If some column does not exist, you must return the next accessible element (or
endCf Tabl e).

f(is_set_ok, RowIndex, Cols [, ExtraArgs])

Thefunctionf (i s_set ok, Rowl ndex, Cols [, ExtraArgs]) iscaledin phaseone of the set-request
processing so that new values can be checked for inconsistencies.

If the function is called, it will be called again with undo, or with set asfirst argument.
Thisfunction is optional.

Arguments

* Row ndex isalist of integers which define the key values for the row. The Row ndex isthelist
representation (list of integers) which follow the Col s integer in the OBJECT IDENTIFIER.

e Col sisalistof { Col unm, NewVal ue}, where Col unm isan integer, and NewVal ue is guaranteed to
be of the correct type, length and within ranges, as specified in the MIB. If the object is an enumerated integer
or of type BITS, theinteger value isused. Thelist is sorted by Col umm (increasing) and each Col umm is
guaranteed to be avalid column number.

Valid Return Values

e {noError, 0}

e {Error, Columm},whereError isthesameasfori s_set _ok for variables, and Col unm denotes the
faulty column. Col unrm must be one of the columnsin the Col s list.

f(undo, Rowlndex, Cols [, ExtraArgs])

If anerror occurs, Thefunctionf (undo, Rowl ndex, Cols [, ExtraArgs]) iscaledafterthei s_set ok
function. If set iscalled for this object, undo isnot called.

Thisfunction is optional.

Arguments

« Rowl ndex isalist of integers which define the key values for the row. The Rowl ndex isthelist
representation (list of integers) which follow the Col s integer in the OBJECT IDENTIFIER.

* Col sisalistof { Col utm, NewVal ue}, where Col umm isaninteger, and NewVal ue isguaranteed to
be of the correct type, length and within ranges, as specified in the MIB. If the object is an enumerated integer
or of type BITS, the integer value isused. Thelist is sorted by Col unm (increasing) and each Col urm is
guaranteed to be avalid column number.

Valid Return Values

e {noError, 0}

Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP) | 59

1.12 Definition of Agent Net if

e {Error, Columm} whereError isthesameasfor undo for variables, and Col unm denotes the faulty
column. Col unm must be one of the columnsin the Col s list.

f(set, RowIndex, Cols [, ExtraArgs])

Thefunctionf (set, Rowl ndex, Cols [, ExtraArgs]) iscaledto perform thesetin phasetwo of the set-
request processing. Itisonly called if the correspondingi s_set ok function did not exist, or returned { noEr r or ,
0}.

This function is mandatory.

Arguments

* Rowl ndex isalist of integersthat define the key values for the row. The Rowl ndex isthe list representation
(list of integers) which follow the Col s integer in the OBJECT IDENTIFIER.

* Col sisalistof { Col utm, Newval ue}, where Col umm isaninteger, and NewVal ue isguaranteed to
be of the correct type, length and within ranges, as specified in the MIB. If the object is an enumerated integer
or of type BITS, the integer valueisused. Thelist is sorted by Col unm (increasing) and each Col urm is
guaranteed to be avalid column number.

Valid Return Values

e {noError, 0}

e {Error, Columm} whereError isthesameasset for variables, and Col urm denotes the faulty column.
Col umm must be one of the columnsin the Col s list.

1.12 Definition of Agent Net if

Bytes Erlang Tarms Mastean
- . =
Agent

Proxy agent
specific represantation

Prosy Agent
Subsystam

Figure 12.1: The Purpose of Agent Net if

The Network Interface (Net If) process delivers SNMP PDUs to a master agent, and receives SNMP PDUs from the
master agent. The most common behaviour of aNet if processisthat is receives bytes from a network, decodes them
into an SNMP PDU, which it sends to a master agent. When the master agent has processed the PDU, it sends a
response PDU to the Net if process, which encodes the PDU into bytes and transmits the bytes onto the network.

However, that simple behaviour can be modified in numerous ways. For example, the Net if process can apply some
kind of encrypting/decrypting scheme on the bytes or act as a proxy filter, which sends some packets to a proxy agent
and some packets to the master agent.

60 | Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP)

1.12 Definition of Agent Net if

It is also possible to write your own Net if process. The default Net if process is implemented in the module
snnpa_net _i f andit usesUDP asthetransport protocol i.ethetransport domainst r anspor t Domai nUdpl pv4
and/or t r anspor t Domai nUdpl pv6.

This section describes how to write a Net if process.

1.12.1 Mandatory Functions

A Net if process must implement the SNM P agent network interface behaviour.

1.12.2 Messages

The section M essages describes mandatory messages, which Net If must send and be able to receive.

In this section an Addr ess fieldisa{ Donai n, Addr} tuplewhere Donai nist ransport Domai nUdpl pv4
ortransport Domai nUdpl pv4, and Addr isan{| pAddr, | pPort} tuple.

Outgoing Messages

Net if must send the following message when it receives an SNMP PDU from the network that is aimed for the
MasterAgent:

MasterAgent ! {snmp pdu, Vsn, Pdu, PduMS, ACMData, From, Extra}

* Vsnisether' version-1',"'version-2',or' version-3'.
e Pduisan SNMP PDU record, asdefinedin snnp_t ypes. hr | , with the SNMP request.

e PduMs isthe Maximum Size of the response Pdu allowed. Normally thisis returned from
snnpa_npd: process_packet (see Reference Manual).

* ACMDat a isdata used by the Access Control Module in use. Normally thisis returned from
snnpa_npd: process_packet (see Reference Manual).

e Fr omisthe source Addr ess.

« Extraisany termthe Net if process wishesto send to the agent. Thisterm can be retrieved by the
instrumentation functions by callingsnnp: current _net _i f _dat a() . Thisdataisalso sent back to the
Net if process when the agent generates a response to the request.

The following message is used to report that a response to arequest has been received. The only request an agent can
send is an Inform-Request.

Pid ! {snmp response received, Vsn, Pdu, From}

* Pi d isthe Process that waits for the response for the request. The Pid was specified inthesend_pdu_r eq
message (see below).

e Vsniseither' version-1',"'version-2',or' version-3'.

e Pdu isthe SNMP Pdu received

e Fromisthe source Addr ess.

Incoming Messages

This section describes the incoming messages which a Net if process must be able to receive.

e {snnp_response, Vsn, Pdu, Type, ACMData, To, Extra}
This message is sent to the Net if process from a master agent as aresponse to a previously received request.

Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP) | 61

1.12 Definition of Agent Net if

e Vsniseither' version-1',"'version-2',or' version-3'.
e Pduisan SNMP PDU record (as defined in snmp_types.hrl) with the SNMP response.
* Typeisthe#pdu. t ype of theoriginal request.

e ACMData is data used by the Access Control Module in use. Normaly this is just sent to
snnpa_npd: gener at e_response_nessage (see Reference Manual).

e To isthe destination Addr ess that comes from the Fr omfield in the corresponding snnp_pdu message
previously sent to the MasterAgent.

» Extraistheterm that the Net if process sent to the agent when the request was sent to the agent.
e {discarded pdu, Vsn, Reqld, ACMVData, Variable, Extra}

This message is sent from amaster agent if it for some reason decided to discard the pdu.
e Vsniseither' version-1',"'version-2',or' version-3'.
 Reqgl distherequest id of the original request.

e ACMData is data used by the Access Control Module in use. Normaly this is just sent to
snnpa_npd: gener at e_r esponse_nessage (see Reference Manual).

e Vari abl e isthe name of an snmp counter that represents the error, e.g. snnpl nBadCommruni t yUses.
* Extraistheterm that the Net if process sent to the agent when the request was sent to the agent.
e {send_pdu, Vsn, Pdu, MsgData, To, Extra}
This message is sent from amaster agent when atrap isto be sent.
* Vsnisether' version-1','version-2',or' version-3'.
e Pduisan SNMP PDU record (as defined in snmp_types.hrl) with the SNMP response.

 MsgDat a is the message specific data used in the SNMP message. This value is normally sent to
snnpa_npd: gener at e_nessage/ 4. In SNMPv1 and SNMPv2c, this message data is the community
string. In SNMPV3; it is the context information.

* Toisalistof { Address, SecDat a} tuplesi.ethe destination addresses and their corresponding security
parameters. Thisvalueisnormaly sent to snnpa_npd: gener at e_nessage/ 4.

e Ext r aisany termthat the notification sender wishesto passto the Net if processwhen sending anatification
(see send notification for more info).

e {send_pdu_req, Vsn, Pdu, MsgData, To, Pid, Extra}
This message is sent from a master agent when a request is to be sent. The only request an agent can send is
Inform-Request. The net if process needs to remember the request id and the Pid, and when aresponseisreceived
for the request id, send it to Pid, usingasnnp_r esponse_r ecei ved message.
* Vsniseither' version-1',"version-2',or' version-3'.
* Pduisan SNMP PDU record (as defined in snmp_types.hrl) with the SNMP response.

e« MsgDat a is the message specific data used in the SNMP message. This value is normally sent to
snnpa_npd: gener at e_nessage/ 4. In SNMPv1 and SNMPv2c, this message data is the community
string. In SNMPV3, it is the context information.

* Toisalistof { Address, SecDat a} tuplesi.ethe destination addresses and their corresponding security
parameters. Thisvalue isnormally sent to snnpa_npd: gener at e_nessage/ 4.

e Pidisaprocessidentifier.
« Ext r aisany termthat the notification sender wishesto passto the Net if processwhen sending anotification
(see send notification for more info).

62 | Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP)

1.13 Definition of Manager Net if

Notes

Sincethe Net if processis responsible for encoding and decoding of SNM P messages, it must also update the relevant
counters in the SNMP group in MIB-II. It can use the functionsin the module snnpa_npd for this purpose (refer to
the Reference Manual, section snnp, module snmpa_mpd for more details.)

There are also some useful functions for encoding and decoding of SNMP messages in the module snmp_pdus.

1.13 Definition of Manager Net if

Bytes ; TS
—) . ‘EllallgTEllmh@

Figure 13.1: The Purpose of Manager Net if

The Network Interface (Net If) process delivers SNMP PDUSs to the manager server, and receives SNMP PDUs from
the manager server. The most common behaviour of aNet if processisthat isreceives request PDU from the manager
server, encodes the PDU into bytes and transmits the bytes onto the network to an agent. When the reply from the
agent isreceived by the Net if process, which it decodes into an SNMP PDU, which it sends to the manager server.

However, that simple behaviour can be modified in numerous ways. For example, the Net if process can apply some
kind of encrypting/decrypting scheme on the bytes.

The snmp application provides two different modules, snnpm net _i f (the default) and snnpm net _i f_nt,
both uses UDP as the transport protocol i.e the transport domains transport Domai nUdpl pv4 and/or
t ransport Domai nUdpl pv6. The difference between the two modules is that the latter is "multi-threaded", i.e.
for each message/request a new processis created that processes the message/request and then exits.

Thereisaser ver config option, netif _sup that enables "active" Net If supervision. Thisis very simple mechanism.
The (supervising) process simply sends a ping message and expects a pong message response (withing aspecific time).
The interval between each pi ng/ pong exhange is user configurable. As is the time that is alowed for the pong
message to arrive. Both the Netlf module(s) provided with the app supports active supervision. If a Netlf module/
process is used which do not implement this, then the server cannot be configured with active supervision.

It isalso possible to write your own Net if process and this section describes how to do that.

1.13.1 Mandatory Functions

A Net If process must implement the SNM P manager network interface behaviour.

1.13.2 Messages

The section M essages describes mandatory (with exception for the ping/pong messages) messages, which Net If must
send to the manager server process.

In this section a Donmi n field is the transport domain i.e one of transport Domai nUdpl pv4 or
t ransport Domai nUdpl pv6, and an Addr fieldisan{| pAddr, | pPort} tuple

Outgoing Messages

Net if must send the following message when it receives an SNMP PDU from the network that is aimed for the
MasterAgent:

Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP) | 63

1.13 Definition of Manager Net if

Server ! {snmp _pdu, Pdu, Domain, Addr}

e Pduisan SNMP PDU record, asdefinedin snnp_t ypes. hrl , with the SNMP request.
» Domai n isthe source transport domain.
e Addr isthe source address.

Server ! {snmp_trap, Trap, Domain, Addr}

e Trap iseither an SNMP pdu record or an trappdu record, as defined in snnp_t ypes. hrl , with the SNMP
request.

e Donmi n isthe source transport domain.

e Addr isthe source address.

Server ! {snmp_inform, Ref, Pdu, PduMS, Domain, Addr}

* Ref iseither the atom i gnor e or something that can be used to identify the inform-request (e.g. request-id).
i gnor e isused if the response (acknowledgment) to the inform-request has aready been sent (this means that
the server will not make the call to theinform_response function). See the inform request behaviour configuration
option for moreinfo.

e Pduisan SNMP PDU record, asdefinedin snnp_t ypes. hrl , with the SNMP request.
« Domai n isthe source transport domain.
e Addr isthe source address.

Server ! {snmp _report, Data, Domain, Addr}

 Dataisether{ok, Pdu} or{error, Reqgld, Reasonlnfo, Pdu}.Whichoneisuseddependsonthe
return value from the MPD process_msg function. If the MsgData is ok, the firstisused, and if itis{error,
Reqgl d, Reason} thelatter isused.

e Pduisan SNMP PDU record, asdefined insnnp_t ypes. hr | , with the SNMP request.
* Regl disaninteger.

* Reasonl nfoisaterm().

* Domai n isthe source transport domain.

e Addr isthe source address.

Supervisor ! {pong, self()}

e Supervi sor isthe processthat sent the ping message (see below).

Incoming Messages
This section describes the incoming messages which a Net If process may choose to respond to.
e {ping, Supervisor}

This message is sent to the Net If process by a process that has been configured to perfor "active supervision" of
the Net If process. The Net If process should respond immediately with a pong message.

64 | Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP)

1.14 Audit Trail Log

e Supervisor isapi d().

1.13.3 Notes

Sincethe Net if processis responsible for encoding and decoding of SNM P messages, it must also update the relevant
countersin the SNMP group in MIB-II. It can use the functionsin the module snnmpm _npd for this purpose (refer to
the Reference Manual, section snnp, module snnpm _npd for more details).

There are also some useful functions for encoding and decoding of SNMP messages in the module snnp_pdus.

1.14 Audit Trail Log

The chapter Audit Trail L og describes the audit trail logging.

Both the agent and the manager can be configured to log incoming and outgoing messages. It uses the Erlang standard
log mechanism di sk_| og for logging. The size and location of the log files are configurable. A wrap log is used,
which means that when the log has grown to a maximum size, it starts from the beginning of the log, overwriting
existing log records.

Thelog can beeitheraread,witeoraread wite.

1.14.1 Agent Logging

For the agent, awr i t e, means that all set requests and their responses are stored. No get requests or traps are
storedinawite. Aread wite,al requests, responses and traps are stored.

The log uses araw data format (basically the BER encoded message), in order to minimize the CPU load needed for
the log mechanism. This means that the log is not human readable, but needs to be formatted off-line before it can be
read. Use the function snmpa:log_to_txt for this purpose.

1.14.2 Manager Logging

For the manager, awr i t e, meansthat all requests (set and get) and their responses are stored. No traps are stored
inawite.Aread_writ e, al requests, responses and traps are stored.

The log uses araw dataformat (basically the BER encoded message), in order to minimize the CPU load needed for
the log mechanism. This means that the log is not human readable, but needs to be formatted off-line before it can be
read. Use the function snmpm:log_to_txt for this purpose.

1.15 Advanced Agent Topics

The chapter Advanced Agent Topics describes the more advanced agent related features of the SNMP devel opment
tool. The following topics are covered:

* When to use a Sub-agent

e Agent semantics

e Sub-agents and dependencies

» Distributed tables

+ Fault tolerance

e Using Mnesiatables as SNMP tables

e Audit Trail Logging

» Deviations from the standard

Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP) | 65

1.15 Advanced Agent Topics

1.15.1 When to use a Sub-agent

The section When to use a Sub-agent describes situations where the mechanism of loading and unloading MIBsis
insufficient. In these cases a sub-agent is needed.

Special Set Transaction Mechanism

Each sub-agent can implement its own mechanisms for set , get and get - next . For example, if the application
requiresthe get mechanism to be asynchronous, or needs a N-phase set mechanism, a specialized sub-agent should
be used.

Thetoolkit allows different kinds of sub-agents at the sametime. Accordingly, different MIBs can have different set
or get mechanisms.

Process Communication

A simple distributed agent can be managed without sub-agents. The instrumentation functions can use distributed
Erlang to communicate with other parts of the application. However, a sub-agent can be used on each node if this
generates too much unnecessary traffic. A sub-agent processes requests per incoming SNM P request, not per variable.
Therefore the network traffic is minimized.

If the instrumentation functions communicate with UNIX processes, it might be agood ideato use aspecial sub-agent.
This sub-agent sends the SNMP request to the other process in one packet in order to minimize context switches. For
example, if awhole MIB isimplemented on the C level in UNIX, but you still want to use the Erlang SNMP tool, then
you may have one special sub-agent, which sends the variables in the request as a single operation down to C.

Frequent Loading of MIBs

Loading and unloading of MIBs are quite cheap operations. However, if the application does this very often, perhaps
several times per minute, it should load the MIBs once and for all in a sub-agent. This sub-agent only registers and
unregistersitself under another agent instead of loading the MIBs each time. Thisis cheaper than loading an MIB.

Interaction With Other SNMP Agent Toolkits

If the SNMP agent needs to interact with sub-agents constructed in another package, a special sub-agent should be
used, which communicates through a protocol specified by the other package.

1.15.2 Agent Semantics

The agent can be configured to be multi-threaded, to process one incoming request at atime, or to have arequest limit
enabled (this can be used for load control or to limit the effect of DoS attacks). If it is multi-threaded, read requests
(get, get - next and get - bul k) and traps are processed in parallel with each other and set requests. However,
al set requests are serialized, which meansthat if the agent is waiting for the application to complete a complicated
write operation, it will not process any new write requests until this operation is finished. It processes read requests
and sendstraps, concurrently. The reason for not handle write requestsin parallel isthat acomplex locking mechanism
would be needed even in the simplest cases. Even with the scheme described above, the user must be careful not to
violate that the set requests are atoms. If thisis hard to do, do not use the multi-threaded feature.

The order within an regquest is undefined and variables are not processed in a defined order. Do not assume that the
first variable in the PDU will be processed before the second, even if the agent processes variables in this order. It
cannot even be assumed that requests belonging to different sub-agents have any order.

If the manager tries to set the same variable many times in the same PDU, the agent is free to improvise. There is
no definition which determines if the instrumentation will be called once or twice. If called once only, there is no
definition that determines which of the new valuesis going to be supplied.

When the agent receivesarequest, it keepsthe request 1D for one second after the responseis sent. If the agent receives
another regquest with the same request 1D during this time, from the same I P address and UDP port, that request will
be discarded. This mechanism has nothing to do with the function snnpa: current _request _i d/ 0.

66 | Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP)

1.15 Advanced Agent Topics

1.15.3 Sub-agents and Dependencies
The toolkit supports the use of different types of sub-agents, but not the construction of sub-agents.

Also, the toolkit does not support dependencies between sub-agents. A sub-agent should by definition be stand alone
and it istherefore not good design to create dependencies between them.

1.15.4 Distributed Tables

A common situation in more complex systems is that the data in a table is distributed. Different table rows are
implemented in different places. Some SNMP tool-kits dedicate an SNMP sub-agent for each part of the table and
load the corresponding MIB into all sub-agents. The Master Agent is responsible for presenting the distributed table
as asingle table to the manager. The toolkit supplied uses a different method.

The method used to implement distributed tables with this SNMP tool is to implement a table coordinator process
responsiblefor coordinating the processes, which hold the table data and they are called table holders. All table holders
must in some way be known by the coordinator; the structure of the table data determines how thisis achieved. The
coordinator may require that the table holders explicitly register themselves and specify their information. In other
cases, the table holders can be determined once at compile time.

When the instrumentation function for the distributed table is called, the request should be forwarded to the table
coordinator. The coordinator finds the requested information among the table holders and then returns the answer
to the instrumentation function. The SNMP toolkit contains no support for coordination of tables since this must be
independent of the implementation.

The advantages of separating the table coordinator from the SNMP tool are:
« Wedo not need a sub-agent for each table holder. Normally, the sub-agent is needed to take care of
communication, but in Distributed Erlang we use ordinary message passing.

e Most likely, some type of table coordinator already exists. This process should take care of the instrumentation
for the table.

* The method used to present a distributed table is strongly application dependent. The use of different masking
techniquesis only valid for a small subset of problems and registering every row in a distributed table makes it
non-distributed.

1.15.5 Fault Tolerance

The SNMP agent toolkit gets input from three different sources:

e UDP packets from the network

* return values from the user defined instrumentation functions

* return values from the MIB.

The agent is highly fault tolerant. If the manager gets an unexpected response from the agent, it is possible that some
instrumentation function has returned an erroneous value. The agent will not crash even if the instrumentation does.

It should be noted that if an instrumentation function enters an infinite loop, the agent will also be blocked forever.
The supervisor ,or the application, specifies how to restart the agent.

Using the SNMP Agent in a Distributed Environment

The normal way to use the agent in adistributed environment isto use one master agent located at one node, and zero
or more sub-agents located on other nodes. However, this configuration makes the master agent node a single point
of failure. If that node goes down, the agent will not work.

One solution to this problem is to make the snmp application a distributed Erlang application, and that means, the
agent may be configured to run on one of several nodes. If the node where it runs goes down, another node restarts
the agent. Thisis called failover. When the node starts again, it may takeover the application. This solution to the

Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP) | 67

1.15 Advanced Agent Topics

problem adds another problem. Generally, the new node has another |P address than the first one, which may cause
problems in the communication between the SNM P managers and the agent.

If the snmp agent is configured as a distributed Erlang application, it will during takeover try to load the same MIBs
that were loaded at the old node. It uses the same filenames as the old node. If the MIBs are not located in the same
paths at the different nodes, the MIBs must be loaded explicitly after takeover.

1.15.6 Using Mnesia Tables as SNMP Tables

The MnesiaDBMS can be used for storing data of SNMP tables. This meansthat an SNMP table can be implemented
asaMnesiatable, and that a Mnesia table can be made visible via SNMP. This mapping is largely automated.

There are three main reasons for using this mapping:

» Weget al features of Mnesia, such as fault tolerance, persistent data storage, replication, and so on.
e Much of thework involved is automated. Thisincludes get - next processing and RowSt at us handling.

» Thetable may be used as an ordinary Mnesiatable, using the Mnesia API internally in the application at the
same time asit is visible through SNMP.

When this mapping is used, insertion and deletion in the original Mnesiatable is slower, with a factor O(log n). The
read accessis not affected.

A drawback with implementing an SNMP table as a Mnesia table is that the internal resource is forced to use the
table definition from the MIB, which means that the external data model must be used internally. Actually, thisisonly
partially true. The Mnesia table may extend the SNMP table, which means that the Mnesia table may have columns
which are use internally and are not seen by SNMP. Still, the data model from SNMP must be maintained. Although
this is undesirable, it is a pragmatic compromise in many situations where simple and efficient implementation is
preferable to abstraction.

Creating the Mnesia Table

The table must be created in Mnesia before the manager can use it. The table must be declared as type snnp. This
makes the table ordered in accordance with the lexicographical ordering rules of SNMP. The name of the Mnesia
table must be identical to the SNMP table name. The types of the INDEX fields in the corresponding SNMP table
must be specified.

If the SNM P table has more than one INDEX column, the corresponding Mnesiarow isatuple, where thefirst element
is atuple with the INDEX columns. Generally, if the SNMP table has N INDEX columns and C data columns, the
Mnesiatableisof arity (C-N)+1, wherethe key isatuple of arity N if N > 1, or asingletermif N = 1.

Refer to the Mnesia User's Guide for information on how to declare a Mnesiatable as an SNMP table.

Thefollowing exampleillustrates a situation in which we have an SNMP table that we wish to implement asaMnesia
table. The table stores information about employees at a company. Each employee is indexed with the department
number and the name,

68 | Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP)

1.15 Advanced Agent Topics

empTable OBJECT-TYPE

SYNTAX SEQUENCE OF EmpEntry
ACCESS not-accessible
STATUS mandatory
DESCRIPTION
"A table with information about employees."
1= { emp 1}
empEntry OBJECT-TYPE
SYNTAX EmpEntry
ACCESS not-accessible
STATUS mandatory
DESCRIPTION
INDEX { empDepNo, empName }
::= { empTable 1 }
EmpEntry ::=
SEQUENCE {
empDepNo INTEGER,
empName DisplayString,
empTelNo DisplayString,
empStatus RowStatus
}

The corresponding Mnesiatableis specified as follows:

mnesia:create table([{name, employees},
{snmp, [{key, {integer, string}}1},
{attributes, [key, telno, row statusl}]).

In the Mnesia tables, the two key columns are stored as a tuple with two elements. Therefore, the arity of the table
is3.

Instrumentation Functions
The MIB table shown in the previous section can be compiled as follows:

1> snmpc:compile("EmpMIB", [{db, mnesia}]).

Thisis al that has to be done! Now the manager can read, add, and modify rows. Also, you can use the ordinary
Mnesia API to access the table from your programs. The only explicit action is to create the Mnesia table, an action
the user has to perform in order to create the required table schemas.

Adding Own Actions

Itisoften necessary to take some specific action when atableismodified. Thisisaccomplished with aninstrumentation
function. It executes some specific code when the table is set, and passes all other requests down to the pre-defined
function.

The following example illustrates this idea:

emp_table(set, RowIndex, Cols) ->
notify internal resources(RowIndex, Cols),
snmp_generic:table_func(set, RowIndex, Cols, {empTable, mnesia});
emp_table(Op, RowIndex, Cols) ->
snmp_generic:table_func(Op, RowIndex, Cols, {empTable, mnesia}).

Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP) | 69

1.15 Advanced Agent Topics

The default instrumentation functions are defined in the module snimp_gener i c. Refer to the Reference Manual,
section SNMP, module snnp_gener i ¢ for details.

Extending the Mnesia Table

A table may contain columns that are used internally, but should not be visible to a manager. These internal columns
must be the last columns in the table. The set operation will not work with this arrangement, because there are
columns that the agent does not know about. This situation is handled by adding values for the internal columnsin
theset function.

To illustrate this, suppose we extend our Mnesia enpTabl e with one internal column. We create it as before, but
with an arity of 4, by adding another attribute.

mnesia:create table([{name, employees},
{snmp, [{key, {integer, string}}1},
{attributes, {key, telno, row status, internal col}}]).

Thelast columnistheinterna column. When performing aset operation, which creates arow, we must give avalue
to theinterna column. The instrumentation functions will now look as follows:

-define(createAndGo, 4).
-define(createAndWait, 5).

emp_table(set, RowIndex, Cols) ->
notify internal resources(RowIndex, Cols),
NewCols =
case is row created(empTable, Cols) of
true -> Cols ++ [{4, "internal"}]; % add internal column
false -> Cols % keep original cols
end,
snmp_generic:table func(set, RowIndex, NewCols, {empTable, mnesia});
emp_table(Op, RowIndex, Cols) ->
snmp_generic:table func(Op, RowIndex, Cols, {empTable, mnesia}).

is row_created(Name, Cols) ->
case snmp generic:get status col(Name, Cols) of
{ok, ?createAndGo} -> true;
{ok, ?createAndWait} -> true;
_ -> false
end.

If arow iscreated, we always set the internal columnto™i nt ernal ".

1.15.7 Deviations from the Standard

In some aspects the agent does not implement SNMP fully. Here are the differences:

e Thedefault functionsand snnp_gener i ¢ cannot handle an object of type Net wor kAddr ess as INDEX
(SNMPv1only!). Usel pAddr ess instead.

» The agent does not check complex ranges specified for INTEGER objects. In these casesiit just checks that
the value lies within the minimum and maximum values specified. For example, if the range is specified as
1..10 | 12.. 20 theagent would let 11 through, but not O or 21. The instrumentation functions must check
the complex ranges itself.

* Theagent will never generate thewr ongEncodi ng error. If avariable binding is erroneous encoded, the
asnlPar seError counter will beincremented.

« At ooBigerrorinan SNMPv1 packet will alwaysusethe' NULL' valuein al variable bindings.

* Thedefault functionsand snnp_gener i ¢ do not check the range of each OCTET in textua conventions
derived from OCTET STRING, e.g. Di spl aySt ri ng and Dat eAndTi ne. Thismust be checked in an
overloaded i s_set _ok function.

70 | Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP)

1.16 SNMP Appendix A

1.16 SNMP Appendix A
1.16.1 Appendix A

Thisappendix describesthe conversion of SNMPv2 to SNMPv1 error messages. Theinstrumentation functions should

return v2 error messages.
Mapping of SNMPv2 error message to SNMPv1:

SNMPV2 message SNMPv1 message
noError noError
genErr genErr
noAccess noSuchName
wrongType badValue
wrongL ength badVaue
wrongEncoding badVaue
wrongValue badVaue
noCreation noSuchName
inconsistentValue badVaue
resourceUnavailable genkErr
commitFailed genkErr
undoFailed genErr
notWritable noSuchName
inconsistentName noSuchName

Table 16.1: Error Messages

Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP) | 71

1.17 SNMP Appendix B

1.17 SNMP Appendix B

1.17.1 Appendix B
RowsStatus (from RFC1903)

RowStatus ::= TEXTUAL-CONVENTION
STATUS current
DESCRIPTION

"The RowStatus textual convention is used to manage the
creation and deletion of conceptual rows, and is used as the
value of the SYNTAX clause for the status column of a
conceptual row (as described in Section 7.7.1 in RFC1902.)

The status column has six defined values:

- “active', which indicates that the conceptual row is
available for use by the managed device;

- "notInService', which indicates that the conceptual
row exists in the agent, but is unavailable for use by
the managed device (see NOTE below);

- "notReady', which indicates that the conceptual row
exists in the agent, but is missing information
necessary in order to be available for use by the
managed device;

- “createAndGo', which is supplied by a management
station wishing to create a new instance of a
conceptual row and to have its status automatically set
to active, making it available for use by the managed
device;

- “createAndwWait', which is supplied by a management
station wishing to create a new instance of a
conceptual row (but not make it available for use by
the managed device); and,

- “destroy', which is supplied by a management station
wishing to delete all of the instances associated with
an existing conceptual row.

Whereas five of the six values (all except “notReady') may
be specified in a management protocol set operation, only
three values will be returned in response to a management
protocol retrieval operation: “notReady', “notInService' or
“active'. That is, when queried, an existing conceptual row
has only three states: it is either available for use by
the managed device (the status column has value “active');
it is not available for use by the managed device, though
the agent has sufficient information to make it so (the
status column has value “notInService'); or, it is not
available for use by the managed device, and an attempt to
make it so would fail because the agent has insufficient
information (the state column has value "notReady').

NOTE WELL

This textual convention may be used for a MIB table,
irrespective of whether the values of that table's

72 | Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP)

1.17 SNMP Appendix B

conceptual rows are able to be modified while it is
active, or whether its conceptual rows must be taken
out of service in order to be modified. That is, it is
the responsibility of the DESCRIPTION clause of the
status column to specify whether the status column must
not be “active' in order for the value of some other
column of the same conceptual row to be modified. If
such a specification is made, affected columns may be
changed by an SNMP set PDU if the RowStatus would not
be equal to “active' either immediately before or after
processing the PDU. 1In other words, if the PDU also
contained a varbind that would change the RowStatus
value, the column in question may be changed if the
RowStatus was not equal to “active' as the PDU was
received, or if the varbind sets the status to a value
other than 'active'.

Also note that whenever any elements of a row exist, the
RowStatus column must also exist.

To summarize the effect of having a conceptual row with a
status column having a SYNTAX clause value of RowStatus,
consider the following state diagram:

STATE

s L R L R

| A | B | C | D

| |status col.|status column|

|status column | is | is | status column

ACTION |does not exist| notReady | notInService| is active

-------------- R i
set status |noError ->D|inconsist- |inconsistent-|inconsistent-
column to | or | entValue| Value| Value
createAndGo |inconsistent- | | |

| Value| | |
-------------- R i
set status |noError see 1|inconsist- |inconsistent-|inconsistent-
column to | or | entValue| Value| Value
createAndWait |wrongValue | | |
-------------- R i
set status |inconsistent- |inconsist- |noError |[noError
column to | Value| entValue| |
active | | | |

I I or I I

I I I I

| |see 2 ->D| ->D| ->D
-------------- R i
set status |inconsistent- |inconsist- |noError |[noError ->C
column to | Value| entValue| |
notInService | | | |

I I or I I or

I I I I

| |see 3 ->C| ->C|wrongValue
-------------- R i
set status |noError |noError |noError |noError
column to | | | |
destroy | ->A| ->A| ->A| ->A
-------------- R i
set any other |see 4 |noError |noError |see 5
column to some| | | |
value | | see 1| ->C| ->D
-------------- R i

Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP) | 73

1.17 SNMP Appendix B

(1) goto B or C, depending on information available to the
agent.

(2) if other variable bindings included in the same PDU,
provide values for all columns which are missing but
required, then return noError and goto D.

(3) if other variable bindings included in the same PDU,
provide values for all columns which are missing but
required, then return noError and goto C.

(4) at the discretion of the agent, the return value may be
either:

inconsistentName: because the agent does not choose to
create such an instance when the corresponding
RowStatus instance does not exist, or

inconsistentValue: if the supplied value is
inconsistent with the state of some other MIB object's
value, or

noError: because the agent chooses to create the
instance.

If noError is returned, then the instance of the status
column must also be created, and the new state is B or C,
depending on the information available to the agent. If
inconsistentName or inconsistentValue is returned, the row
remains in state A.

(5) depending on the MIB definition for the column/table,
either noError or inconsistentValue may be returned.

NOTE: Other processing of the set request may result in a
response other than noError being returned, e.g.,
wrongValue, noCreation, etc.

Conceptual Row Creation

There are four potential interactions when creating a
conceptual row: selecting an instance-identifier which is
not in use; creating the conceptual row; initializing any
objects for which the agent does not supply a default; and,
making the conceptual row available for use by the managed
device.

Interaction 1: Selecting an Instance-Identifier

The algorithm used to select an instance-identifier varies
for each conceptual row. In some cases, the instance-
identifier is semantically significant, e.g., the
destination address of a route, and a management station
selects the instance-identifier according to the semantics.

In other cases, the instance-identifier is used solely to
distinguish conceptual rows, and a management station
without specific knowledge of the conceptual row might
examine the instances present in order to determine an
unused instance-identifier. (This approach may be used, but
it is often highly sub-optimal; however, it is also a
questionable practice for a naive management station to
attempt conceptual row creation.)

74 | Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP)

1.17 SNMP Appendix B

Alternately, the MIB module which defines the conceptual row
might provide one or more objects which provide assistance
in determining an unused instance-identifier. For example,
if the conceptual row is indexed by an integer-value, then
an object having an integer-valued SYNTAX clause might be
defined for such a purpose, allowing a management station to
issue a management protocol retrieval operation. In order
to avoid unnecessary collisions between competing management
stations, “adjacent' retrievals of this object should be
different.

Finally, the management station could select a pseudo-random
number to use as the index. In the event that this index
was already in use and an inconsistentValue was returned in
response to the management protocol set operation, the
management station should simply select a new pseudo-random
number and retry the operation.

A MIB designer should choose between the two latter
algorithms based on the size of the table (and therefore the
efficiency of each algorithm). For tables in which a large
number of entries are expected, it is recommended that a MIB
object be defined that returns an acceptable index for
creation. For tables with small numbers of entries, it is
recommended that the latter pseudo-random index mechanism be
used.

Interaction 2: Creating the Conceptual Row

Once an unused instance-identifier has been selected, the
management station determines if it wishes to create and
activate the conceptual row in one transaction or in a
negotiated set of interactions.

Interaction 2a: Creating and Activating the Conceptual Row

The management station must first determine the column
requirements, i.e., it must determine those columns for
which it must or must not provide values. Depending on the
complexity of the table and the management station's
knowledge of the agent's capabilities, this determination
can be made locally by the management station. Alternately,
the management station issues a management protocol get
operation to examine all columns in the conceptual row that
it wishes to create. 1In response, for each column, there
are three possible outcomes:

- a value is returned, indicating that some other
management station has already created this conceptual
row. We return to interaction 1.

- the exception “noSuchInstance' is returned,
indicating that the agent implements the object-type
associated with this column, and that this column in at
least one conceptual row would be accessible in the MIB
view used by the retrieval were it to exist. For those
columns to which the agent provides read-create access,
the “noSuchInstance' exception tells the management
station that it should supply a value for this column
when the conceptual row is to be created.

- the exception “noSuchObject' is returned, indicating
that the agent does not implement the object-type

Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP) | 75

1.17 SNMP Appendix B

associated with this column or that there is no
conceptual row for which this column would be
accessible in the MIB view used by the retrieval. As
such, the management station cannot issue any
management protocol set operations to create an
instance of this column.

Once the column requirements have been determined, a
management protocol set operation is accordingly issued.
This operation also sets the new instance of the status
column to “createAndGo'.

When the agent processes the set operation, it verifies that
it has sufficient information to make the conceptual row
available for use by the managed device. The information
available to the agent is provided by two sources: the
management protocol set operation which creates the
conceptual row, and, implementation-specific defaults
supplied by the agent (note that an agent must provide
implementation-specific defaults for at least those objects
which it implements as read-only). If there is sufficient
information available, then the conceptual row is created, a
‘noError' response is returned, the status column is set to
‘active', and no further interactions are necessary (i.e.,
interactions 3 and 4 are skipped). If there is insufficient
information, then the conceptual row is not created, and the
set operation fails with an error of “inconsistentValue'.

On this error, the management station can issue a management
protocol retrieval operation to determine if this was
because it failed to specify a value for a required column,
or, because the selected instance of the status column
already existed. 1In the latter case, we return to
interaction 1. 1In the former case, the management station
can re-issue the set operation with the additional
information, or begin interaction 2 again using
‘createAndwWait' in order to negotiate creation of the
conceptual row.

NOTE WELL

Regardless of the method used to determine the column
requirements, it is possible that the management
station might deem a column necessary when, in fact,
the agent will not allow that particular columnar
instance to be created or written. 1In this case, the
management protocol set operation will fail with an
error such as "noCreation' or ‘notWritable'. In this
case, the management station decides whether it needs
to be able to set a value for that particular columnar
instance. If not, the management station re-issues the
management protocol set operation, but without setting
a value for that particular columnar instance;
otherwise, the management station aborts the row
creation algorithm.

Interaction 2b: Negotiating the Creation of the Conceptual
Row

The management station issues a management protocol set
operation which sets the desired instance of the status

column to “createAndwWait'. If the agent is unwilling to
process a request of this sort, the set operation fails with
an error of “wrongValue'. (As a consequence, such an agent

must be prepared to accept a single management protocol set
operation, i.e., interaction 2a above, containing all of the

76 | Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP)

1.17 SNMP Appendix B

columns indicated by its column requirements.) Otherwise,
the conceptual row is created, a “noError' response is
returned, and the status column is immediately set to either
‘notInService' or ‘notReady', depending on whether it has
sufficient information to make the conceptual row available
for use by the managed device. If there is sufficient
information available, then the status column is set to
‘notInService'; otherwise, if there is insufficient
information, then the status column is set to "notReady'.
Regardless, we proceed to interaction 3.

Interaction 3: Initializing non-defaulted Objects

The management station must now determine the column
requirements. It issues a management protocol get operation
to examine all columns in the created conceptual row. In
the response, for each column, there are three possible
outcomes:

- a value is returned, indicating that the agent
implements the object-type associated with this column
and had sufficient information to provide a value. For
those columns to which the agent provides read-create
access (and for which the agent allows their values to
be changed after their creation), a value return tells
the management station that it may issue additional
management protocol set operations, if it desires, in
order to change the value associated with this column.

- the exception “noSuchInstance' is returned,
indicating that the agent implements the object-type
associated with this column, and that this column in at
least one conceptual row would be accessible in the MIB
view used by the retrieval were it to exist. However,
the agent does not have sufficient information to
provide a value, and until a value is provided, the
conceptual row may not be made available for use by the
managed device. For those columns to which the agent
provides read-create access, the “noSuchInstance'
exception tells the management station that it must
issue additional management protocol set operations, in
order to provide a value associated with this column.

- the exception “noSuchObject' is returned, indicating
that the agent does not implement the object-type
associated with this column or that there is no
conceptual row for which this column would be
accessible in the MIB view used by the retrieval. As
such, the management station cannot issue any
management protocol set operations to create an
instance of this column.

If the value associated with the status column is
‘notReady', then the management station must first deal with
all “noSuchInstance' columns, if any. Having done so, the
value of the status column becomes ‘notInService', and we
proceed to interaction 4.

Interaction 4: Making the Conceptual Row Available

Once the management station is satisfied with the values
associated with the columns of the conceptual row, it issues
a management protocol set operation to set the status column
to “active'. If the agent has sufficient information to
make the conceptual row available for use by the managed

Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP) | 77

1.17 SNMP Appendix B

device, the management protocol set operation succeeds (a
‘noError' response is returned). Otherwise, the management
protocol set operation fails with an error of
“inconsistentValue'.

NOTE WELL

A conceptual row having a status column with value
“notInService' or ‘notReady' is unavailable to the
managed device. As such, it is possible for the
managed device to create its own instances during the
time between the management protocol set operation
which sets the status column to ‘createAndWait' and the
management protocol set operation which sets the status
column to “active'. 1In this case, when the management
protocol set operation is issued to set the status
column to “active', the values held in the agent
supersede those used by the managed device.

If the management station is prevented from setting the
status column to “active' (e.g., due to management station
or network failure) the conceptual row will be left in the
‘notInService' or ‘notReady' state, consuming resources
indefinitely. The agent must detect conceptual rows that
have been in either state for an abnormally long period of
time and remove them. It is the responsibility of the
DESCRIPTION clause of the status column to indicate what an
abnormally long period of time would be. This period of
time should be long enough to allow for human response time
(including “think time') between the creation of the
conceptual row and the setting of the status to “active'.
In the absence of such information in the DESCRIPTION
clause, it is suggested that this period be approximately 5
minutes in length. This removal action applies not only to
newly-created rows, but also to previously active rows which
are set to, and left in, the notInService state for a
prolonged period exceeding that which is considered normal
for such a conceptual row.

Conceptual Row Suspension

When a conceptual row is “active', the management station
may issue a management protocol set operation which sets the
instance of the status column to “notInService'. If the
agent is unwilling to do so, the set operation fails with an
error of “wrongValue'. Otherwise, the conceptual row is
taken out of service, and a “noError' response is returned.
It is the responsibility of the DESCRIPTION clause of the
status column to indicate under what circumstances the
status column should be taken out of service (e.g., in order
for the value of some other column of the same conceptual
row to be modified).

Conceptual Row Deletion

For deletion of conceptual rows, a management protocol set
operation is issued which sets the instance of the status
column to ‘destroy'. This request may be made regardless of
the current value of the status column (e.g., it is possible
to delete conceptual rows which are either “notReady',
‘notInService' or ‘active'.) If the operation succeeds,
then all instances associated with the conceptual row are

78 | Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP)

1.17 SNMP Appendix B

immediately removed."

SYNTAX INTEGER {
-- the following two values are states:
-- these values may be read or written
active(l),
notInService(2),

-- the following value is a state:
-- this value may be read, but not written
notReady(3),

-- the following three values are

-- actions: these values may be written,
-- but are never read

createAndGo(4),

createAndWait(5),

destroy(6)

Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP) | 79

1.17 SNMP Appendix B

2 Reference Manual

A multilingual Simple Network Management Protocol application featuring an Extensible Agent, ssmple manager, a
MIB compiler and facilities for implementing SNMP MIBs etc.

80 | Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP)

snmp

snmp

Erlang module

The module snnp contains interface functions to the SNMP toolkit.

Common Data Types
The following data-types are used in the functions below:
e datetine() = {date(), tine()}

See calendar for more info.

Exports

config() -> ok | {error, Reason}

A simpleinteractive configuration tool. Simple configuration files can be generated, but more complex configurations
still have to be edited manually.
Thetool isatextual based tool that asks some questions and generatessys. confi g and*. conf files.

Note that if the application shall support version 3, then the crypto app must be started before running this function
(password generation).

Note aso that some of the configuration files for the agent and manager share the same names. This means that they
have to be stored in different directories!

start() -> ok | {error, Reason}
start(Type) -> ok | {error, Reason}
Types:

Type = start _type()
Starts the SNMP application.
See application for more info.

start agent() -> ok | {error, Reason}
start_agent(Type) -> ok | {error, Reason}
Types:
Type = start_type()
The SNMP application consists of several entities, of which the agent is one. This function starts the agent entity of
the application.

Note that the only way to actually start the agent in this way is to add the agent related config after starting
the application (e.g it cannot be part of the normal application config; sys.config). This is done by calling:
application: set_env(snnp, agent, Conf).

The default value for Type isnor nal .

start manager() -> ok | {error, Reason}
start _manager(Type) -> ok | {error, Reason}
Types:

Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP) | 81

snmp

Type = start _type()
The SNMP application consists of several entities, of which the manager isone. Thisfunction startsthe manager entity
of the application.

Note that the only way to actually start the manager in this way is to add the manager related config after
starting the application (e.g it cannot be part of the normal application config; sys.config). This is done by calling:
application: set_env(snnp, nmanager, Conf).

The default value for Type isnor nal .

date and time() -> DateAndTime
Types:
Dat eAndTinme = [int()]
Returns current date and time as the data type DateAndTime, as specified in RFC1903. Thisisan OCTET STRING.

date and time to universal time dst(DateAndTime) -> [utc()]
Types:

Dat eAndTinme = [int()]

utc() = {{Y,M, D, {H M S}}

Converts a DateAndTime list to a list of possible universal time(s). The universal time value on the same format as
defined in calendar(3).

date and time to string(DateAndTime) -> string()
date and time to string(DateAndTime, Validate) -> string()
Types.
Dat eAndTinme = [int()]
Val idate = fun(Kind, Data) -> bool ean()
Converts a DateAndTime list to a printable string, according to the DISPLAY -HINT definition in RFC2579.

The validation fun, Val i dat e, alows for a more "flexible" validation of the Dat eAndTi me argument.
Whenever the data is found to not follow RFC2579, the fun is called to alow a more "lax" validation. See the
validate date and_time/2 function for moreinfo onthe Val i dat e fun.

date and time to string2(DateAndTime) -> string()
Types:
Dat eAndTime = [int()]

ConvertsaDateAndTime list to a printable string, according to the DISPLAY-HINT definition in RFC2579, with the
extension that it also alows the values "hours from UTC" = 14 together with "minutes from UTC" = 0.

local time to date and time dst(Local) -> [DateAndTime]
Types:

Local = {{Y, M, D},{H M S}}

Dat eAndTinme = [int()]

Converts a local time value to a list of possible DateAndTime list(s). The local time value on the same format as
defined in calendar(3).

82 | Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP)

snmp

universal time to date _and time(UTC) -> DateAndTime
Types.

utC = {{Y, M, D}, {H M S}}

Dat eAndTinme = [int()]

Converts a universal time value to a DateAndTime list. The universa time value on the same format as defined in
calendar(3).

validate date and time(DateAndTime) -> bool()
validate date and time(DateAndTime, Validate) -> bool()
Types.

Dat eAndTinme = term)

Val i date = fun(Kind, Data) -> bool ean()

Checks if Dat eAndTi ne is a correct DateAndTime value, as specified in RFC2579. This function can be used in
instrumentation functions to validate a DateAndTime value.

The validation fun, Val i dat e, allows for amore "flexible" validation of the Dat e AndTi e argument. Whenever
the datais found to not follow RFC2579, the fun is called to allow amore "lax" validation. Theinput to the validation
fun lookslike this:

Kind Data

year {Yearl, Year2}
month Month

day Day

hour Hour

minute Minute

seconds Seconds

deci seconds DeciSeconds

diff [Sign, Hour, Minute]
valid date {Year, Month, Day}

passwd2localized key(Alg, Passwd, EngineID) -> Key
Types:
Alg = algorithm()
algorithm') = nmd5 | sha
Passwd = string()
Engi nel D = string()
Key = list()
Generates a key that can be used as an authentication or privacy key using MD5 och SHA. The key is localized for
Enginel D.

octet string to bits(S) -> Val
Types:
Val = bits()
Utility function for converting avalue of type OCTET- STRI NGto BI TS.

Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP) | 83

snmp

bits to octet string(B) -> Val
Types:
Val = octet_string()
Utility function for converting avalue of type Bl TS to OCTET- STRI NG

read mib(FileName) -> {ok, mib()} | {error, Reason}
Types.

Fil eName = string()

m b() = #mib{}

Reason = term()
Read a compiled mib.

log to txt(LogDir, Mibs, OutFile, LogName, LogFile) -> ok | {ok, Cnt} |
{error, Reason}
log to txt(LogDir, Mibs, OutFile, LogName, LogFile, Block | Start) -> ok |
{ok, Cnt} | {error, Reason}
log to txt(LogDir, Mibs, OutFile, LogName, LogFile, Start, Block | Stop) ->
ok | {ok, Cnt} | {error, Reason}
log to txt(LogDir, Mibs, OutFile, LogName, LogFile, Start, Stop, Block) -> ok
| {ok, Cnt} | {error, Reason}
Types:

LogDir = string()

M bs = [M bNane]

QutFile = string()
M bNane = string()
LogNane = string()
LogFile = string()
Start = Stop = null | datetime() | {local _tinme,datetine()} |

{universal tinme,datetine()}
Bl ock = bool ean()

Cnt = {NunmOK, NunERR}

NumOK = non_neg_i nteger ()
NumERR = pos_i nteger ()
Reason = term()

Converts an Audit Trail Log to a readable text file, where each item has a trailing TAB character, and any TAB
character in the body of an item has been replaced by ESC TAB.

The function can be used on arunning system, or by copying the entire log directory and calling this function. SNMP
must be running in order to provide MIB information.

LogDi r isthe name of the directory where the audit trail log isstored. M bs isalist of Mibsto be used. The function
uses the information in the Mibs to convert for example object identifiers to their symbolic name. Qut Fi | e isthe
name of the generated text-file. LogNarre isthe name of thelog, LogFi | e isthe name of thelog file. St art isthe
start (first) date and time from which log eventswill be converted and St op isthe stop (last) date and timeto whichlog
events will be converted. The Bl ock argument indicates if the log should be blocked during conversion. This could
be usefull when converting large logs (when otherwise the log could wrap during conversion). Defaultstot r ue.

84 | Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP)

snmp

The format of an audit trail log text item is as follows:

Tag Addr - Comrunity [TineStanp] Vsn
PDU

where Tag is request, response, report, trap or inform Addr is IP:Port (or comma
space separated list of such); Community is the community parameter (SNMP version vl and v2), or
SeclLevel : " Aut hEngi nel D": " User Name" (SNMP v3); Ti neSt anp is a date and time stamp, and Vsn is
the SNMP version. PDU is atextual version of the protocol data unit. There is anew line between Vsn and PDU.

If theentirelog issuccessfully converted, the function will return ok. If one of moreentriesfail to convert, the function
will instead return { ok, {Nun®K, NunERR}}, wherethe countersindicate how many valid and erroneous entries
where found. If instead { er r or, Reason} isreturned, the conversion encountered afatal error and where either
never done of aborted midway.

log to io(LogDir, Mibs, LogName, LogFile) -> ok | {ok, Cnt} | {error, Reason}
log to io(LogDir, Mibs, LogName, LogFile, Block | Start) -> ok | {ok, Cnt} |
{error, Reason}
log to io(LogDir, Mibs, LogName, LogFile, Start, Block | Stop) -> ok | {ok,
Cnt} | {error, Reason}
log to io(LogDir, Mibs, LogName, LogFile, Start, Stop, Block) -> ok | {ok,
Cnt} | {error, Reason}
Types:

LogDir = string()

M bs = [M bNane]

M bNane = string()
LogNane = string()
LogFile = string()
Start = Stop = null | datetinme() | {local _tinme,datetinme()} |

{universal tine,datetine()}
Cnt = {NumOK, NunERR}
NumOK = non_neg_i nteger ()
NumERR = pos_integer ()
Reason = term)
Convertsan Audit Trail Log to areadable format and printsit on stdio. Seelog_to_txt above for more info.

change log size(LogName, NewSize) -> ok | {error, Reason}
Types.

LogNane = string()

NewSi ze = {MaxBytes, MaxFil es}

MaxBytes = integer ()

MaxFil es = integer()

Reason = term()

Changes the log size of the Audit Trail Log. The application must be configured to use the audit trail log function.
Please refer to disk_log(3) in Kernel Reference Manual for a description of how to change the log size.

The change is permanent, aslong as the log is not deleted. That means, the log size is remembered across reboots.

Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP) | 85

snmp

print version info() -> void()
print version info(Prefix) -> void()
Types:
Prefix = string() | integer()
Utility function(s) to produce a formatted printout of the versionsinfo generated by thever si ons1 function
Thisis the same asdoing, e.g.:

{ok, V} = snmp:versionsl(),
snmp:print versions(V).

versionsl() -> {ok, Info} | {error, Reason}
versions2() -> {ok, Info} | {error, Reason}
Types:

Info = [info()]

info() = term)

Reason = term()
Utility functions used to retrieve some system and application info.

The difference between the two functionsisin how they get the modulesto check. ver si ons1 usesthe app-fileand
ver si ons2 usesthefunction appl i cati on: get _key.

print versions(VersionInfo) -> void()
print versions(Prefix, VersionInfo) -> void()
Types:
Versionlnfo = [version_info()]
version_info() = term))
Prefix = string() | integer()

Utility function to produce a formatted printout of the versionsinfo generated by thever si ons1 andver si ons2
functions

Example:

{ok, V} = snmp:versionsl(),
snmp:print versions(V).

enable trace() -> void()
Starts adbg tracer that prints trace events to stdout (using plain io:format after aminor formatting).

disable trace() -> void()
Stop the tracer.

set trace(Targets) -> void()

Types:
Targets = target() | targets()

86 | Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP)

snmp

target () nmodul e()

nmodul e() atom()

targets() = [target() | {target(), target _options()}]

target _options() = [target_option()]

target _option() = {return_trace, boolean()} | {scope, scope()}

scope() = all _functions | exported functions | function_nanme() |
{function_nane(), function_arity()}

function_nane() = atom)
function_arity() = integer() >= 0

This function is used to set up default trace on function(s) for the given module or modules. The scope of the trace
will be all exported functions (both the call info and the return value). Timestamp info will also be included.

reset trace(Targets) -> void()
Types:
Targets = nodul e() | nodul es()
nmodul es() = [nodul e()]
nmodul e() = atom()

Thisfunction is used to reset (disable) trace for the given module(s).

set trace(Targets, Opts) -> void()

Types:
Targets = target() | targets()
target () = nodul e()
nmodul e() = atom()

targets() = [target() | {target(), target_options()}]
target _options() = [target_option()]
target _option() = {return_trace, boolean()} | {scope, scope()}

scope() = all _functions | exported functions | function_nanme() |
{function_name(), function_arity()}

function_nane() = atom)
function_arity() = integer() >=0
Opts = disable | trace_options()
trace_options() = [trace_option()]
trace _option() = {timestanp, boolean()} | target _option()
Thisfunction is used to set up trace on function(s) for the given module or modules.
The example below sets up trace on the exported functions (default) of module snnp_generi ¢ and al functions

of module snimp_generi c_mesi a. With return values (which is default) and timestamps in both cases (which
isalso default):

Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP) | 87

snmp

snmp:enable trace(),
snmp:set trace([snmp generic,
{snmp_generic_mnesia, [{scope, all functions}]}1]),

snmp:set trace(snmp generic, disable),

snmp:disable trace(),

See Also
calendar(3)

88 | Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP)

SNMP

SNMP

Application

This chapter describes the snnp application in OTP. The SNMP application provides the following services:

e amultilingual extensible SNMP agent
¢« aSNMP manager
* aMIB compiler

Configuration

The following configuration parameters are defined for the SNMP application. Refer to application(3) for more
information about configuration parameters.

The snmp part of the config file specifying the configuration parametersis basically the following tuple:
{snmp, snmp_components config()}

A minimal config file for starting a node with both a manager and an agent:

[{snmp,
[{agent, [{db dir, "/tmp/snmp/agent/db"},
{config, [{dir, "/tmp/snmp/agent/conf"}]1}1},
{manager, [{config, [{dir, "/tmp/snmp/manager/conf"},
{db dir, "/tmp/snmp/manager/db"}1}1}1}
|
}
Jo

Each snmp component has its own set of configuration parameters, even though some of the types are common to
both components.

Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP) | 89

SNMP

snmp_components config() -> [snmp_component config()]
I

{audit trail log, audit trail log()}
{error_report mod, error_report mod()}

snmp_component config() -> {agent, agent options()} {manager, manager options()}
agent options() = [agent option()]
agent option() = {restart type, restart type()}
{agent_type, agent_type()} I
{agent verbosity, verbosity()} |
{discovery, agent _discovery()}
{versions, versions()}
{gb_max_vbs, gb _max_vbs()}
{priority, priority()}
{multi threaded, multi threaded()} |
{db dir, db dir()} |
{db_init error, db init error()} |
{local db, local db()} |
{net if, agent net if()}
{mibs, mibs ()} |
{mib storage, mib storage()}
{mib_server, mib server()}
I
I
{note store, note store()}
{symbolic_store, symbolic store()} |
{target cache, target cache()} |
{config, agent config()}
manager _options() = [manager option()]
manager _option() = {restart type, restart type()} |
{net if, manager net if()} |
{server, server()} |
{note store, note store()} |
{config, manager _config()} |
{inform_request behaviour, manager irb()} |
{mibs, manager _mibs()} |
{priority, priority()} |
{audit trail log, audit trail log()} |
{versions, versions()} |
{def user _mod, def user module() |
{def user _data, def user data()}

Agent specific config options and types:

agent _type() = master | sub <optional >
If mast er, one master agent is started. Otherwise, no agents are started.
Default ismast er .

agent _di scovery() = [agent _discovery_opt()] <optional >

agent _di scovery_opt() = {term nating, agent_termni nating_discovery_opts()} |
{originating, agent _originating discovery opts()}

Thet er m nat i ng options effects discovery initiated by a manager.
Theori gi nat i ng options effects discovery initiated by this agent.
For defaults see the optionsin agent _di scovery_opt ().

agent _term nating_di scovery_opts() = [agent_termni nating_di scovery_opt ()]
<opti onal >

agent _term nating_di scovery_opt () = {enabl e, boolean()} | {stage2, discovery
| plain} | {trigger_usernane, string()}

These are options effecting discovery t er m nat i ng inthis agent (i.e. initiated by a manager).

90 | Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP)

SNMP

The default valuesfor thet er mi nat i ng discovery options are:

e enabletrue
o stage2: di scovery
e trigger_username: " "

agent _originating_di scovery _opts() = [agent_originating discovery opt()]
<opti onal >

agent _origi nating_di scovery_opt() = {enable, bool ean()}
These are options effecting discovery or i gi nat i ng in this agent.
The default values for the or i gi nat i ng discovery options are;

e enable:true
mul ti _threaded() = bool () <optional >

If t r ue, the agent is multi-threaded, with one thread for each get request.
Defaultisf al se.

db_dir() = string() <mandatory>
Defines where the SNMP agent internal db files are stored.

gb_max_vbs() = pos_integer() | infinity <optional >
Defines the maximum number of varbinds allowed in a Get-BULK response.
Default is1000.

| ocal _db() = [local _db _opt()] <optional >

|l ocal _db opt() = {repair, agent repair()} | {auto_save, agent_ auto_save()}
| {verbosity, verbosity()}

Defines options specific for the SNMP agent local database.
For defaults see the optionsin| ocal _db_opt () .
agent _repair() = false | true | force <optional >

When starting snmpa_local_db it always tries to open an existing database. If f al se, and some errors occur, a
new database is created instead. If t r ue, an existing file will be repaired. If f or ce, the table will be repaired
even if it was properly closed.

Defaultist r ue.

agent _auto_save() = integer() | infinity <optional>
The auto save interval. Thetableis flushed to disk whenever not accessed for this amount of time.
Default is5000.

agent _net _if() = [agent_net_if_opt()] <optional >

agent _net _if_opt() = {nodul e, agent _net _if_nodul e()} | {verbosity,
verbosity()} | {options, agent_net_if_options()}

Defines options specific for the SNMP agent network interface entity.
For defaults seethe optionsinagent _net i f _opt ().
agent _net if _nodule() = atom() <optional >

Module which handles the network interface part for the SNMP agent. Must implement the
snmpa_network_interface behaviour.

Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP) | 91

SNMP

Defaultissnnpa_net _i f.
agent _net _if_options() = [agent_net_if_option()] <optional >

agent _net _if_option() ={bind_to, bind_to()} | {sndbuf, sndbuf()} | {recbuf,
recbuf()} | {no_reuse, no_reuse()} | {req_ limt, reqg limt()} | {filter,
agent _net _if _filter_options()} | {extra_sock opts, extra_socket_ options()}

These options are actually specific to the used module. The ones shown here are applicable to the default
agent _net if _nodul e().

For defaults seethe optionsinagent _net i f _option().
req_limt() = integer() | infinity <optional>
Max number of simultaneous requests handled by the agent.
Defaultisi nfinity.
agent _net _if _filter_options() = [agent_net if _filter_option()] <optional >
agent _net if filter_option() = {nodule, agent _net if filter_nodul e()}

These options are actually specific to the used module. The ones shown here are applicable to the default
agent _net if filter_nodul e().

For defaults seethe optionsinagent _net _if _filter_option().
agent _net_if_filter_nodul e() = aton() <optional >

Module which handles the network interface filter part for the SNMP agent. Must implement the
snmpa_network_interface filter behaviour.

Defaultissnnpa_net _if_filter.

agent_mbs() = [string()] <optional>
Specifiesalist of MIBs (including path) that defineswhich MIBsareinitially loaded into the SNMP master agent.
Note that the following mibs will always be loaded:

e versionvl: STANDARD- M B
e versionv2: SNVPv 2
e versionv3: SNVPv2, SNVP- FRAMEWORK- M B and SNVP- MPD- M B

Defaultis[] .
mb storage() = [m b_storage opt()] <optional >

m b_storage_opt () = { modul e, m b_storage_nodul e()} | {opti ons,
m b_storage_options()}

This option specifies how basic mib datais stored. This option is used by two parts of the snmp agent: The mib-
server and the symbolic-store.

Defaultis[{ modul e, snnpa_mni b_storage_ets}].

m b_storage_nodul e() = snnpa_mnmi b _data_ets | snnpa_ni b _data dets |
snnpa_m b_data_mmesia | nodul e()

Defines the mib storage module of the SNMP agent as defined by the snmpa_mib_storage behaviour.

Several entities (M b- ser ver viatheitsdatamoduleandthesynbol i c- st or e) of the snmp agent usesthis
for storage of miscelaneous mib related data retrieved while loading a mib.

There are several implementations provided with the agent: snnpa_mib_storage ets,
snnpa_m b_storage_dets andsnnpa_ni b_st orage_mesi a.

92 | Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP)

SNMP

Default moduleissnnpa_mi b_st orage_et s.

m b_storage_options() = 1list() <optional >
This is implementattion depended. That is, it depends on the module. For each module a specific set of options
arevalid. For the module provided with the app, these options are supported:

e snnpa_m b_storage_ets: {dir, filename()} | f{action, keep | clear},
{checksum bool ean()}

e dir - If present, pointsto adirectory where afile to which al datain the etstableis"synced".
Also, when atableis opened thisfileisread, if it exists.
By default, thiswill not be used.

e acti on - Specifies the behaviour when a non-empty fileis found: Keep its content or clear it out.
Defaultiskeep.

¢ checksum- Definesif thefileis checksummed or not.

Defaultisf al se.

e snnpa_mb_storage_dets: {dir, filenanme()} | {action, keep | clear},
{auto_save, default | pos_integer()} | {repair, force | boolean()}

e dir - Thismandatory option points to a directory where to place the file of a dets table.

e acti on - Specifies the behaviour when a non-empty fileis found: Keep its content or clear it out.
Defaultiskeep.

e aut o_save - Defines the dets auto-save frequency.
Defaultisdef aul t .

e repair - Definesthe detsrepair behaviour.
Defaultisf al se.

e snnpa_m b_storage_mmesia:{action, keep | clear}, {nodes, [node()]}

e acti on - Specifies the behaviour when a non-empty, already existing, table: Keep its content or clear
it out.

Default iskeep.
¢ nodes - A list of node names (or an atom describing alist of hodes) defining where to open the table.
Its up to the user to ensure that mnesiais actually running on the specified nodes.
The following distinct values are recognised:
e [] - Trandated into alist of the own node: [node()]
e« all -erlang: nodes()
e visible-erlang: nodes(visible)
e« connected-erl ang: nodes(connect ed)
e db_nodes - mesi a: system_ i nf o(db_nodes)
Default isthe result of thecall: er | ang: nodes() .
mb_server() = [mb_server_opt()] <optional >
m b_server_opt () = {m bentry_override, m bentry_override()} |

{trapentry override, trapentry override()} | {verbosity, verbosity()} |
{cache, mbs cache()} | {data _nodule, mb_server_data nodul e()}

Defines options specific for the SNMP agent mib server.
For defaults see the optionsinmi b_server _opt ().

Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP) | 93

SNMP

m bentry_override() = bool () <optional >

If this value is false, then when loading a mib each mib- entry is checked prior to installation of the mib. The
purpose of the check isto prevent that the same symbolic mibentry name is used for different oid's.

Default isf al se.
trapentry _override() = bool () <optional >

If thisvaue is false, then when loading a mib each trap is checked prior to installation of the mib. The purpose
of the check isto prevent that the same symbolic trap nameis used for different trap's.

Defaultisf al se.
m b_server_data_nodul e() = snnpa_mib_data tttn | nodul e() <optional >
Defines the backend data module of the SNMP agent mib-server as defined by the snmpa_mib_data behaviour.
At present only the default module is provided with the agent, snnpa_mi b_data_tttn.
Default moduleissnnpa_m b_data_tttn.
m bs_cache() = bool () | mibs_cache_opts() <optional >
Shall the agent utilize the mib server lookup cache or not.
Defaultist r ue (in which casetheni bs_cache_opt s() default values apply).
m bs_cache_opts() = [m bs_cache_opt()] <optional >

m bs_cache_opt () = {aut ogc, m bs_cache_aut ogc()} | {gclimt,
m bs_cache_gclimt()} | {age, m bs_cache_age()}

Defines options specific for the SNMP agent mib server cache.
For defaults seethe optionsinm bs_cache_opt () .
m bs_cache_aut ogc() = bool () <optional >
Definesif themib server shall perform cache gc automatically or leaveit to the user (seegc_mibs _cache/0,1,2,3).
Defaultist r ue.
m bs_cache_age() = integer() > 0 <optional >

Defines how old the entries in the cache will be allowed to become before they are GC'ed (assuming GC is
performed). Each entry in the cache is "touched" whenever it is accessed.

The age is defined in milliseconds.
Defaultis10 ti rmut es.
m bs_cache_gclinmt() = integer() >0 | infinity <optional >
When performing a GC, thisis the max number of cache entries that will be deleted from the cache.

Thereason for having thislimit isthat if the cacheislarge, the GC can potentially take along time, during which
the agent is locked.

Default is100.
error _report_nod() = atom() <optional >

Defines an error report module, implementing the snmpa_error_report behaviour. Two modules are provided
with the toolkit: snnpa_error | ogger andsnnpa_error _io.

Defaultissnnpa_error _| ogger.
synbolic_store() = [synbolic_store_opt()]
synmbolic_store_opt() = {verbosity, verbosity()}

94 | Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP)

SNMP

Defines options specific for the SNM P agent symbolic store.
For defaults see the optionsin synbol i c_store_opt ().
target _cache() = [target_cache_opt ()]
target _cache_opt() = {verbosity, verbosity()}
Defines options specific for the SNMP agent target cache.
For defaults see the optionsint ar get _cache_opt ().
agent _config() = [agent_config_opt()] <mandatory>

agent _config_opt() = {dir, agent_config dir()} | {force_load, force_load()}
| {verbosity, verbosity()}

Defines specific config related options for the SNMP agent.

For defaults seethe optionsinagent _confi g _opt ().
agent _config dir = dir() <mandatory>

Defines where the SNM P agent configuration files are stored.
force_load() = bool () <optional >

If t r ue the configuration files are re-read during start-up, and the contents of the configuration database ignored.
Thus, if t r ue, changes to the configuration database are lost upon reboot of the agent.

Default isf al se.
Manager specific config options and types:
server() = [server_opt()] <optional >

server_opt() = {tineout, server tinmeout()} | {verbosity, verbosity()} |
{cbproxy, server_cbproxy()} | {netif_sup, server_nis()}

Specifies the options for the manager server process.
Defaultissi | ence.
server_tineout() = integer() <optional>

Asynchronous request cleanup time. For every requests, some info is stored internally, in order to be able to
deliver the reply (when it arrives) to the proper destination. If the reply arrives, thisinfo will be deleted. But if
thereisno reply (in time), the info has to be deleted after the best befor e time has been passed. This cleanup will
be performed at regular intervals, defined by theser ver _t i nmeout () time. Theinformation will have an best
befor etime, defined by the Expi r e timegiven when calling the request function (seeasync_get, async_get_next
and async_set).

Time in milli-seconds.
Default is30000.
server_chbproxy() = tenporary (default) | permanent <optional >
This option specifies how the server will handle callback calls.
tenporary (default)
A temporary process will be created for each callback call.
per manent
With this the server will create a permanent (named) process that in effect serializes al callback calls.
Defaultist enpor ary.

Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP) | 95

SNMP

server_nis() = none (default) | {PingTO PongTG <optional >

This option specifiesif the server should actively supervise the net-if process. Note that thiswill only work if the
used net-if process actually supports the protocol. See snmpm_network_interface behaviour for more info.

none (default)
No active supervision of the net-if process.
{PingTO :: pos_integer(), PongTO :: pos_integer()}

The Pi ngTOtime specifies the between a successful ping (or start) and the time when a ping message isto
be sent to the net-if process (basically the time between ping).

The PongTOtime specifies how long time the net-if process hasto respond to a ping message, with apong
message. Its starts counting when the ping message has been sent.

Both times arein milli seconds.

Default isnone.

manager _config() = [manager _config opt()] <mandatory>

manager _confi g _opt () = {dir, manager _config dir()} | {db_dir,
manager _db _dir ()} | {db_init_error, db_init_error()} | {repair,
manager _repair()} | {aut o_save, nmanager _aut o_save()} | {verbosity,

verbosity()}

Defines specific config related options for the SNMP manager.

For defaults see the optionsin manager _confi g_opt ().
manager _config dir = dir() <nandatory>

Defines where the SNMP manager configuration files are stored.
manager _db_dir = dir() <mandatory>

Defines where the SNMP manager store persistent data.
manager repair() = false | true | force <optional >

Defines the repair option for the persistent database (if and how the table is repaired when opened).
Defaultist r ue.

manager _auto_save() = integer() | infinity <optional >
The auto save interval. The table is flushed to disk whenever not accessed for this amount of time.
Default is5000.

manager _irb() = auto | user | {user, integer()} <optional >

This option defines how the manager will handle the sending of response (acknowledgment) to received inform-
reguests.

e aut o - Themanager will autonomously send response (acknowledgment> to inform-request messages.

« {user, integer()} - Themanager will send response (acknowledgment) to inform-request messages
when the handle_inform function completes. Theinteger isthe time, in milli-seconds, that the manager will
consider the stored inform-request info valid.

e user -Sameas{user, integer()},exceptthat thedefaulttime, 15 seconds (15000), is used.
See snmpm_network_interface, handle_inform and definition of the manager net if for more info.
Defaultisaut o.

96 | Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP)

SNMP

manager _nmibs() = [string()] <optional >
Specifiesalist of MIBs (including path) and defines which MIBs areinitialy loaded into the SNMP manager.
Defaultis[] .

manager _net _if() = [manager_net if _opt()] <optional >

manager _net if opt() = {nmodule, manager _net if nodule()} | {verbosity,
verbosity()} | {options, manager _net if _options()}

Defines options specific for the SNMP manager network interface entity.
For defaults seethe optionsin manager _net i f _opt ().

manager _net if_options() = [nmanager_net if_option()] <optional >

manager _net i f_option() = {bind_to, bind_to()} | { sndbuf,
sndbuf ()} | {recbuf, recbuf ()} | {no_reuse, no_reuse()}
| {filter, manager_net if _filter_options()} | {extra_sock_opts,

extra_socket _options()}

These options are actually specific to the used module. The ones shown here are applicable to the default
manager _net i f_nodul e().

For defaults seethe optionsin manager _net i f _option().
manager _net if _nodul e() = atom() <optional >

The module which handles the network interface part for the SNMP manager. It must implement the
snmpm_network_interface behaviour.

Defaultissnnpm net _i f.
manager _net if _filter_options() = [manager_net _if _filter_option()] <optional >
manager _net if filter _option() = {nodule, manager _net if filter nodul e()}

These options are actually specific to the used module. The ones shown here are applicable to the default
manager _net if filter _nodul e().

For defaults see the optionsin manager _net _i f_filter_option().
manager _net _if_filter_nodul e() = atom() <optional >

Module which handles the network interface filter part for the SNMP manager. Must implement the
snmpm_network_interface filter behaviour.

Defaultissnnpm net _if_filter.

def _user _nodul e() = aton() <optional >
The module implementing the default user. See the snmpm_user behaviour.
Defaultissnnpm user _defaul t.

def _user_data() = tern() <optional >
Datafor the default user. Passed to the user module when calling the callback functions.
Defaultisundef i ned.

Common config types:

restart_type() = permanent | transient | tenporary
See supervisor documentation for more info.

Default isper manent for theagent andt r ansi ent for the manager.

Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP) | 97

SNMP

db_init_error() =ternminate | create | create_db_and dir

Defines what to do if the agent or manager is unable to open an existing database file. t er ni nat e means that
the agent/manager will terminate and cr eat e means that the agent/manager will remove the faulty file(s) and
create new ones, and cr eat e_db_and_di r means that the agent/manager will create the database file along
with any missing parent directories for the database file.

Defaultist er mi nat e.
priority() = atom() <optional >
Definesthe Erlang priority for all SNMP processes.
Default isnor nmal .
versions() = [version()] <optional >
version() =vl1 | v2 | v3
Which SNMP versions shall be accepted/used.
Defaultis[v1, v2,v3].
verbosity() = silence | info | log | debug | trace <optional >
Verbosity for a SNMP process. This specifies now much debug info is printed.
Defaultissi | ence.
bind_to() = bool () <optional >
If t rue, net_if bindstothe IP address. If f al se, net_if listens on any IP address on the host whereiit is running.
Defaultisf al se.
no_reuse() = bool () <optional >

If t rue, net_if does not specify that the IP and port address should be reusable. If f al se, the address is set
to reusable.

Defaultisf al se.
recbuf () = integer() <optional>
Receive buffer size.
Default value is defined by gen_udp.
sndbuf () = integer() <optional >
Send buffer size.
Default value is defined by gen_udp.
extra_socket _options() = list() <optional>
A list of arbitrary socket options.

This list is not inspected by snmp (other then checking that its alist). Its the users responsibility to ensure that
these are valid options and does not conflict with the "normal" options.

Defaultis[] .
note_store() = [note_store_opt()] <optional >

note_store_opt () = {tinmeout, note store_tineout()} | {verbosity,
verbosity()}

Specifies the start-up verbosity for the SNMP note store.
For defaults seethe optionsinnot e_st ore_opt () .

98 | Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP)

SNMP

note_store_tinmeout() = integer() <optional>

Note cleanup time. When storing a note in the note store, each note is given lifetime. Every ti meout the
note_store process performs a GC to remove the expired note's. Time in milli-seconds.

Default is30000.
audit _trail _log() = [audit _trail _log opt()] <optional>

audit trail _log opt() = {type, atl _type()} | {dir, atl _dir()} | {size,
atl _size()} | {repair, atl _repair()} | {seqgno, atl_seqno()}

If present, this option specifiesthe optionsfor the audit trail logging. Thedi sk_| og moduleisused to maintain
awrap log. If present, thedi r and si ze options are mandatory.

If not present, audit trail logging is not used.
atl _type() =read | wite | read_wite <optional >

Specifies what type of an audit trail log should be used. The effect of the type is actually different for the the
agent and the manager.

For the agent:

« Ifwiteisspecified, only set requests are logged.

* Ifread isspecified, only get requests are logged.

e Ifread_write,al requestsarelogged.

For the manager:

« Ifwriteisspecified, only sent messages are logged.

e Ifread isspecified, only received messages are logged.
 Ifread_writ e, both outgoing and incoming messages are logged.

Defaultisread_write.
atl _dir = dir() <nandatory>

Specifies where the audit trail 1og should be stored.

Ifaudit_trail | og specifiesthat logging should take place, this parameter must be defined.
atl _size() = {integer(), integer()} <mandatory>

Specifies the size of the audit trail log. This parameter issent todi sk_| og.

Ifaudit _trail | og specifiesthat logging should take place, this parameter must be defined.
atl _repair() =true | false | truncate | snnp_repair <optional >

Specifies if and how the audit trail log shall be repaired when opened. Unless this parameter has the value
snnp_repair itissent todi sk_| og. If, on the other hand, the valueissnnp_r epai r, snmp attempts to
handle certain faults on its own. And even if it cannot repair the file, it does not truncate it directly, but instead
movesit aside for later off-line analysis.

Defaultist r ue.
atl _seqno() = true | fal se <optional >

Specifiesif the audit trail log entries will be (sequence) numbered or not. The range of the sequence numbers are
according to RFC 5424, i.e. 1 through 2147483647.

Defaultisf al se.

Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP) | 99

SNMP

See Also
application(3), disk_log(3)

100 | Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP)

snmpa

snmpa

Erlang module

The module snnpa contains interface functions to the SNMP agent.

DATA TYPES

oid() = [byte()]

atl type() = read | write | read write

notification delivery info() = #snmpa notification delivery info{}

Theoi d() typeisused to represent an ASN.1 OBJECT IDENTIFIER.
Therecord snnpa_noti fication_delivery_i nf o containsthe following fields:
tag = term()
A user defined identity representing this notification send operation.
nmod = nodul e()

A module implementing the snmpa_notification_delivery_info_receiver behaviour. The info functions of this
module will be called at various stages of delivery.
extra = term)

Thisisany extrainfo the user wants to have supplied when the functions in the callback moduleis called.

Exports

add agent caps(SysORID, SysORDescr) -> SysORIndex
Types.

SysORI D = oi d()

SysORDescr = string()

SysORI ndex = integer()

This function can be used to add an AGENT-CAPABILITY statement to the sysORTable in the agent. The table is
defined in the SNMPv2-MIB.

del agent caps(SysORIndex) -> void()
Types.
SysORI ndex = integer()

This function can be used to delete an AGENT-CAPABILITY statement to the sysORTable in the agent. This table
is defined in the SNMPv2-MIB.

get agent caps() -> [[SysORIndex, SysORID, SysORDescr, SysORUpTimel]]
Types:

SysORI ndex = integer()

SysORId = oid()

SysORDescr = string()

SysORUpTi ne = integer()

Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP) | 101

snmpa

Returnsall AGENT-CAPABILITY statementsin the sysORTable in the agent. This table is defined in the SNM Pv2-
MIB.

get(Agent, Vars) -> Values | {error, Reason}
get(Agent, Vars, Context) -> Values | {error, Reason}
Types.

Agent = pid() | aton()

Vars = [oid()]

Context = string()

Values = [term()]

Reason = {aton(), oid()}

Performs a GET operation on the agent. All loaded MIB objects are visible in this operation. The agent calls the
corresponding instrumentation functionsjust asif it was a GET request coming from a manager.

Note that the request specific parameters (such as current_request_id) are not accessible for the instrumentation
functionsiif this function is used.

get next(Agent, Vars) -> Values | {error, Reason}
get next(Agent, Vars, Context) -> Values | {error, Reason}
Types.

Agent = pid() | aton()

Vars = [oid()]

Context = string()

Values = [{oid(), term)}]

Reason = {atonm(), oid()}

Performs a GET-NEXT operation on the agent. All loaded MIB objects are visible in this operation. The agent calls
the corresponding instrumentation functions just asif it was a GET request coming from a manager.

Note that the request specific parameters (such as snnpa: current _request i d/ 0 are not accessible for the
instrumentation functions if this function is used.

backup(BackupDir) -> ok | {error, Reason}
backup (Agent, BackupDir) -> ok | {error, Reason}
Types:
BackupDir = string()
Agent = pid() | atom()
Reason = backup_in_progress | term))
Backup persistent/permanent data handled by the agent (such as local-db, mib-data and vacm).
Data stored by mnesiais not handled.
BackupDir cannot be identical to DbDir.

Simultaneous backup callsarenot allowed. That is, two different processes cannot simultaneously successfully call this
function. One of them will befirst, and succeed. The second will fail with the error reason backup_i n_pr ogr ess.

102 | Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP)

snmpa

info() -> [{Key, Value}l
info(Agent) -> [{Key, Value}]
Types:

Agent = pid() | atonm()

Returnsalist (adictionary) containing information about the agent. Information includesloaded MIBs, registered sub-
agents, some information about the memory allocation.

load mib(Mib) -> ok | {error, Reason}
load mib(Agent, Mib) -> ok | {error, Reason}
Types.

Agent = pid() | aton()

M bNanme = string()

Reason = already_ | oaded | tern()

Load asingle M b into an agent. The M bName is the name of the Mib, including the path to where the compiled
mib is found. For example;

Dir = code:priv dir(my app) ++ "/mibs/",
snmpa:load mib(snmp master agent, Dir ++ "MY-MIB").

load mibs(Mibs) -> ok | {error, Reason}
load mibs(Mibs, Force) -> ok | {error, Reason}
load mibs(Agent, Mibs) -> ok | {error, Reason}
load mibs(Agent, Mibs, Force) -> ok | {error, Reason}
Types:
Agent = pid() | atom()
M bs = [M bNane]
Force = bool ean()
M bNane = string()
Reason = {'load aborted at', M bNane, |nternal Reason}
I nt ernal Reason = already_| oaded | tern()
Load M bs into an agent. If the agent cannot load all MIBs (the default value of the For ce argument isf al se),

it will indicate where loading was aborted. The M bNarre is the name of the Mib, including the path to where the
compiled mib isfound. For example,

Dir = code:priv dir(my app) ++ "/mibs/",
snmpa:load mibs(snmp master agent, [Dir ++ "MY-MIB"]).

If Force = true then the agent will continue attempting to load each mib even after failing to load a previous
mib. Use with care.

unload mib(Mib) -> ok | {error, Reason}
unload mib(Agent, Mib) -> ok | {error, Reason}
Types:

Agent = pid() | atonm()

M bNane = string()

Reason = not | oaded | term()

Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP) | 103

snmpa

Unload asingle M b from an agent.

unload mibs
unload mibs
unload mibs
unload mibs
Types:

Agent = pid() | aton()

M bs = [M bNane]

Force = bool ean()

M bNane = string()

Reason = {'unl oad aborted at', M bNane, I nternal Reason}

I nt er nal Reason = not_| oaded | term()

Mibs) -> ok | {error, Reason}

Mibs, Force) -> ok | {error, Reason}

Agent, Mibs) -> ok | {error, Reason}

Agent, Mibs, Force) -> ok | {error, Reason}

—_~ o~ o~ o~

Unload M bs from an agent. If it cannot unload al MIBs (the default value of the For ce argument isf al se), it
will indicate where unloading was aborted.

If For ce = t r ue thentheagent will continue attempting to unload each mib even after failing to unload a previous
mib. Use with care

which _mibs() -> Mibs
which mibs(Agent) -> Mibs
Types:
Agent = pid() | aton()
Mbs = [{M bName, M bFile}]
M bNane = atom()
MbFile = string()

Retrieve the list of all the mibsloaded into this agent. Default is the master agent.

whereis mib(MibName) -> {ok, MibFile} | {error, Reason}
whereis mib(Agent, MibName) -> {ok, MibFile} | {error, Reason}
Types.

Agent = pid() | aton()

M bNane = atom()

MbFile = string()

Reason = term()

Get the full path to the (compiled) mib-file.

current request id() -> {value, RequestId} | false
current context() -> {value, Context} | false
current _community() -> {value, Community} | false
current address() -> {value, Address} | false
Types:

Requestld = integer()

Context = string()

104 | Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP)

snmpa

Community = string()
Address = term))
Get the request-id, context, community and address of the request currently being processed by the agent.

Note that these functionsisintended to be called by the instrumentation functions and only if they are executed in the
context of the agent process (e.g. it does not work if called from a spawned process).

enum_to int(Name, Enum) -> {value, Int} | false
enum_to int(Db, Name, Enum) -> {value, Int} | false
Types.
Db = tern()
Nane = aton()
Enum = atom()
Int = int()
Converts the symbolic value Enumto the corresponding integer of the enumerated object or type Nane in a MIB.
The MIB must be [oaded.

f al se isreturned if the object or type is not defined in any loaded MIB, or if it does not define the symbolic value
as enumerated.

Db isareference to the symbolic store database (retrieved by acall toget _synbol i ¢_st ore_db/ 0).

int to enum(Name, Int) -> {value, Enum} | false
int to enum(Db, Name, Int) -> {value, Enum} | false

Types:
Db = term()
Name = atom()
Int = int()

Enum = atom()

Convertstheinteger | nt to the corresponding symbolic value of the enumerated object or type Nane in aMIB. The
MIB must be |oaded.

f al se isreturned if the object or type is not defined in any loaded MIB, or if it does not define the symbolic value
as enumerated.

Db isareference to the symbolic store database (retrieved by acal toget _synbol i ¢_st ore_db/ 0).

name to oid(Name) -> {value, oid()} | false
name_to oid(Db, Name) -> {value, oid()} | false
Types.

Db = tern()

Nane = aton()

Looks up the OBJECT IDENTIFIER of a MIB object, given the symbolic name. Note, the OBJECT IDENTIFIER
is given for the object, not for an instance.

f al se isreturned if the object is not defined in any loaded MIB.
Db isareference to the symbolic store database (retrieved by acall toget _synbol i c_st or e_db/ 0).

Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP) | 105

snmpa

oid to name(0ID) -> {value, Name} | false
oid to name(Db, 0ID) -> {value, Name} | false

Types:
Db = term()
A D = oid()

Name = atom()
Looks up the symbolic name of a MIB object, given OBJECT IDENTIFIER.
f al se isreturned if the object is not defined in any loaded MIB.
Db isareference to the symbolic store database (retrieved by acall toget _synbol i ¢_st ore_db/ 0).

which aliasnames() -> Result
Types:

Result = [atom()]
Retrieve all alias-names known to the agent.

which tables() -> Result
Types:

Result = [atom()]
Retrieve all tables known to the agent.

which variables() -> Result
Types:

Result = [atom()]
Retrieve al variables known to the agent.

which notifications() -> Result
Types:
Result = [{Nane, M bNane, I|nfo}]
Name = atom()
M bNanme = atom()
Info = term()

Retrieve al notifications (and traps) known to the agent.

106 | Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP)

snmpa

log to txt(LogDir)
log to txt(LogDir, Block | Mibs)
(

log to txt(LogDir, Mibs, Block | OutFile) -> ok | {ok, Cnt} | {error, Reason}

log to txt(LogDir, Mibs, OutFile, Block | LogName) -> ok | {ok, Cnt} |
{error, Reason}

log to txt(LogDir, Mibs, OutFile, LogName, Block | LogFile) -> ok | {ok, Cnt}

| {error, Reason}

log to txt(LogDir, Mibs, OutFile, LogName, LogFile, Block | Start) -> ok |
{ok, Cnt} | {error, Reason}

log to txt(LogDir, Mibs, OutFile, LogName, LogFile, Block, Start) -> ok |
{ok, Cnt} | {error, Reason}

log to txt(LogDir, Mibs, OutFile, LogName, LogFile, Start, Stop) -> ok | {ok,

Cnt} | {error, Reason}

log to txt(LogDir, Mibs, OutFile, LogName, LogFile, Block, Start, Stop) -> ok

| {ok, Cnt} | {error, Reason}
Types:

LogDir = string()

M bs = [M bNane]

M bNane = string()

Bl ock = bool ean()

QutFile = string()
LogNanme = string()
LogFile = string()
Start = Stop = null | calendar:datetinme() | {local _tine,

cal endar:datetime()} | {universal tinme, calendar:datetine()}
Cnt = {NumOK, NunERR}

NumOK = non_neg_i nteger ()

NumERR = pos_i nteger ()

Reason = disk_|og open_error() | file_open_error() | term)
di sk_I og open_error() = {LogNane, term()}

file_open_error() = {QutFile, term()}

Converts an Audit Trail Log to a readable text file. Qut Fi | e defaults to "./snmpa_log.txt". LogNane defaults to

"snmpa_log". LogFi | e defaultsto "snmpa.log".

The Bl ock option indicates if the log should be blocked during conversion. This could be usefull when converting

large logs (when otherwise the log could wrap during conversion). Defaultstot r ue.
See snmp:log_to_txt for more info.

Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP) | 107

snmpa

log to io(LogDir) -> ok | {ok, Cnt} | {error, Reason}
log to io(LogDir, Block | Mibs) -> ok | {ok, Cnt} | {error, Reason}
log to io(LogDir, Mibs, Block | LogName) -> ok | {ok, Cnt} | {error, Reason}
log to io(LogDir, Mibs, LogName, Block | LogFile) -> ok | {ok, Cnt} | {error,
Reason}
log to io(LogDir, Mibs, LogName, LogFile, Block | Start) -> ok | {ok, Cnt} |
{error, Reason}
log to io(LogDir, Mibs, LogName, LogFile, Block, Start) -> ok | {ok, Cnt} |
{error, Reason}
log to io(LogDir, Mibs, LogName, LogFile, Start, Stop) -> ok | {ok, Cnt} |
{error, Reason}
log to io(LogDir, Mibs, LogName, LogFile, Block, Start, Stop) -> ok | {ok,
Cnt} | {error, Reason}
Types:

Loghir = string()

M bs = [M bNane]

M bName = string()

Bl ock = bool ean()

LogNane = string()
LogFile = string()
Start = Stop = null | calendar:datetime() | {local _tine,

cal endar:datetime()} | {universal _time, cal endar:datetinme()}
Cnt = {NunmOK, NunERR}

NumOK = non_neg_i nteger ()

NumERR = pos_i nteger ()

Reason di sk_1og open_error() | file_ open_error() | term)
di sk_l og_open_error() = {LogNane, term()}

file open_error() = {QutFile, term)}

Convertsan Audit Trail Log to areadable format and printsit on stdio. LogNane defaultsto "snmpa log". LogFi | e
defaults to "snmpa.log".

The Bl ock option indicates if the log should be blocked during conversion. This could be usefull when converting
large logs (when otherwise the log could wrap during conversion). Defaultstot r ue.

See snmp:log_to_io for more info.

change log size(NewSize) -> ok | {error, Reason}
Types:

NewSi ze = {MaxBytes, MaxFil es}

MaxByt es = integer()

MaxFil es = integer()

Reason = term()

Changes the log size of the Audit Trail Log. The application must be configured to use the audit trail log function.
Please refer to disk_log(3) in Kernel Reference Manual for a description of how to change the log size.

The change is permanent, aslong asthe log is not deleted. That means, the log size is remembered across reboots.

108 | Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP)

snmpa

set log type(NewType) -> {ok, 0ldType} | {error, Reason}
set log type(Agent, NewType) -> {ok, 0ldType} | {error, Reason}
Types:
NewType = A dType = atl _type()
Agent = pid() | atonm()
Reason = term()
Changes the run-time Audit Trail log type.

Note that this has no effect on the application configuration as defined by configuration files, so a node restart will
revert the config to whatever isin those files.

Thisfunction is primarily useful in testing/debugging scenarios.

mib of(0id) -> {ok, MibName} | {error, Reason}
mib of(Agent, 0id) -> {ok, MibName} | {error, Reason}

Types:
Agent = pid() | atom()
ad = oid()

M bNane = atom()
Reason = term()

Finds the mib corresponding to the G d. If it is a variable, the Oid must be <Oid for var>.0 and if it is atable, Oid
must be <table>.<entry>.<col>.<any>

me of(0id) -> {ok, Me} | {error, Reason}
me of(Agent, 0id) -> {ok, Me} | {error, Reason}

Types:
Agent = pid() | atom()
ad = oid()
Me = #me{}

Reason = term()

Finds the mib entry corresponding to the O d. If it isavariable, the Oid must be <Oid for var>.0 and if it is atable,
Oid must be <table>.<entry>.<col>.<any>

invalidate mibs cache() -> void()
invalidate mibs cache(Agent) -> void()
Types:

Agent = pid() | aton()
Invalidate the mib server cache.

The entire contents of the cache will be deleted.

enable mibs cache() -> void()
enable mibs cache(Agent) -> void()
Types:

Agent = pid() | atom()
Enable the mib server cache.

Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP) | 109

snmpa

disable mibs cache() -> void()
disable mibs cache(Agent) -> void()
Types:

Agent = pid() | aton()
Disable the mib server cache.

which mibs cache size() -> void()
which mibs cache size(Agent) -> void()
Types:

Agent = pid() | aton()
Retreive the size of the mib server cache.

gc _mibs cache
gc_mibs cache

() -> {ok, NumElementsGCed} | {error, Reason}
(Agent) -> {ok, NumElementsGCed} | {error, Reason}
gc_mibs cache(Age) -> {ok, NumElementsGCed} | {error, Reason}
gc_mibs cache(Agent, Age) -> {ok, NumElementsGCed} | {error, Reason}
gc_mibs cache(Age, GcLimit) -> {ok, NumElementsGCed} | {error, Reason}
gc mibs cache(Agent, Age, GcLimit) -> {ok, NumElementsGCed} | {error,
Types:
Agent = pid() | aton()
Age = integer() >0
CeLinmit = integer() >0 | infinity
NurmEl ement sGCed = integer() >= 0
Reason = term()

Perform mib server cache gc.

Manually performs a mib server cache gc. This can be done regardless of the value of the aut ogc option. The

NunEl ement sGCed value indicates how many elements where actually removed from the cache.

enable mibs cache autogc() -> void()
enable mibs cache autogc(Agent) -> void()
Types:

Agent = pid() | atom()
Enable automatic gc of the mib server cache.

disable mibs cache autogc() -> void()
disable mibs cache autogc(Agent) -> void()
Types:

Agent = pid() | aton()
Disable automatic gc of the mib server cache.

update mibs cache age(NewAge) -> ok | {error, Reason}

update mibs cache age(Agent, NewAge) -> ok | {error, Reason}
Types:

110 | Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP)

snmpa

Agent = pid() | aton()
NewAge integer() >0
Reason = term)

Change the mib server cache age property.

update mibs cache gclimit(NewGcLimit) -> ok | {error, Reason}
update mibs cache gclimit(Agent, NewGCLimit) -> ok | {error, Reason}
Types:

Agent = pid() | atom()

NewCcLimit = integer() >0 | infinity

Reason = term()

Change the mib server cachegcl i mi t property.

register notification filter(Id, Mod, Data) -> ok | {error, Reason}

register notification filter(Agent, Id, Mod, Data) -> ok | {error, Reason}

register notification filter(Id, Mod, Data, Where) -> ok | {error, Reason}
(

register notification filter(Agent, Id, Mod, Data, Where) -> ok | {error,
Reason}

Types:
Agent = pid() | aton()
Id =filter_id()
filter_id() = term)
Mod = atom()
Data = term))
Wiere = filter_position()
Reason = term()
filter_position() = first | last | {insert_before, filter_id()} |
{insert_after, filter_id()}
Registers a notification filter.
Mod isamodule implementing thesnnpa_notification_filter behaviour.

Dat a will be passed on to the filter when calling the functions of the behaviour.

unregister notification filter(Id) -> ok | {error, Reason}
unregister notification filter(Agent, Id) -> ok | {error, Reason}
Types.

Agent = pid() | aton()

Id =filter_id()

filter_id() = term))
Unregister anotification filter.

which notification filter() -> Filters

which notification filter(Agent) -> Filters
Types:

Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP) | 111

snmpa

Agent = pid() | aton()

Filters = [filter_id()]

filter_id() =term)
List al notification filtersin an agent.

set request limit(NewlLimit) -> {ok, OldLimit} | {error, Reason}
set request limit(Agent, NewLimit) -> {ok, OldLimit} | {error, Reason}
Types:
NewLimit = QdLimt = infinity | integer() >= 0
Agent = pid() | aton()
Reason = term()
Changes the request limit.

Note that this has no effect on the application configuration as defined by configuration files, so a node restart will
revert the config to whatever isin those files.

Thisfunction is primarily useful in load regulation scenarios.

register subagent(Agent, SubTreeOid, Subagent) -> ok | {error, Reason}
Types:

Agent = pid() | aton()

SubTreeG d = oid()

SubAgent = pid()
Registers a sub-agent under a sub-tree of another agent.

It is easy to make mistakes when registering sub-agents and this activity should be done carefully. For example, a
strange behaviour would result from the following configuration:;

snmp_agent:register subagent(MAPid,[1,2,3,4],SA1),
snmp_agent:register subagent(SAl,[1,2,3], SA2).

SA2 will not get requests starting with object identifier [1, 2, 3] since SA1 does not.

unregister subagent(Agent, Subagent0idOrPid) -> ok | {ok, SubAgentPid} |
{error, Reason}

Types:
Agent = pid() | atom()
SubTreeG dorPid = oid() | pid()
Unregister asub-agent. If the second argument isapid, then that sub-agent will be unregistered fromall treesin Agent .

send notification2(Agent, Notification, SendOpts) -> void()
Types.

Agent = pid() | aton()

Notification = atom)

SendOpts = [send_option()]

112 | Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP)

snmpa

send_option() = {receiver, receiver()} | {nane, notify nanme()} | {context,
context _name()} | {varbinds, varbinds()} | {local _engine_id, string()} |
{extra, extra_info()}

receiver() = no_receiver | {tag(), tag_receiver()} |
notification_delivery_info()

tag()

= tern(()

tag_receiver() = pid() | registered_name() | {Md, Func, Args}
regi stered_name() = aton()

Mod = atom()
Func = atom)
Args = list()

notify _name() = string()
context _name() = string()
var bi nds() = [varbind()]

varbind() = {variable(), value()} | {{process_oid(), variable()}, value()}
| {colum(), row_.index(), value()} |

variable() = aliasnanme() | oid()

al i asnanme() = aton()

process_oid() = keep (default) | truncate
value() = term))

colum() = atom)

row index() =T[int()]

extra_info() =term)

Send the notification Notification to the management targets defined for notify-name (nane) in the
snnpNot i f yTabl e in SNMP-NOTIFICATION-MIB from the specified cont ext .

If no nane is specified (or if itis" "), the notification is sent to all management targets.

If nocont ext isspecified, the default context, " ", is used.

Thesend optionr ecei ver specifieswhereinformation about delivery of Inform-Requests should be sent. The agent
sends |nform-Requests and waits for acknowledgments from the management targets. Ther ecei ver can havethree
values:

no_recei ver - Noinformation is delivered.
notification_delivery_info() -Theinformationisdelivered viaafunction call according to thisdata.
Seethe DATA TY PES section above for details.

{tag(), tag_receiver()} - The information is delivered either via messages or via a function call
accordingtothevaueof t ag_r ecei ver ().

Delivery is done differently depending onthevalueof t ag_r ecei ver ():

e pid() | registered_nane() - Theinfowill be delivered in the following messages:

{snnp_targets, tag(), Addresses}

Thisinforms the user which target addresses the notification was sent to.
{snnp_notification, tag(), {got_response, Address}}

Thisinforms the user that this target address acknowledged the notification.
{snnp_notification, tag(), {no_response, Address}}

Thisinforms the user that this target address did not acknowledge the notification.

Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP) | 113

snmpa

Thenotification is sent asan Inform-Request to each target addressin Addr esses and if there are no targets
for which an Inform-Request is sent, Addr esses istheempty list[] .

Thetag_receiver () will first be sent the snnp_t ar get s message, and then for each address in
Addr esses ligt, one of thetwo snnp_noti fi cat i on messages.

e {Mdd, Func, Args} - Theinfowill bedelivered viathe function call:
Mod: Func([Msg | Args])
where Ms g has the same content and purpose as the messages descrived above.

The'processoid' "tag" that can be provided with the variable name/ oidsisindended to be used for oid post processing.
Thevaue'keep', whichisthe default, leavestheoid asis. Thevalue't r uncat e, will causethe oid to be"truncated".
That is, any trailing ".0" will be removed.

There is a way to exclude a varbind from the natification. In the normal var bi nds list, providing the specia
value' $i gnor e-oi d' (instead of anormal value) will exclude this varbind from the notification.

A definefor thishasbeenaddedtothesnnp_t ypes. hr | includefile, NOTI FI CATI ON_| GNORE_VB_ VALUE.

Theext r a info isnot normally interpreted by the agent, instead it is passed through to the net-if process. It isup
to the implementor of that process to make use of this data.

The version of net-if provided by this application makes no use of this data, with one exception: Any tuple
containing the atom snnpa_default _notificati on_extra_i nfo may be used by the agent and is
therefor reserved.

See the net-if incomming messages for sending a trap and notification for more info.

send notification(Agent, Notification, Receiver)

send notification(Agent, Notification, Receiver, Varbinds)

send notification(Agent, Notification, Receiver, NotifyName, Varbinds)
(
(

send notification(Agent, Notification, Receiver, NotifyName, ContextName,
Varbinds) -> void()

send notification(Agent, Notification, Receiver, NotifyName, ContextName,
Varbinds, LocalEnginelID) -> void()

Types:
Agent = pid() | atom()
Notification = atom)
Receiver = no_receiver | {Tag, Recv} | notification_delivery_info()
Tag = tern()
Recv = receiver()
receiver() = pid() | atom) | {Md, Func, Args}

Mod = atom()
Func = atom)
Args = list()

Noti fyNanme = string()

114 | Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP)

snmpa

Cont ext Nane = string()

Var bi nds = var bi nds()

var bi nds() = [varbind()]

varbind() = {Variable, Value} | {Colum, Row ndex, Value} | {A D, Value}
Vari able = aton()

Col umm = aton()

QD = oid()

Value = term)

Rowl ndex = [int()]

Local Engi nel D = string()

Sends the notification Notification to the management targets defined for NotifyNane in the
snnpNot i f yTabl e in SNMP-NOTIFICATION-MIB from the specified context.

If noNot i f yNane isspecified (orifitis" "), thenotificationissent to all management targets (Addr esses below).
If no Cont ext Nane is specified, the default " " context is used.

The parameter Recei ver specifies where information about delivery of Inform-Reguests should be sent. The agent
sends Inform-Requests and waits for acknowledgments from the managers. Recei ver can have three values:

e no_receiver - Noinformation is delivered.

e notification_delivery_info() -Theinformationisdelivered viaafunction call according to thisdata.
Seethe DATA TY PES section above for details.

« {Tag, Recv} - Theinformation isdelivered either via messages or via a function call according to the value
of Recv.

If Recei ver hasthevalue{ Tag, Recv},thededivery isdone accordingto Recv:
e pid() | atom() - Theinfowill be delivered in the following messages:
e {snnp_targets, Tag, Addresses}

Thisinform the user which target addresses the notification was sent to.
e {snnp_notification, Tag, {got_response, Address}}

Thisinforms the user that this target address acknowledged the notification.
e {snnp_notification, Tag, {no_response, Address}}

Thisinforms the user that this target address did not acknowledge notification.

Thenotification is sent as an Inform-Request to each target addressin Addr esses and if there are no targetsfor
which an Inform-Request is sent, Addr esses istheempty list[] .

Ther ecei ver will first be sent thesnp_t ar get s message, and then for each addressin Addr esses list,
one of thetwosnnp_noti fi cati on messages.

« {Mdd, Func, Args} - Theinfowill bedelivered viathe function call:
Mod: Func([Msg | Args])
where Ms g has the same content and purpose as the messages descrived above.

Addr ess isamanagement target addressand Addr esses isalist of management target addresses. They are defined
asfollowes:

Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP) | 115

snmpa

Addresses [address ()]
Address address()
address () vl address() | v3 address()

= {TDomain, TAddress}
= {{TDomain, TAddress}, V3MsgData}

vl address(
v3 address(

mnnm~~=ia1ui

TDomain tdoamin()
TAddress taddress()
tdomain () The oid of snmpUDPDomain
This is the only supported transport domain.
taddress() = [Al, A2, A3, A4, P1, P3]

The 4 first bytes makes up the IP-address and the last 2,
the UDP-port number.

V3MsgData = v3 msg data()

v3 msg data() = term()

If Receiver is a notification_ delivery info() record, then the information about
the notification delivery will be delivered to the receiver via the «cdlback functions
defined by the snmpa notification delivery info receiver behaviour according to the content of the
notification_delivery_ info() record.

The optional argument Var bi nds defines valuesfor the objectsin the notification. If no valueis given for an object,
the Agent performs a get-operation to retrieve the value.

Var bi nds isalist of Var bi nd, where each Var bi nd is one of:

o« {Variable, Value},whereVari abl e isthesymbolic name of ascalar variable referred to in the
notification specification.

e {Col um, Row ndex, Val ue},whereCol um isthe symbolic name of a column variable. Rowl ndex
isalist of indices for the specified element. If thisisthe case, the OBJECT IDENTIFIER sent in the

notification isthe Rowl ndex appended to the OBJECT IDENTIFIER for the table column. Thisisthe
OBJECT IDENTIFIER which specifies the element.

« {AD, Value},whered Disthe OBJECT IDENTIFIER for an instance of an object, scalar variable, or
column variable.

For example, to specify that sysLocat i on should have the value " upst ai r s" in the notification, we could use
one of:

e {syslLocation, "upstairs"} or

« {[1,3,6,1,2,1,1,6,0], "upstairs"} or

« {7?sysLocation_instance, "upstairs"} (providedthat thegenerated. hrl fileisincluded)

If avariable in the naotification is a table element, the Row ndex for the element must be given in the Var bi nds

list. In this case, the OBJECT IDENTIFIER sent in the notification is the OBJECT IDENTIFIER that identifies this
element. This OBJECT IDENTIFIER could be used in a get operation later.

This function is asynchronous, and does not return any information. If an error occurs, user _er r/ 2 of the error
report module is called and the notification is discarded.

Note that the use of the LocalEnginelD argument is only intended for special cases, if the agent is to "emulate”
multiple Enginel Ds! By default, the agent uses the value of SnnpEngi nel D (see SNMP-FRAMEWORK-MIB).

Ext r al nf o is not normally used in any way by the agent. It is intended to be passed along to the net-if process,
which isa component that auser can implement themself. The users own net-if may then make use of Extralnfo. The
net-if provided with this application does not process Extral nfo.

116 | Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP)

snmpa

There is one exception. Any tuple containing the atom snnpa_def aul t _noti ficati on_extra_i nfo will,
in this context, be considered belonging to this application, and may be processed by the agent.

discovery(TargetName, Notification) -> {ok, ManagerEngineID} | {error,
Reason}

discovery(TargetName, Notification, Varbinds) -> {ok, ManagerEngineID} |
{error, Reason}

discovery(TargetName, Notification, DiscoHandler) -> {ok, ManagerEnginelID} |
{error, Reason}

discovery(TargetName, Notification, ContextName, Varbinds) -> {ok,
ManagerEngineID} | {error, Reason}

discovery(TargetName, Notification, Varbinds, DiscoHandler) -> {ok,
ManagerEngineID} | {error, Reason}

discovery(TargetName, Notification, ContextName, Varbinds, DiscoHandler) ->
{ok, ManagerEngineID} | {error, Reason}

discovery(TargetName, Notification, ContextName, Varbinds, DiscoHandler,
ExtraInfo) -> {ok, ManagerEngineID} | {error, Reason}

Types.
Target Name = string()
Notification = atom()
Cont ext Nane = string() (defaults to "")
Var bi nds = var bi nds()
var bi nds() = [varbind()]
Di scoHandl er = snnpa_di scovery_handl er ()
Extral nfo term))

snnpa_di scovery_handl er () = Mdul e i npl enenting the
snnpa_di scovery_handl er behavi our

Manager Engi nel D = string()

varbind() = {Variable, Value} | {Colum, Row ndex, Value} | {Q D, Value}
Variable = aton()

Col um = at on()

A D = oid()

Value = term))

Row ndex = [int()]

Reason = term()

Initiate the discovery process with the manager identified by Tar get Name using the notification Not i fi cati on.
Thisfunction is synchronous, which meansthat it will return when the discovery process has been completed or failed.
The Di scoHandl er moduleis used during the discovery process. See discovery handler for more info.

The Ext r al nf o argument is passed on to the callback functions of the Di scoHandl er .

If we are not at security-level noAut hNoPr i v, this could be complicated, since the agent will then continue with
stage 2, before which the usm-related updates must be done.

Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP) | 117

snmpa

The default discovery handler will require additional actions by the caller and the discovery will not work if the
security-level is higher then noAut hNoPri v.

convert config(0ldConfig) -> AgentConfig

Types:
A dConfig = list()
Agent Config = list()

This off-line utility function can be used to convert the old snmp application config (pre snmp-4.0) to the new snmp
agent config (as of snmp-4.0).

For information about the old config (O dConf i g) seethe OTP R9C documentation.

For information about the current agent config (Agent Conf i g), see the Configuring the application chapter of the
SNMP user's guide.

restart worker() -> void()
restart worker(Agent) -> void()
Types:
Agent = pid() | aton()
Restart the worker process of a multi-threaded agent.
Thisisautility function, that can be useful when e.g. debugging instrumentation functions.

restart set worker() -> void()
restart set worker(Agent) -> void()
Types:
Agent = pid() | atom()
Restart the set worker process of a multi-threaded agent.
Thisisautility function, that can be useful when e.g. debugging instrumentation functions.

print mib info() -> void()
Prints the content of all the (snmp) tables and variables for al mibs handled by the snmp agent.

print _mib tables() -> void()
Prints the content of all the (snmp) tables for all mibs handled by the snmp agent.

print mib variables() -> void()
Prints the content of al the (snmp) variables for all mibs handled by the snmp agent.

verbosity(Ref,Verbosity) -> void()

Types:
Ref = pid() | sub_agents | master_agent | net_if | mb_server |
synmbolic_store | note_store | |local _db

118 | Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP)

snmpa

Verbosity = verbosity() | {subagents, verbosity()}
verbosity() = silence | info | log | debug | trace

Sets verbosity for the designated process. For the lowest verbosity si | ence, nothing is printed. The higher the
verbosity, the moreis printed.

See Also
calendar(3), erlc(1)

Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP) | 119

snmpa_conf

snmpa_conf

Erlang module

The module snnpa_conf contains various utility functions to used for manipulating (write/append/read) the config
files of the SNMP agent.

DATA TYPES

transportDomain() = transportDomainUdpIpv4 | transportDomainUdpIpv6

transportAddress() =
transportAddressIPv4() | transportAddressIPv6()

transportAddressWithPort() =
transportAddressIPv4WithPort() | transportAddressIPveWithPort()

transportAddressWithoutPort() =
transportAddressIPv4WithoutPort() | transportAddressIPveWithoutPort()

transportAddressIPv4() =

transportAddressIPv4WithPort() | transportAddressIPv4WithoutPort()
transportAddressIPv4WithPort =

{transportAddressIPv4WithoutPort(), inet:port number()} |

[byte() x 4, byte() x 2]
transportAddressIPv4WithoutPort =

inet:ip4 address() | [byte() x 4]

transportAddressIPv6() =

transportAddressIPv6WithPort() | transportAddressIPv6WithoutPort()
transportAddressIPveWithPort =

{transportAddressIPv6WithoutPort(), inet:port number()} |

[word() x 8, inet:port number()] |

[word() x 8, byte() x 2] |

{byte() x 16, byte() x 2]
transportAddressIPv6WithoutPort =

inet:ip6 address() | [word() x 8] | [byte() x 16]

transportAddressMask() =
[1 | transportAddressWithPort()

byte() = 0..255
word() = 0..65535
For inet:ip4_address(), inet:ip6_address() and inet:port_number(), see aso

i net:ip_address()

Exports

agent entry(Tag, Val) -> agent entry()

Types:
Tag = intAgent Transports | intAgent UDPPort | intAgent MaxPacket Si ze |
snnpEngi neMaxMessageSi ze | snnpEngi nel D
Val = term))

agent _entry() = term)

Create an entry for the agent config file, agent . conf .

120 | Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP)

snmpa_conf

Thetype of Val depends on the value of Tag, see Agent Information for more info.

write agent config(Dir, Conf) -> ok
write agent config(Dir, Hdr, Conf) -> ok
Types:
Dir = string()
Hdr = string()
Conf = [agent _entry()]
Write the agent config to the agent config file.
Di r isthe path to the directory where to store the config file.
Hdr isan optional file header (note that thistext iswritten to the file asis).

See Agent Information for more info.

append agent config(Dir, Conf) -> ok
Types:
Dir = string()
Conf = [agent _entry()]
Append the config to the current agent config file.
Di r isthe path to the directory where to store the config file.

See Agent Information for more info.

read agent config(Dir) -> Conf
Types:
Dir = string()
Conf = [agent _entry()]
Read the current agent config file.
Di r isthe path to the directory where to store the config file.

See Agent Information for more info.

standard entry(Tag, Val) -> standard entry()
Types:
Tag = sysDescr | sysojectID | sysContact | sysNanme |
sysServi ces | snnpEnabl eAut henTr aps
Val = term()
standard_entry() = term))

Create an entry for the agent standard config file, st andar d. conf.

Thetype of Val depends on the value of Tag, see System Information for moreinfo.

write standard config(Dir, Conf) -> ok
write standard config(Dir, Hdr, Conf) -> ok
Types.

Dir = string()

sysLocation |

Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP) | 121

snmpa_conf

Hdr = string()
Conf = [standard_entry()]

Write the agent standard config to the agent standard config file.

Di r isthe path to the directory where to store the config file.

Hdr isan optional file header (note that this text is written to thefile asis).
See System Information for more info.

append standard config(Dir, Conf) -> ok
Types:
Dir = string()
Conf = [standard_entry()]
Append the standard config to the current agent standard config file.
Di r isthe path to the directory where to store the config file.

See System Information for more info.

read standard config(Dir) -> Conf
Types:
Dir = string()
Conf = [standard_entry()]
Read the current agent standard config file.
Di r isthe path to the directory where to store the config file.

See System Information for more info.

context entry(Context) -> context entry()
Types:

Context = string()

context _entry() = term)
Create an entry for the agent context config file, cont ext . conf .

See Contexts for more info.

write context config(Dir, Conf) -> ok
write context config(Dir, Hdr, Conf) -> ok

Types:
Dir = string()
Hdr = string()

Conf = [context_entry()]
Write the agent context config to the agent context config file.
Di r isthe path to the directory where to store the config file.
Hdr isan optional file header (note that this text iswritten to thefile asis).
See Contexts for more info.

122 | Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP)

snmpa_conf

append context config(Dir, Conf) -> ok
Types:
Dir = string()
Conf = [context_entry()]
Append the context config to the current agent context config file.
Di r isthe path to the directory where to store the config file.

See Contexts for more info.

read context config(Dir) -> Conf
Types:
Dir = string()
Conf = [context_entry()]
Read the current agent context config file.
Di r isthe path to the directory where to store the config file.

See Contexts for more info.

community entry(CommunityIndex) -> community entry()

community entry(CommunityIndex, CommunityName, SecName, ContextName,
TransportTag) -> community entry()

Types.
Communi tyl ndex = string()
Communi tyName = string()
SecName = string()
Ct xNanme = string()
TransportTag = string()
comunity_entry() = term()

Create an entry for the agent community config file, communi ty. conf .
Communi t yl ndex must be anon-empty string.
community_entry("public") trandatesto the following call: comuni ty_ent ry(Conmuni t yl ndex,

Conmmuni tyl ndex, "initial™", ..

community entry("all-rights") translates to the following call:
communi ty_entry(Communi tyl ndex, Communityl ndex, Communitylndex, "", "").

See Community for more info.

write community config(Dir, Conf) -> ok
write community config(Dir, Hdr, Conf) -> ok
Types.
Dir = string()
Hdr = string()
Conf = [conmunity_entry()]
Write the agent community config to the agent community config file

Di r isthe path to the directory where to store the config file.

Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP) | 123

snmpa_conf

Hdr isan optional file header (note that thistext iswritten to the file asis).

See Community for more info.

append community config(Dir, Conf) -> ok
Types:
Dir = string()
Conf = [community entry()]
Append the community config to the current agent community config file.
Di r isthe path to the directory where to store the config file.

See Community for more info.

read community config(Dir) -> Conf
Types:
Dir = string()
Conf = [community entry()]
Read the current agent community config file.
Di r isthe path to the directory where to store the config file.

See Communities for more info.

target addr entry(Name, Domain, Addr, TagList, ParamsName, Engineld) ->
target addr entry()

target addr entry(Name, Domain, Addr, TagList, ParamsName, EngineId, TMask) -
> target addr entry()

target addr entry(Name, Domain, Addr, TagList, ParamsName, Engineld, TMask,
MaxMessageSize) -> target addr entry()

target addr _entry(Name, Domain, Addr, Timeout, RetryCount, TagList,
ParamsName, EngineId, TMask, MaxMessageSize) -> target addr entry()

Types.
Name = string()
Domai n = transport Domai n()
I p = transport Address() (depends on Domai n)
Ti mreout = integer()
RetryCount = integer()
TagLi st = string()
ParamsNane = string()
Engi neld = string()
TMask = transport AddressMask() (depends on Domai n)
MaxMessageSi ze = integer()
target _addr_entry() = term)
Create an entry for the agent target_addr config file, t ar get _addr . conf .
Narme must be a non-empty string.

target _addr_ent ry/ 6 trandatesto the following call: t ar get _addr _entry(Nane, Donmi n, Addr
TagLi st, ParansNanme, Engineld, []).

124 | Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP)

snmpa_conf

target _addr _ent ry/ 7 trandatesto the following call: t ar get _addr _ent r y(Nane,
TagLi st, ParanmsNanme, Engineld, TMask, 2048).

t arget _addr _ent ry/ 8 trandates to the following call: t ar get _addr _ent r y(Name,
1500, 3, TagList, ParanmsNane, Engi neld, TMask, MaxMessageSi ze).

See Target Address Definitions for more info.

write target addr config(Dir, Conf) -> ok
write target addr config(Dir, Hdr, Conf) -> ok

Types:
Dir = string()
Hdr = string()
Conf = [target_addr_entry()]

Write the agent target_addr config to the agent target_addr config file.

Di r isthe path to the directory where to store the config file.

Hdr isan optional file header (note that this text iswritten to thefile asis).
See Target Address Definitions for more info.

append target addr _config(Dir, Conf) -> ok

Types:
Dir = string()
Conf = [target_addr_entry()]

Append the target_addr config to the current agent target_addr config file.
Di r isthe path to the directory where to store the config file.
See Target Address Definitions for more info.

read target addr config(Dir) -> Conf

Types:
Dir = string()
Conf = [target_addr_entry()]

Read the current agent target_addr config file.
Di r isthe path to the directory where to store the config file.
See Target Address Definitions for more info.

target params_entry(Name, Vsn) -> target params entry()

Dormai n, Addr,

Donmai n, Addr,

target params entry(Name, Vsn, SecName, SeclLevel) -> target params entry()
target params_entry(Name, MPModel, SecModel, SecName, SeclLevel) ->

target params_entry()

Types:
Nane = string()
Vsn = vl | v2 | v3
MPMbdel = v1 | v2c | v3
SecMbdel = v1 | v2c | usm

Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP) | 125

snmpa_conf

SecNanme = string()
SecLevel = noAuthNoPriv | authNoPriv | authPriv
target _params_entry() = term()

Create an entry for the agent target_params config file, t ar get _par ans. conf .
Narme must be anon-empty string.
Vsn trandatesinto MPMbdel and SecModel asfollows:

\011 Vsn = vl => MPModel = vl1l, SecModel = vl
\011 Vsn = v2 => MPModel = v2c, SecModel = v2c
\011 Vsn = v3 => MPModel = v3, SecModel = usm

target parans_entry/ 2 trandates to the following call: target parans_ent ry(Nane, Vsn,
"initial", noAut hNoPriv).

target parans_entry/ 4 trandates to the following call: t ar get _par ans_entry(Nane, MPModel ,
SecModel, SecNanme, SeclLevel) where MPModel and SecMbdel ismapped from Vsn, see above.

See Target Parameters Definitions for moreinfo.

write target params config(Dir, Conf) -> ok
write target params config(Dir, Hdr, Conf) -> ok

Types.
Dir = string()
Hdr = string()

Conf = [target_parans_entry()]
Write the agent target_params config to the agent target_params config file.
Di r isthe path to the directory where to store the config file.
Hdr isan optional file header (note that thistext iswritten to thefile asis).
See Target Parameters Definitions for moreinfo.

append target params config(Dir, Conf) -> ok
Types:
Dir = string()
Conf = [target_parans_entry()]
Append the target_params config to the current agent target_params config file.
Di r isthe path to the directory where to store the config file.

See Target Parameters Definitions for moreinfo.

read target params config(Dir) -> Conf
Types:

Dir = string()

Conf = [target _parans_entry()]
Read the current agent target_params config file.

Di r isthe path to the directory where to store the config file.

126 | Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP)

snmpa_conf

See Target Parameters Definitions for moreinfo.

vacm _s2g entry(SecModel, SecName, GroupName) -> vacm s2g entry()

vacm_acc_entry(GroupName, Prefix, SecModel, SeclLevel, Match, ReadView,
WriteView, NotifyView) -> vacm acc _entry()

vacm vtf entry(ViewIndex, ViewSubtree) -> vacm vtf entry()

vacm vtf entry(ViewIndex, ViewSubtree, ViewStatus, ViewMask) ->
vacm vtf entry()

Types:
SecMbdel = v1 | v2c | usm
SecNane = string()
G oupNanme = string()
Prefix = string()
SecLevel = noAuthNoPriv | authNoPriv | authPriv
Match = prefix | exact
ReadVi ew = string()
WiteView = string()
NotifyView = string()
Vi el ndex = integer()
Vi ewSubtree = [integer()]
Vi ewSt atus = included | excluded
Vi ewMask = null | [zero_or_one()]
zero_or _one() =0 1] 1

vacm s2g_entry() = term()
vacm acc_entry() = tern()
vacmvtf_entry() = term()

Create an entry for the agent vacm config file, vacm conf .

vacm vt f_entry/ 2 trandates to the following cal: vacm vtf _entry(Vi em ndex, Vi ewSubtree,
i ncluded, null).

See MIB Viewsfor VACM for moreinfo.

write vacm config(Dir, Conf) -> ok
write vacm config(Dir, Hdr, Conf) -> ok
Types:
Dir = string()
Hdr = string()
Conf = [vacmentry()]
vacmentry() = vacmsg2 entry() | vacmacc_entry() | vacmyvtf _entry()
Write the agent vacm config to the agent vacm config file.
Di r isthe path to the directory where to store the config file.
Hdr isan optional file header (note that thistext iswritten to thefile asis).

See MIB Viewsfor VACM for moreinfo.

Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP) | 127

snmpa_conf

append vacm config(Dir, Conf) -> ok
Types:

Dir = string()

Conf = [vacmentry()]
Append the vacm config to the current agent vacm config file.
Di r isthe path to the directory where to store the config file.
See MIB Viewsfor VACM for more info.

read vacm config(Dir) -> Conf
Types:
Dir = string()
Conf = [vacmentry()]
Read the current agent vacm config file.
Di r isthe path to the directory where to store the config file.

See MIB Viewsfor VACM for more info.

usm_entry(EngineId) -> usm entry()

usm_entry(EngineID, UserName, SecName, Clone, AuthP, AuthKeyC, OwnAuthKeyC,
PrivP, PrivKeyC, OwnPrivKeyC, Public, AuthKey, PrivKey) -> usm entry()

Types.
Engi nel d string()
User Nane string()
SecName = string()
Clone = zeroDotZero | [integer()]

Aut hP = usmNoAut hPr ot ocol | usmHMACMD5AUL hPr ot ocol , |
us mMHVACSHAAuUt hPr ot ocol

Aut hKeyC = string()

OmAut hKeyC = string()

PrivP = usmNoPrivProtocol | usnDESPrivProtocol | usmAesCf b128Pr ot ocol
PrivKeyC = string()

OwnPrivKeyC = string()

Public = string()

Aut hKey = [integer()]

PrivKey = [integer()]

usmentry() = term)

Create an entry for the agent vacm config file, vacm conf .

usm entry/ 1 trandates to the following call: usm entry("initial", "initial", zeroDotZero,
usnNoAut hProt ocol, "", "", usmNoPrivProtocol, "™, "", "", "" "").

See Security datafor USM for more info.

128 | Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP)

snmpa_conf

write usm config(Dir, Conf) -> ok
write usm config(Dir, Hdr, Conf) -> ok

Types:
Dir = string()
Hdr = string()

Conf = [usmentry()]
Write the agent usm config to the agent usm config file.
Di r isthe path to the directory where to store the config file.
Hdr isan optional file header (note that thistext iswritten to thefile asis).
See Security datafor USM for more info.

append usm config(Dir, Conf) -> ok
Types:
Dir = string()
Conf = [usmentry()]
Append the usm config to the current agent vacm config file.
Di r isthe path to the directory where to store the config file.

See Security datafor USM for more info.

read usm config(Dir) -> Conf
Types:
Dir = string()
Conf = [usmentry()]
Read the current agent usm config file.
Di r isthe path to the directory where to store the config file.

See Security datafor USM for more info.

notify entry(Name, Tag, Type) -> notify entry()
Types:

Nane = string()

Tag = string()

Type = trap | inform

community_entry() = term))
Create an entry for the agent notify config file, noti fy. conf .
Nane must be anon-empty string.

See Notify Definitions for more info.

write notify config(Dir, Conf) -> ok
write notify config(Dir, Hdr, Conf) -> ok
Types:

Dir = string()

Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP) | 129

snmpa_conf

Hdr = string()
Conf = [notify_entry()]

Write the agent notify config to the agent notify config file.

Di r isthe path to the directory where to store the config file.

Hdr isan optional file header (note that this text is written to thefile asis).
See Notify Definitions for more info.

append notify config(Dir, Conf) -> ok
Types:

Dir = string()

Conf = [notify_entry()]
Append the notify config to the current agent notify config file.
Di r isthe path to the directory where to store the config file.

See Notify Definitions for more info.

read notify config(Dir) -> Conf
Types:
Dir = string()
Conf = [community entry()]
Read the current agent notify config file.
Di r isthe path to the directory where to store the config file.

See Notify Definitions for more info.

130 | Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP)

snmpa_discovery_handler

snmpa_discovery _handler

Erlang module

This module defines the behaviour of the agent discovery handler. A snnpa_di scovery_handl er compliant
module must export the following functions:

o stagel finish/2
The semantics of them and their exact signatures are explained below.

Exports

stagel finish(TargetName, ManagerEngineID, ExtraInfo) -> ignore |
{ok, usm entry() | [usm entry()]1} | {ok, usm entry() | [usm entry()],
NewExtraInfo}

Types.
Target Nane = string()
Manager Engi nel D = string()
Extralnfo = term)
usmentry() = tuple() conpatible with usm conf
NeweExtralnfo = tern()

Thisfunctioniscalled at the end of stage 1 of the discovery process. It should return either theatomi gnor e or { ok,
usmentry() | [usmentry()]}.Seeusm_entry() and usm_entry/13 for moreinfo.

If the function returnsi gnor e, then it is assumed that either:
e Thecaller (of the discovery function) will make the needed updates later.
e Thecallback function itself did the updates.

In either case, the agent will do nothing, but return the retrieved ManagerEnginel D (see discovery for moreinfo) and
possible continue with stage 2 of the discovery process.

The Ext r al nf o argument is passed on from the discovery function.

This function may return an updated NewExt r al nf o that will be used in subsequent calls to the callback functions.
Intended for future use.

The purpose of this function is to generate the usm- related security data needed for usm processing in the agent.
Specifically, updating the usmUserTable.

Whenanusm ent ry() tuple (or alist of such tuples) is returned, this datais then added to the usmJser Tabl e
by the (master-) agent.

Whenanusm ent ry() tuple (or alist of such tuples) is returned, this datais then added to the usmser Tabl e
by the (master-) agent.

Note that the function does not check if this entry already exists. |

Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP) | 131

snmpa_discovery_handler

Note that this function is executed in the context of the master-agent process.

132 | Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP)

snmpa_error_report

snmpa_error_report

Erlang module

This module defines the behaviour of the agent error reporting. A snimpa_er r or _r eport compliant module must
export the following functions:

» config_err/2
e user_err/2

The semantics of them and their exact signatures are explained bel ow.

Exports

config err(Format, Args) -> void()

Types:
Format = string()
Args = list()

The function is called if an error occurs during the configuration phase, for example if a syntax error is found in a
configuration file.

For mat and Ar gs areasini o: f or mat (Format, Args).

user _err(Format, Args) -> void()

Types:
Format = string()
Args = list()

Thefunctioniscalled if auser related error occurs at run-time, for exampleif auser defined instrumentation function
returns erroneous.

For mat and Ar gs areasini o: f or mat (Format, Args).

Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP) | 133

snmpa_error

snmpa_error

Erlang module

The module snipa_er r or contains two callback functions which are called if an error occurs at different times
during agent operation. These functionsin turn calls the corresponding function in the configured error report module,
which implements the actual report functionality.

Two simple implementation(s) is provided with the toolkit; the modules snmpa._error_logger which is the default and
snmpa_error_io.

The error report moduleis configured using the directive er r or _r epor t _nod, see configuration parameters.

Exports

config err(Format, Args) -> void()

Types:
Format = string()
Args = list()

The function is called if an error occurs during the configuration phase, for example if a syntax error is found in a
configuration file.

For mat and Ar gs areasini o: f or mat (For mat, Args).

user _err(Format, Args) -> void()

Types:
Format = string()
Args = list()

Thefunctioniscalled if auser related error occurs at run-time, for example if a user defined instrumentation function
returns erroneous.

For mat and Ar gs areasini o: for mat (Format, Args).

134 | Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP)

snmpa_error_io

snmpa_error_io

Erlang module

The module snnpa_error _i o implements the snnp_error _report behaviour (see snmpa_error_report)
containing two callback functions which are called in order to report SNMP errors.

Thismodul e provides asimple mechanism for reporting SNMP errors. Errorsarewritten to stdout using thei o module.
It isprovided as an simple example.

This module needs to be explicitly configured, see snmpa_error and configuration parameters.

Exports

config err(Format, Args) -> void()

Types:
Format = string()
Args = list()

The function is called if an error occurs during the configuration phase, for example if a syntax error is found in a
configuration file.

For mat and Ar gs areasini o: f or mat (For mat, Args).

user _err(Format, Args) -> void()

Types:
Format = string()
Args = list()

Thefunctioniscalled if auser related error occurs at run-time, for example if a user defined instrumentation function
returns erroneous.

For mat and Ar gs areasini o: f or mat (Format, Args).

Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP) | 135

snmpa_error_logger

snmpa_error_logger

Erlang module

The module snnpa_error | ogger implements the snnpa_error_report behaviour (see
snmpa_error_report) containing two callback functions which are called in order to report SNMP errors.

This module provides a simple mechanism for reporting SNMP errors. Errors are sent to the er r or _| ogger after
asize check. Messages are truncated after 1024 chars. It is provided as an example.

This module is the default error report module, but can be explicitly configured, see snmpa_error and configuration
parameters.

Exports

config err(Format, Args) -> void()

Types:
Format = string()
Args = list()

The function is called if an error occurs during the configuration phase, for example if a syntax error is found in a
configuration file.

For mat and Ar gs areasini o: f or mat (For mat, Args).

user _err(Format, Args) -> void()

Types:
Format = string()
Args = list()

Thefunctioniscalled if auser related error occurs at run-time, for example if a user defined instrumentation function
returns erroneous.

For mat and Ar gs areasini o: for mat (Format, Args).

See Also

error_logger(3)

136 | Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP)

snmpa_local_db

snmpa_local db

Erlang module

Themodulesnmpa_| ocal _db containsfunctions for implementing tables (and variables) using the SNMP built-in
database. The database exists in two instances, one volatile and one persistent. The volatile database is implemented
with ets. The persistent database isimplemented with dets.

Thereisascaling problem with this database.
» Insertions and deletions are inefficient for large tables.
This problem is best solved by using Mnesiainstead.

The following functions describe the interface to snnpa_| ocal _db. Each function has a Mnesia equivalent. The
argument NanmeDb isatuple{ Name, Db} where Nane isthe symbolic name of the managed object (as defined
in the MIB), and Db is either vol ati | e or per si st ent. mesi a is not possible since all these functions are
snnpa_| ocal _db specific.

Common Data Types

In the functions defined below, the following types are used:

e NanmeDb = {Name, Db}

e Name = atom(), Db = volatile | persistent

 Rowindex = [int()]
e Cols =[Col] | [{Col, Value}], Col =int(), Value = term))

where Rowi ndex denotes the last part of the OID, that specifies the index of the row in the table. Col s isalist of
column numbers in case of aget operation, and alist of column numbers and valuesin case of a set operation.

Exports

dump() -> ok | {error, Reason}
Types:
Reason = term()
This function can be used to manually dump the database to file.

match(NameDb, Pattern)

Performs an ets/dets matching on the table. See Stdlib documentation, module ets, for a description of Pat t er n and
the return values.

print()
print(TableName)
print(TableName, Db)
Types:

Tabl eNanme = atom()

Prints the contents of the database on screen. This is useful for debugging since the STANDARD- M B and OTP-
SNMPEA- M B (and maybe your own MIBs) are stored insnnpa_| ocal _db.

Tabl eNamne isan atom for atable in the database. When no name is supplied, the whole database is shown.

Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP) | 137

snmpa_local_db

table create(NameDb) -> bool()
Creates atable. If the table already exist, the old copy is destroyed.
Returnsf al se if the NaneDb argument isincorrectly specified, t r ue otherwise.

table create row(NameDb, RowIndex, Row) -> bool()

Types:
Row = {Val 1, Vval2, ..., ValN
Vall =Val2 = ... =ValN=tern()

Createsarow in atable. Rowis atuple with values for all columns, including the index columns.

table delete(NameDb) -> void()
Deletes atable.

table delete row(NameDb, RowIndex) -> bool()
Deletes the row in the table.

table exists(NameDb) -> bool()
Checksif atable exists.

table get row(NameDb, RowIndex) -> Row | undefined
Types:

Row = {Vval 1, Vval2, ..., ValN

Vall =Val2 = ... =ValN=tern()

Rowis atuple with values for all columns, including the index columns.

See Also
ets(3), dets(3), snmp_generic(3)

138 | Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP)

snmpa_mib_data

snmpa_mib_data

Erlang module

This module defines the behaviour of the SNMP agent mib-server data module. A snimpa_ni b_dat a compliant
module must export the following functions:

* new/l

* close/l
 sync/l

e load mib/4

e unload mib/4
* lookup/2

* next/3

e register_subagent/3

e unregister_subagent/2
e which_mib/2

e which_mibg/1

e whereis mib/2

e dump/2
* info/l
e backup/2

e code _change/4
The semantics of them and their exact signatures are explained bel ow.

Note that the data extracted from the imported (loaded) mibs are stored partly by the mib-server and partly by the
symbolic-store server. See the default mib-server datamodule, snnpa_mi b_dat a_t t t n for details.

The following functions must be exported from am b- ser ver data callback module:

Exports

Module:new(Storage) -> State
Types.
Storage = m b_storage()
State = term()
Create a new mib-server data instance.

Module:close(State) -> void()
Types:

State = term))
Close the mib-storage.

Module:sync(State) -> void()

Types:
State = term()

Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP) | 139

snmpa_mib_data

Synchronize (writeto disc, if possible) the mib-server data. Thisdependsontheni b_st or age option, and will only
have an effect if the mib-storage option has an actual disc component (such as dets, or ets with afile).

Module:load mib(State, Filename, MeOverride, TeOverride) -> {ok, NewState} |
{error, Reason}

Types:
State = NewState = term))
Filename = fil enanme()
MeOverride = bool ean()
TeOverride bool ean()
Reason = already | oaded | tern()

Load the mib specified by the Fi | ename argument into the mib-server. The MeOverri de and TeQverri de
arguments specifies how the mib-server shall handle duplicate mib- and trap- entries.

Module:unload mib(State, Filename) -> {ok, NewState} | {error, Reason}
Types:

State = NewState = term)

Filename = fil ename()

Reason = not | oaded | term()

Unload the mib specified by the Fi | enamne argument from the mib-server.

Module: lookup(State, 0id) -> Reply
Types:
State = term)

Reply = {variable, Mg} | {table_colum, Mg, TEQ d} | {subagent, SAPid,
SAG d} | {false, Reason}

Od=TEQOd = SAOd = oid()
SAPi d = pid()

ME = me()

Reason = term()

Find the mib-entry corresponding to the O d. If it isavariable, the G d must be <Oid for var>.0 and if it is atable,
G d must be <table>.<entry>.<col>.<any>.

Module:next(State, 0id, MibView) -> Reply
Types:
State term))

Reply = false | endO Table | {subagent, SAPid, SAG d} | {variable, M,
VarG d} | {table, TabledQ d, Tabl eRestG d, Mg}

Od=SA0d = VarOd = TableQd = TableRestG d = oid()
SAPi d = pid()
ME = ne()

Finds the lexicographically next oid.

140 | Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP)

snmpa_mib_data

Module:register subagent(State, 0id, Pid) -> Reply
Types.

State = NewState = term))

Reply = {ok, NewState} | {error, Reason}

ad = oid()

Pid = pid()

Reason = term()

Register the subagent, process, handling part of the mib-tree.

Module:unregister subagent(State, PidOr0id) -> Reply

Types:
State = NewState = term))
Reply = {ok, NewState} | {ok, NewState,
PidorQd = pid() | oid()
Pid = pid()
Reason = term()

Pid} | {error, Reason}

Unregister the subagent, handling part of the mib-tree, as specified by theoi d() or pi d() (Pi dOr G d).

When unregister the subagent using an oi d() , thepi d() of the process handling the sub-tree is also returned.

Module:dump(State, Destination) -> Reply
Types:
State = term))
Reply = ok | {error, Reason}
Destination = io | filenane()
Pid = pid()
Reason = term)

Dump the mib-server datato st di o (Destination =i 0) or the specified file.

Module:which mib(State, 0id) -> Reply

Types:
State = term)
Reply = {ok, MbFile} | {error, Reason}
ad = oid()

M bFile = string()
Reason = term)

Retrieve the mib-file to which an given oi d() belongs.

Module:which mibs(State) -> Reply

Types:
State = term))
Reply = [{M bNane, Fil enane}]
M bNane = atom()

Fil ename = string()

Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP) | 141

snmpa_mib_data

Retrieve all loaded mib-files.

Module:whereis mib(State, MibName) -> Reply
Types:
State = term))
M bNane = atom()
Reply = {ok, Filenane} | {error, Reason}
Fi l ename = string()
Reason = term()

Retrieve the mib file for the mib.

Module:info(State) -> Reply

Types:
State = term)
Reply = {ok, Filenane} | {error, Reason}

Fil ename = string()
Reason = term()

Retrieve misc info for the mib data.

Thisisautility function used to inspect, for instance, memory usage, in asimple way.

Module:backup(State, BackupDir) -> Reply
Types:
State = term))
Reply = ok | {error, Reason}
BackupDir = string()
Reason = term()
Perform a backup of the mib-server data

Note that its implementation dependant (and also dependent on mib-storage is used) if a backup is possible.

Module:code change(Destination, Vsn, Extra, State) -> NewState
Types:

Destination = up | down

Vsn = tern()

Extra = tern()

State = NewState = term)

Perform a code-change (upgrade or downgrade).
See gen_server for more info regarding the Vsn and Ext r a arguments.

142 | Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP)

snmpa_mib_storage

snmpa_mib_storage

Erlang module

This module defines the behaviour of the SNMP agent mib storage.

The mib storage is used by the agent to store internal mib- related information. The mib storage module is used by
severa entities, not just the mib-server.

A snnpa_m b_st or age compliant module must export the following functions:

e open/5
e close/l
e read/2

e write/2
e delete/l
e delete/2

* match_object/2
e match delete/2

o tab2list/1
* info/l
 sync/l
e backup/2

The semantics of them and their exact signatures are explained bel ow.

The following functions must be exported from am b- ser ver data callback module:

Exports

Module:open(Name, RecordName, Fields, Type, Options) -> {ok, TabId} | {error,
Reason}

Types.
Name = atom()
Recor dNane = at on()
Fields = [atom()]
Type = set | bag()
Options = list()
Tabld = term)
Reason = term()

Create or open amib storage table.

Note that the Recor dNane and Fi el ds arguments my not be used in al implementations (they are actualy only
needed for mnesia-based implementations).

Note also that the Opt i ons argument comes from the opt i ons config option of the mib-storage config option,
and ispassed on asis.

Module:close(TabId) -> void()
Types:

Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP) | 143

snmpa_mib_storage

State = term)
Close the mib-storage table.

Module:read(TabId, Key) -> false | {value, Record}

Types:
Tabld = term)
Key = term)

Record = tuple()
Read arecord from the mib-storage table.

Module:write(TabId, Record) -> ok | {error, Reason}
Types:

Tabld = term)

Record = tuple()

Reason = term()

Write arecord to the mib-storage table.

Module:delete(TabId) -> void()
Types:

Tabld = term)
Delete an entire mib-storage table.

Module:delete(TabId, Key) -> ok | {error, Reason}

Types:
Tabld = term))
Key = term)

Reason = term()
Delete arecord from the mib-storage table.

Module:match object(TabId, Pattern) -> Recs | {error, Reason}
Types:

Tabld = term)

Pattern = match_pattern()

Recs = [tuple()]

Reason = term()
Search the mib-storage table for record that match the specified pattern.

Module:match delete(TabId, Pattern) -> Recs | {error, Reason}
Types.

Tabld = term))

Pattern = match_pattern()

Recs = [tuple()]

Reason = term()

144 | Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP)

snmpa_mib_storage

Search the mib-storage table for record that match the specified pattern and then delete them. The records deleted
are aso returned.

Module:tab2list(TabId) -> Recs
Types:
Tabld = term)
Recs = [tuple()]
Return al recordsin the mib-storage table in the form of alist.

Module:info(TabId) -> {ok, Info} | {error, Reason}

Types.
Tabld = term))
Info = term)

Reason = term)
Retrieve implementation dependent mib-storage table information.

Module:sync(TabId) -> void()
Types:

Tabld = term))
Synchronize the mib-storage table.

What this means, if anything, isimplementation dependent.

Module:backup(TabId, BackupDir) -> ok | {error, Reason}
Types.

Tabld = term))

BackupDir = string()

Reason = term)
Perform a backup of the mib-storage table.

What this means, if anything, isimplementation dependent.

Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP) | 145

snmpa_mpd

snmpa_mpd

Erlang module

The module snimpa_npd implements the version independent Message Processing and Dispatch functionality in
SNMP for the agent. It is supposed to be used from a Network Interface process (Definition of Agent Net if).

DATA TYPES
See the datatypesin snnpa_conf.

Exports

init(Vsns) -> mpd state()
Types:
Vsns = [Vsn]
Vsn = vl | v2 | v3
This function can be called from the net_if process at start-up. The optionslist defines which versionsto use.
It also initializes some SNMP counters.

process packet(Packet, From, State, NoteStore, Log) -> {ok, Vsn, Pdu, PduMS,
ACMData} | {discarded, Reason} | {discovery, DiscoPacket}

process packet(Packet, From, LocalEngineID, State, NoteStore, Log) -> {ok,
Vsn, Pdu, PduMS, ACMData} | {discarded, Reason} | {discovery, DiscoPacket}

Types.
Packet = binary()
From = {TDonai n, TAddr}
TDomai n = transport Donmai nUdpl pv4 | transport Domai nUdpl pv6
TAddr = {I pAddr, IpPort}
Local Engi nel D = string()
| pAddr = inet:ip_address()
| pPort = inet:port_nunber()
State = npd_state()
Not eStore = pid()

Log = snnp_Il og()
Vsn = 'version-1' | 'version-2' | 'version-3
Pdu = #pdu

PduMs = integer()
ACMDat a = acm data()
Reason = term()

Di scoPacket = binary()

Processes an incoming packet. Performs authentication and decryption as necessary. The return values should be
passed to the agent.

146 | Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP)

snmpa_mpd

Note that the use of the LocalEnginelD argument is only intended for special cases, if the agent is to "emulate"
multiple Enginel Ds! By default, the agent usesthe value of SnnpEngi nel D (see SNMP-FRAMEWORK-MIB).

generate response msg(Vsn, RePdu, Type, ACMData, Log) -> {ok, Packet} |
{discarded, Reason}

generate response msg(Vsn, RePdu, Type, ACMData, LocalEngineID, Log) -> {ok,
Packet} | {discarded, Reason}

Types.
Vsn = 'version-1' | 'version-2' | 'version-3
RePdu = #pdu

Type = atom()

ACMDat a = acm data()
Local Engi nel D = string()
Packet = binary()

Generates a possibly encrypted response packet to be sent to the network. Type isthe #pdu. t ype of the origina
request.

Note that the use of the LocalEnginelD argument is only intended for special cases, if the agent is to "emulate"
multiple Enginel Ds! By default, the agent uses the value of SnnpEngi nel D (see SNMP-FRAMEWORK-MIB).

generate msg(Vsn, NoteStore, Pdu, MsgData, To) -> {ok, PacketsAndAddresses} |
{discarded, Reason}

generate msg(Vsn, NoteStore, Pdu, MsgData, LocalEngineID, To) -> {ok,
PacketsAndAddresses} | {discarded, Reason}

Types:
Vsn = 'version-1' | 'version-2' | 'version-3'
Not eStore = pid()
Pdu = #pdu

MsgDat a = nsg_dat a()
Local Engi nel D = string()
To = [dest _addrs()]
Packet sAndAddr esses = [{TDomai n, TAddress, Packet}]
TDomai n = snnpUDPDonai n
TAddress = {lp, Udp}
Ip = {integer(), integer(), integer(), integer()}
Udp = integer()
Packet = binary()
Generates a possibly encrypted request packet to be sent to the network.

Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP) | 147

snmpa_mpd

MsgDat a is the message specific data used in the SNMP message. This value is received in a send_pdu or
send_pdu_r eq message from the agent. In SNMPv1 and SNMPv2c, this message data is the community string.
In SNMPV3, it is the context information.

To isalist of destination addresses and their corresponding security parameters. This value is received in the same
message from the agent and then transformed trough pr ocess_t addr s before passed to this function.

Note that the use of the LocalEnginelD argument is only intended for special cases, if the agent is to "emulate"
multiple Enginel Ds! By default, the agent uses the value of SnnpEngi nel D (see SNMP-FRAMEWORK-MIB).

process taddrs(TDests) -> Dests
Types.
TDests = [TDest]
TDest {{TDonmai n, TAddr}, SecData} | {TDomai n, TAddr}
TDomain = term() % Not at tuple
TAddr term)
SecbData = term()
Dests = [Dest]
Dest = {{Domain, Addr}, SecData} | {Domain, Addr}
Domai n = transport Donai n()
Addr transport Address() % Depends on Donai n

Transforms addresses from internal M1B format to one more useful to Agent Net if.

Seeasogener at e_nsg.

discarded pdu(Variable) -> void()
Types:
Variable = atom()

Increments the variable associated with a discarded pdu. This function can be used when the net_if process receives
adi scar ded_pdu message from the agent.

148 | Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP)

snmpa_network_interface

snmpa_network_interface

Erlang module

This module defines the behaviour of the agent network interface. A snnpa_net wor k_i nt er f ace compliant
module must export the following functions:

o start_link/4

e info/l

e get log type/l

e st log type/2

e verbosity/2

The semantics of them and their exact signatures are explained below.

But thisis not enough. Thereis also a set of mandatory messages which the network interface entity must be able to
receive and be able to send. Thisis described in chapter snmp_agent_netif.

Exports

start _link(Prio, NoteStore, MasterAgent, Opts) -> {ok, Pid} | {error, Reason}
Types:
Prio = priority()
Not eStore = pid()
Mast er Agent = pid()
Opts = [opt()]
opt() = {verbosity, verbosity()} | {versions, versions()} | term)
versions() = [version()]
version() = vl | v2 | v3
Start-link the network interface process.
Not eSt or e isthe pid of the note-store process and Mast er Agent isthe pid of the master-agent process.

Opt s isan (basically) implementation dependent list of options to the network interface process. There are however
anumber of options which must be handled: ver si ons andver bosi ty.

info(Pid) -> [{Key, Value}]
Types:
Pid = pid()
The info returned is basically up to the implementer to decide. This implementation provided by the application
provides info about memory allocation and various socket information.

The info returned by this function is returned together with other info collected by the agent when the info function
iscalled (tagged with with the key net _i).

verbosity(Pid, Verbosity) -> void()
Types.

Pid = pid()

Verbosity = verbosity()

Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP) | 149

snmpa_network_interface

Change the verbosity of arunning network interface process.

get log type(Pid) -> {ok, LogType} | {error, Reason}
Types:
Pid = pid()
LogType = atl _type()
Reason = term()
The Audit Trail Log is managed by the network interface process. So, it is this process that has to retrieve the actua
log-type.

set log type(Pid, NewType) -> {ok, 0ldType} | {error, Reason}
Types:

Pid = pid()

NewType = O dType = atl _type()

Reason = term()

TheAudit Trail Logismanaged by the network interface process. So, it isthisprocessthat hasto do the actual changing
of the type.

See set_log_type for more info.

150 | Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP)

snmpa_network_interface filter

snmpa_network_interface_filter

Erlang module

This module defines the behaviour of the agent network interface filter. A
snnpa_network_interface_filter compliant module must export the following functions:

e accept_recv/2

e accept_send/2

e accept_recv_pdu/3

e accept_send pdu/2

The semantics of them and their exact signatures are explained below.

The purpose of the network interface filter is to allow for filtering of messages (accept or reject) receive and send.
Thisisdone on two levels:

* The first level is at the transport entry / exit point, i.e. immediately after the receipt of the message before
any message processing is done (accept_recv) and immediately before sending the message after all message
processing is done (accept_send).

e The second level is a the MPD entry / exit point, i.e. immediately after the basic message processing
(accept_recv_pdu) / immediately before the basic message processing (accept_send_pdu).

Note that the network interface filter is something which is used by the network interface implementation provided by
the application (snnpa_net _i f). The default filter accepts all messages.

A network interface filter can e.g. be used during testing or for load regulation. If the intended useis load regulation,
see also req_limit and the function register_notification filter.

Legacy network interface filter modules used arguments on the form (| pAddr, Port Nunber, . ..) instead of
(Dommi n, Addr, ...),andifthe SNMP agentisrunwithout changing the configuration to usetransport domains
the network interface filter will still get the old arguments and work as before.
DATA TYPES
port() = integer() > 0
pdu type() = 'get-request' | 'get-next-request' | 'get-response' |
'set-request' | trap | 'get-bulk-request' | 'inform-request' |
report

See also the datatypesin snnpa_conf .

Exports

accept recv(Domain, Addr) -> boolean()
Types:

Domai n = transport Donai n()

Addr = transport AddressWthPort ()

Called at the reception of a message (before any processing has been done).
For the message to be discarded, the function must return false.

accept send(Domain, Addr) -> boolean()
Types:

Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP) | 151

snmpa_network_interface_filter

Domai n = transport Domai n()
Addr = transport AddressWt hPort ()

Called before the sending of amessage (after all processing has been done).
For the message to be discarded, the function must return false.

accept recv _pdu(Domain, Addr, PduType) -> boolean()
Types:
Domai n = transport Domai n()
Addr = transport AddressWt hPort ()
PduType = pdu_type()
Called after the basic message processing (MPD) has been done, but before the pdu is handed over to the master-
agent for primary processing.
For the pdu to be discarded, the function must return false.

accept send pdu(Targets, PduType) -> Reply
Types:

Targets = targets()

targets() = [target()]

target() = {Donain, Addr}

Domai n = transport Domai n()

Addr = transport AddressWt hPort ()

PduType = pdu_type() > 0

Reply = bool ean() | NewTargets

NewTar gets = targets()

Called before the basic message processing (MPD) is done, when a pdu has been received from the master-agent.
For the message to be discarded all together, the function must return false.

Notethat it is possible for this function to filter out targets (but not to add its own) by returning an updated Tar get s
list (NewTar get s).

152 | Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP)

snmpa_notification_delivery_info_receiver

snmpa_notification_delivery info_receiver

Erlang module

This module defines the behaviour of the notification delivery information receiver.

A snnpa_notification_delivery_info_receiver compliant module must export the following
functions:

* ddivery targets/3
e delivery_info/4
The semantics of them and their exact signatures are explained bel ow.

Legacy notification delivery information receiver modules used a target argument on the form {I| pAddr,
Por t Nunber } instead of { Dormai n, Addr }, andif the SNMP Agent is run without changing the configuration to
use transport domainsthe notification delivery information receiver will still get the old arguments and work as before.

DATA TYPES
Seethedatatypesin snnpa_conf.

Exports

delivery targets(Tag, Targets, Extra) -> void()
Types:
Tag = tern()
Targets = [Target]
Target = {transportDomain(), transportAddressWthPort ()
Extra = tern()
Inform about target addresses.

Thisisthefirst function called when anctification delivery isin progress. It informsther ecei ver whichtargetswill
get the notification. The result of the delivery will be provided viasuccessivecallstodel i very_i nf o/ 4 function,
see below.

delivery info(Tag, Target, DeliveryResult, Extra) -> void()
Types.
Tag = term()
Targets = [Target]
Target = {transportDonmai n(), transportAddressWthPort ()
Del i veryResult = delivery result()
delivery result() = no_response | got_response
Extra = tern()
Inform about delivery result.
Thisfunctioniscalled for eachtargetinthe Tar get s argument of thedel i very_t ar get s/ 3 function, seeabove.

The purposeistoinform ther ecei ver of the result of the delivery (was the notification acknowledged or not) for
each target.

Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP) | 153

snmpa_notification_filter

snmpa_notification_filter

Erlang module

This modul e defines the behaviour of the agent notification filters. A snnpa_noti ficati on_filter compliant
module must export the following functions:

* handle notification/2

The semantics of them and their exact signatures are explained below.

The purpose of natification filtersis to allow for modification and/or suppression of a notification.
A misbehaving filter will be removed.

Exports

handle notification(Notif, Data) -> Reply
Types:
Reply = send | {send, NewNotif} | dont_send
Notif = NewNotif = notification() | trap()
Data = term))

Handle anotification to be sent. Thefilter can either accept the notification asis, return send, modify the notification,
return { send, NewNot i f} or suppressthe notification, return dont _send.

Dat a issupplied at filter registration time, see register_notification_filter.

154 | Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP)

snmpa_supervisor

snmpa_supervisor

Erlang module

This is the top supervisor for the agent part of the SNMP application. There is always one supervisor at each node
with an SNMP agent (master agent or sub-agent).

Exports

start _sub sup(Opts) -> {ok, pid()} | {error, {already started, pid()}} |
{error, Reason}

Types:
Opts = [opt()]
opt() = {db_dir, string()} |
Starts a supervisor for the SNMP agent system without a master agent. The supervisor starts all involved SNMP
processes, but no agent processes. Sub-agents should be started by calling st art _sub_agent/ 3.
db_di r ismandatory.

See configuration parameters for a description of the options.

start master sup(Opts) -> {ok, pid()} | {error, {already started, pid()}} |
{error, Reason}

Types:
Opts = [opt()]
opt() = {db _dir, string()} | {config, ConfQpts()} |
Conf Opts = [conf_opts()]
conf_opts() = {dir, string()} |
Reason = term()

Starts a supervisor for the SNMP agent system. The supervisor starts al involved SNMP processes, including the
master agent. Sub-agents should be started by calling st art _subagent / 3.

db_di r ismandatory.
di r inconfig is mandatory.
See snmp config for adescription of the options.

start sub agent(ParentAgent,Subtree,Mibs) -> {ok, pid()} | {error, Reason}
Types.

Par ent Agent = pid()

SubTree = oid()

M bs = [M bNane]

M bNanme = [string()]
Starts a sub-agent on the node where the function is called. The snnpa_super vi sor must be running.

If the supervisor is not running, the function fails with the reason badar g.

Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP) | 155

snmpa_supervisor

stop_sub_agent(SubAgent) -> ok | no_such child
Types:
SubAgent = pid()
Stops the sub-agent on the node where the function is called. The snnpa_super vi sor must be running.
If the supervisor is not running, the function fails with the reason badar g.

156 | Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP)

snmp_community_mib

snmp_community _mib

Erlang module

The module snnp_conmuni ty_ni b implements the instrumentation functions for the SNMP-COMMUNITY -
MIB, and functions for configuring the database.

The configuration files are described in the SNMP User's Manual.

Exports

configure(ConfDir) -> void()
Types:
ConfDir = string()
Thisfunction is called from the supervisor at system start-up.

Inserts all data in the configuration files into the database and destroys all old rows with StorageType vol ati | e.
The rows created from the configuration file will have StorageType nonVol ati | e.

All snnp counters are set to zero.

If an error is found in the configuration file, it is reported using the function confi g_err/ 2 of the error, report
module and the function fails with reason conf i gurati on_error.

Conf Di r isastring which pointsto the directory where the configuration files are found.
The configuration fileread is; conmruni ty. conf .

reconfigure(ConfDir) -> void()
Types:

ConfDir = string()
Insertsall datainthe configuration filesinto the database and destroysall old data, including therowswith StorageType
nonVol at i | e. Therows created from the configuration file will have StorageType nonVol ati | e.
Thus, the datain the SNMP-COMMUNITY -MIB, after this function has been called, is from the configuration files.
All snnp counters are set to zero.

If an error is found in the configuration file, it is reported using the function conf i g_err/ 2 of the error report
module, and the function fails with reason conf i gur ati on_error.

Conf Di r isastring which pointsto the directory where the configuration files are found.

The configuration fileread is: communi ty. conf .

add _community(Idx, CommName, SecName, CtxName, TransportTag) -> Ret
add community(Idx, CommName, SecName, EngineId, CtxName, TransportTag) -> Ret
Types:

Idx = string()

CommName = string()

SecNane = string()

Engi neld = string()

Ct xName = string()

Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP) | 157

snmp_community_mib

TransportTag = string()
Ret {ok, Key} | {error, Reason}

Key term)
Reason = term()

Adds acommunity to the agent config. Equivalent to onelinein thecomruni ty. conf file.
With the Engi nel d argument it is possible to override the configured engine-id (SNMP-FRAMEWORK-MIB).

delete community(Key) -> Ret

Types:
Key = term()
Ret = ok | {error, Reason}

Reason = term()
Delete a community from the agent config.

158 | Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP)

snmp_framework_mib

snmp_framework mib

Erlang module

The module snnp_f ramewor k_ni b implements instrumentation functions for the SNMP-FRAMEWORK-MIB,
and functions for initializing and configuring the database.

The configuration files are described in the SNMP User's Manual.

Exports

configure(ConfDir) -> void()
Types:
ConfDir = string()
Thisfunction is called from the supervisor at system start-up.
Inserts al datain the configuration files into the database and destroys all old data.
Thus, the datain the SNMP-FRAMEWORK-MIB, after this function has been called, is from the configuration files.
All snnp counters are set to zero.

If an error is found in the configuration file, it is reported using the function confi g_err/ 2 of the error report
module, and the function fails with reason conf i gur ati on_error.

Conf Di r isastring which pointsto the directory where the configuration files are found.

The configuration fileread is: cont ext . conf .

init() -> void()
Thisfunction is called from the supervisor at system start-up.
Creates the necessary objects in the database if they do not exist. It does not destroy any old values.

add context(Ctx) -> Ret

Types:
Cx = string()
Ret = {ok, Key} | {error, Reason}
Key = term()

Reason = term)
Adds a context to the agent config. Equivalent to onelineinthe cont ext . conf file.

delete context(Key) -> Ret
Types.
Key = term)
Ret = ok | {error, Reason}
Reason = term)

Delete a context from the agent config.

Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP) | 159

snmp_generic

snmp_generic

Erlang module

The module snimp_gener i ¢ contains generic functions for implementing tables (and variables) using the SNMP
built-in database or Mnesia. These default functions are used if no instrumentation function is provided for amanaged
object in aMIB. Sometimes, it might be necessary to customize the behaviour of the default functions. For example,
in some situations a trap should be sent if arow is deleted or modified, or some hardware is to be informed, when
information is changed.

The overall structure is shown in the following figure:

R +
| SNMP Agent |
R +
| MIB |
R +
I
Association file (associates a MIB object with
| snmp_generic:table funct
| snmp_generic:variable func)
B e +
| snmp_generic | Support for get-next,
| | RowStatus operations
LR e R +
| snmpa_local_db | Mnesia | Database
e +---m- - R +
| dets | ets
| (persistent) | |
e +---m- - +

Each function takes the argument Nane Db, which isatuple { Narme, Db}, to identify which database the functions
should use. Narre is the symbolic name of the managed object as defined in the MIB, and Db is either vol ati | e,
persi stent,or mesi a. If itistmesi a, all variables are stored in the Mnesiatable snnp_var i abl es which
must be a table with two attributes (not a Mnesia SNMP table). The SNMP tables are stored in Mnesia tables with
the same names as the SNMP tables. All functions assume that a Mnesia table exists with the correct name and
attributes. It is the programmer's responsibility to ensure this. Specifically, if variables are stored in Mnesia, the table
snnp_vari abl es must be created by the programmer. The record definition for this table is defined in the file
snnp/ i ncl ude/ snnp_types. hrl.

If an instrumentation function in the association file for a variable myVar does not have a name when compiling an
MIB, the compiler generates an entry.
{myVar, {snmp generic, variable func, [{myVar, Db]}}.

And for atable:

{myTable, {snmp generic, table func, [{myTable, Dbl}}.

DATA TYPES

In the functions defined below, the following types are used:

160 | Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP)

snmp_generic

name_db() = {name(), db()}

name() = atom()

db() = volatile | persistent | mnesia
row_index() = [int()]

columns() = [column()] | [{column(), value()}]
column() = int()

value() = term()

row_i ndex()

Denotes the last part of the OID which specifies the index of the row in the table (see RFC1212, 4.1.6 for more
information about INDEX).

col umms()

Isalist of column numbersin the case of aget operation, and alist of column numbers and values in the case
of aset operation.

Exports

get status col(Name, Cols)
get status col(NameDb, Cols) -> {ok, StatusVal} | false
Types:

Name = name()

NameDb = name_db()

Col s = col ums()

StatusVal = tern()

Gets the value of the status column from Col s.

This function can be used in instrumentation functionsfor i s_set ok, undo or set to check if the status column
of atableis modified.

get index types(Name)
Types.
Name = nane()
Getsthe index types of Nane
This function can be used in instrumentation functions to retrieve the index types part of the table info.

get table info(Name, Item) -> table info result()
Types.
Name = nane()
Item= table_ iten() | all
table_ item) = nbr_of _cols | defvals | status_col | not_accessible |
i ndex_types | first_accessible | first_own_index
table info result() = Value | [{table_item(), Value}]
Value = term))

Get a specific table info item or, if | t emhas the value al |, atwo tuple list (property list) is instead returned with
all theitems and their respctive values of the given table.

This function can be used in instrumentation functions to retrieve a given part of the table info.

Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP) | 161

snmp_generic

table func(Opl, NameDb)
table func(Op2, RowIndex, Cols, NameDb) -> Ret

Types:
1 = new | delete
P2 = get | next | is_set_ok | set | undo

NameDb = nane_db()
Rowl ndex = row_i ndex()
Col s = col ums()

Ret = term)

Thisisthe default instrumentation function for tables.

» Thenewfunction creates the table if it does not exist, but only if the database is the SNMP internal db.

e Thedel et e function does not del ete the table from the database since unloading an MIB does not necessarily
mean that the table should be destroyed.

e Theis_set ok function checksthat arow which isto be modified or deleted exists, and that arow whichis
to be created does not exist.

e Theundo function does nothing.

* Theset function checksif it has enough information to make the row change its status from not Ready to
not I nSer vi ce (when arow has been been setto cr eat eAndWai t). If arow issetto cr eat eAndWai t
columns without avalue are set to noi ni t . If Mnesiais used, the set functionality is handled within a
transaction.

If it is possible for a manager to create or delete rows in the table, there must be a RowSt at us column for
i s_set ok, set andundo towork properly.

The function returns according to the specification of an instrumentation function.

table get elements(NameDb, RowIndex, Cols) -> Values
Types:

NameDb = nane_db()

Rowl ndex = row_i ndex()

Col s = col ums()

Val ues = [value() | noinit]

Returns alist with valuesfor al columnsin Col s. If acolumn isundefined, itsvalueisnoi ni t .

table next(NameDb, Rest0id) -> RowIndex | endOfTable
Types:
NameDb = nane_db()
RestOd = [int()]
Rowl ndex = row_i ndex()
Finds the indices of the next row in the table. Rest O d does not have to specify an existing row.

table row exists(NameDb, RowIndex) -> bool()
Types:

NameDb = nane_db()

Rowl ndex = row_i ndex()

162 | Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP)

snmp_generic

Checksif arow in atable exists.

table set elements(NameDb, RowIndex, Cols) -> bool()
Types:

NameDb = name_db()

Row ndex = row_i ndex()

Col s = col ums()

Setsthe elementsin Col s to the row specified by Rowl ndex. No checks are performed on the new values.

If the Mnesiadatabase is used, this function callsmmesi a: wri t e to store the values. This means that this function
must be called from within atransaction (mesi a: t r ansacti on/ 1 ormesi a: di rty/ 1).

variable func(Opl, NameDb)
variable func(Op2, Val, NameDb) -> Ret
Types:
1 = new | delete | get
P2 = is_set_ok | set | undo
NameDb = name_db()
Val val ue()
Ret = term()

Thisisthe default instrumentation function for variables.

The new function creates a new variable in the database with a default value as defined in the MIB, or a zero value
(depending on the type).

Thedel et e function does not del ete the variable from the database.

The function returns according to the specification of an instrumentation function.

variable get(NameDb) -> {value, Value} | undefined
Types.

NameDb = nanme_db()

Val ue = val ue()

Gets the value of avariable.

variable set(NameDb, NewVal) -> true | false

Types:
NameDb = nane_db()
Newval = val ue()

Sets a new value to a variable. The variable is created if it does not exist. No checks are made on the type of the
new value.

Returnsf al se if the NanmeDb argument isincorrectly specified, otherwiset r ue.

Example

Thefollowing example shows an implementation of atablewhichisstored in Mnesia, but with some checks performed
at set-request operations.

Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP) | 163

snmp_generic

myTable func(new, NameDb) -> % pass unchanged
snmp_generic:table func(new, NameDb).

myTable func(delete, NameDb) -> % pass unchanged
snmp_generic:table func(delete, NameDb).

%% change row
myTable func(is set ok, RowIndex, Cols, NameDb) ->
case snmp_generic:table func(is_set ok, RowIndex,
Cols, NameDb) of
{noError, 0} ->
myApplication:is set ok(RowIndex, Cols);
Err ->
Err
end;

myTable func(set, RowIndex, Cols, NameDb) ->
case snmp_generic:table func(set, RowIndex, Cols,
NameDb) ,
{noError, 0} ->
% Now the row is updated, tell the application
myApplication:update(RowIndex, Cols);
Err ->
Err
end;

myTable func(Op, RowIndex, Cols, NameDb) -> % pass unchanged

snmp_generic:table func(Op, RowIndex, Cols, NameDb).

The. f uncs filewould look like:

{myTable, {myModule, myTable func, [{myTable, mnesia}]}}.

164 | Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP)

snmp_index

snmp_index

Erlang module

Themodulesnnp_i ndex implements an Abstract Data Type (ADT) for an SNMP index structure for SNMP tables.
It is implemented as an ets table of the ordered set data-type, which means that al operations are O(log n). In the
table, the key isan ASN.1 OBJECT IDENTIFIER.

Thisindex is used to separate the implementation of the SNMP ordering from the actual implementation of the table.
The SNMP ordering, that isimplementation of GET NEXT, isimplemented in this module.

For example, suppose there is an SNMP table, which is best implemented in Erlang as one process per SNMP table
row. Suppose further that the INDEX inthe SNMPtableisan OCTET STRING. Theindex structure would be created
asfollows:

snmp_index:new(string)
For each new process we create, we insert an itemin an snnp_i ndex structure:

new process(Name, SnmpIndex) ->
Pid = start process(),
NewSnmpIndex =
snmp_index:insert(SnmpIndex, Name, Pid),
<...>

With this structure, we can now map an OBJECT IDENTIFIER in e.g. aGET NEXT request, to the correct process:
get next pid(0id, SnmpIndex) ->

{ok, {_, Pid}} = snmp_index:get next(SnmpIndex, 0id),
Pid.

Common data types

The following data types are used in the functions below:

e index()

* oid() = [byte()]

e key types = type_spec() | {type_spec(), type_spec(), ...}
e type_spec() = fix_string | string | integer

e key() = key_spec() | {key_spec(), key_spec(), ...}

e key_ spec() = string() | integer()
Thei ndex() type denotes an snmp index structure.
Theoi d() typeisused to represent an ASN.1 OBJECT IDENTIFIER.

Thekey_types() typeisused when creating the index structure, and the key () typeis used when inserting and
deleting items from the structure.

The key_t ypes() type defines the types of the SNMP INDEX columns for the table. If the table has one single
INDEX column, this type should be a single atom, but if the table has multiple INDEX columns, it should be atuple
with atoms.

If theINDEX columnisof type INTEGER, or derived from INTEGER, the corresponding type should bei nt eger . If
itisavariablelengthtype (e.g. OBJECT IDENTIFIER, OCTET STRING), the corresponding typeshould best r i ng.
Finaly, if thetypeisof variablelength, but with afixed sizerestriction (e.g. IpAddress), the corresponding type should
befix_string.

Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP) | 165

snmp_index

For example, if the SNMP table hastwo INDEX columns, thefirst onean OCTET STRING with size 2, and the second
one an OBJECT IDENTIFER, the corresponding key_t ypes parameter would be{fi x_string, string}.

The key() type correlatesto the key_t ypes() type. If thekey_t ypes() isasingle aom, the corresponding
key() isasingletypeaswell, but if thekey t ypes() isatuple, key must be atuple of the same size.

Inthe example above, validkeys couldbe{" hi ", "noni} and{"no", "thanks"},whereas"hi",{"hi",
42} and{"hel l 0", "there"} wouldbeinvalid.

All API functionsthat update theindex returnaNewl ndex term. Thisisfor backward compatibility with aprevious
implementation that used a B+ tree written purely in Erlang for the index. The Newl ndex return value can now
be ignored. The return value is now the unchanged table identifier for the etstable.

The implementation using ets tables introduces a semantic incompatibility with older implementations. In those
older implementations, using pure Erlang terms, the index was garbage collected like any other Erlang term and did
not have to be deleted when discarded. An etstable is deleted only when the process creating it explicitly deletes
it or when the creating process terminates.

A new interface del et e/ 1 is nhow added to handle the case when a process wants to discard an index table (i.e.
to build a completely new). Any application using transient snmp indexes has to be modified to handle this.

As an snmp adaption usually keeps the index for the whole of the systems lifetime, thisis rarely a problem.

Exports

delete(Index) -> true

Types:
I ndex = Newl ndex = index()
Key = key()

Deletes a complete index structure (i.e. the ets table holding the index). The index can no longer be referenced after
this call. See the warning note above.

delete(Index, Key) -> NewIndex

Types:
I ndex = Newl ndex = index()
Key = key()

Deletes akey and its value from the index structure. Returns a new structure.

get(Index, Key0id) -> {ok, {KeyOid, Value}} | undefined
Types:
I ndex = index()
KeyG d = oid()
Value = term)
Getsthe item with key Key O d. Could be used from within an SNM P instrumentation function.

get last(Index) -> {ok, {Key0id, Value}} | undefined
Types:

166 | Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP)

snmp_index

I ndex = index()
KeyQ d = oid()
Value = term)
Getsthelast item in the index structure.

get next(Index, Key0id) -> {ok, {NextKeyOid, Value}} | undefined
Types.

I ndex = index()

KeyQ d = Next KeyQ d = oid()

Value = term)

Getsthe next item in the SNMP lexicographic ordering, after Key G d in the index structure. KeyG d does not have
to refer to an existing item in the index.

insert(Index, Key, Value) -> NewIndex

Types:
I ndex = Newl ndex = index()
Key = key()

Value = term)

Inserts a new key value tuple into the index structure. If an item with the same key already exists, the new Val ue
overwritesthe old value.

key to oid(Index, Key) -> KeyOid

Types.
I ndex = index()
Key = key()

KeyGQ d = NextKeyGQ d = oid()
Converts Key to an OBJECT IDENTIFIER.

new(KeyTypes) -> Index

Types:
KeyTypes = key_types()
I ndex = index()

Creates anew snmp index structure. Thekey _t ypes() typeisdescribed above.

Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP) | 167

snmp_notification_mib

snmp_notification_mib

Erlang module

The module snnp_notification_mb implements the instrumentation functions for the SNMP-
NOTIFICATION-MIB, and functions for configuring the database.

The configuration files are described in the SNMP User's Manual.

Exports

configure(ConfDir) -> void()
Types:
ConfDir = string()
Thisfunction is called from the supervisor at system start-up.

Inserts all data in the configuration files into the database and destroys all old rows with StorageType vol ati | e.
The rows created from the configuration file will have StorageType nonVol ati | e.

If an error is found in the configuration file, it is reported using the function confi g_err/ 2 of the error report
module, and the function failswith reason conf i gurati on_error.

Conf Di r isastring which pointsto the directory where the configuration files are found.
The configuration fileread is: not i f y. conf.

reconfigure(ConfDir) -> void()
Types:
ConfDir = string()

Insertsall datainthe configuration filesinto the database and destroysall old data, including therowswith StorageType
nonVol at i | e. Therows created from the configuration file will have StorageType nonVol at i | e.

Thus, the datain the SNMP-NOTIFICATION-MIB, after thisfunction has been called, isfrom the configuration files.

If an error is found in the configuration file, it is reported using the function confi g_err/ 2 of the error report
module, and the function fails with reason conf i gur ati on_error.

Conf Di r isastring which pointsto the directory where the configuration files are found.
The configuration fileread is: not i f y. conf.

add notify(Name, Tag, Type) -> Ret
Types:

Name = string()

Tag = string()

Type = trap | inform

Ret = {ok, Key} | {error, Reason}

Key = term()

Reason = term()

Adds a notify definition to the agent config. Equivalent to onelineinthenot i fy. conf file.

168 | Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP)

snmp_notification_mib

delete notify(Key) -> Ret
Types.
Key = term)
Ret = ok | {error, Reason}
Reason = term()

Delete a notify definition from the agent config.

Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP) | 169

snmp_pdus

snmp_pdus

Erlang module

RFC1157, RFC1905 and/or RFC2272 should be studied carefully before using this module, snip_pdus.

Themodulesnnp_pdus containsfunctionsfor encoding and decoding of SNM P protocol data units (PDUS). In short,
thismodule convertsalist of bytesto Erlang record representations and vice versa. The record definitions can be found
inthefilesnnp/ i ncl ude/ snnp_t ypes. hrl . If sompv3isused, the modulethat includessnnp_t ypes. hrl
must define the constant SNMP_USE V3 before the header fileisincluded. Example:

-define(SNMP_USE V3, true).
-include lib("snmp/include/snmp_types.hrl").

Encoding and decoding must be done explicitly when writing your own Net if process.

Exports

dec _message([byte()]) -> Message
Types:
Message = #nessage
Decodes a list of bytes into an SNMP Message. Note, if there is a v3 message, the nsgSecuri t yPar anet er s
are not decoded. They must be explicitly decoded by a call to a security model specific decoding function,

eg. dec_usm security_ paraneters/ 1. Also note, if the scopedPDU is encrypted, the OCTET STRING
encoded encr ypt edPDU will be present in the dat a field.

dec_message_only([byte()]) -> Message
Types:
Message = #nessage

Decodes alist of bytesinto an SNMP Message, but does not decode the data part of the Message. That means, datais
still alist of bytes, normally an encoded PDU (v1 and V2) or an encoded and possibly encrypted scopedPDU (v3).

dec pdu([byte()]) -> Pdu
Types:

Pdu = #pdu
Decodes alist of bytesinto an SNMP Pdu.

dec_scoped pdu([byte()]) -> ScopedPdu
Types:

ScopedPdu = #scoped_pdu
Decodes alist of bytesinto an SNMP ScopedPdu.

dec scoped pdu data([byte()]) -> ScopedPduData
Types:
ScopedPduDat a = #scoped_pdu | Encrypt edPDU
Encrypt edPDU = [byte()]

170 | Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP)

snmp_pdus

Decodes alist of bytesinto either a scoped pdu record, or - if the scoped pdu was encrypted - to alist of bytes.

dec_usm security parameters([byte()]) -> UsmSecParams
Types:

UsnBSecPar ans = #usnBecurityParaneters
Decodes alist of bytesinto an SNM P UsmSecurityParameters

enc_message (Message) -> [byte()]
Types:
Message = #nessage

Encodes a message record to alist of bytes.

enc_message only(Message) -> [byte()]
Types:
Message = #nessage

Message isarecord wherethedat a field isassumed to be encoded (alist of bytes). If thereisavl or v2 message, the
dat a fieldisan encoded PDU, and if thereisav3 message, dat a isan encoded and possibly encrypted scopedPDU.

enc_pdu(Pd) -> [byte()]
Types:
Pdu = #pdu
Encodes an SNMP Pdu into alist of bytes.

enc_scoped pdu(ScopedPdu) -> [byte()]
Types:
ScopedPdu = #scoped_pdu
Encodes an SNMP ScopedPdu into alist of bytes, which can be encrypted, and after encryption, encoded with a call

toenc_encrypt ed_scoped_pdu/ 1; or it can be used asthe dat a field in amessage record, which then can
be encoded with enc_nessage_onl y/ 1.

enc_usm security parameters(UsmSecParams) -> [byte()]
Types:

UsnBSecPar ans = #usnBSecurityParaneters
Encodes SNM P UsmSecurityParametersinto alist of bytes.

Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP) | 171

snmp_standard_mib

snmp_standard_mib

Erlang module

The module snnp_st andar d_mni b implements the instrumentation functions for the STANDARD-MIB and
SNMPv2-MIB, and functions for configuring the database.

The configuration files are described in the SNMP User's Manual.

Exports

configure(ConfDir) -> void()
Types:
ConfDir = string()
Thisfunction is called from the supervisor at system start-up.

Inserts all data in the configuration files into the database and destroys all old rows with StorageType vol ati | e.
The rows created from the configuration file will have StorageType nonVol ati | e.

All snnp counters are set to zero.

If an error is found in the configuration file, it is reported using the function confi g_err/ 2 of the error report
module, and the function failswith the reason conf i gurati on_error.

Conf Di r isastring which pointsto the directory where the configuration files are found.
The configuration fileread is: st andar d. conf .

inc(Name) -> void()
inc(Name, N) -> void()
Types.
Name = atom()
N = integer()
Increments avariable in the MIB with N, or oneif Nis not specified.

reconfigure(ConfDir) -> void()
Types:
ConfDir = string()

Insertsall datainthe configuration filesinto the database and destroysall old data, including the rowswith StorageType
nonVol at i | e. Therows created from the configuration file will have StorageType nonVol ati | e.

Thus, the data in the SNMP-STANDARD-MIB and SNMPv2-MIB, after this function has been called, is from the
configuration files.

All snnp counters are set to zero.

If an error is found in the configuration file, it is reported using the function conf i g_err/ 2 of the error report
module, and the function fails with the reason conf i gur ati on_error.

Conf Di r isastring which pointsto the directory where the configuration files are found.
The configuration fileread is: st andar d. conf .

172 | Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP)

snmp_standard_mib

reset() -> void()
Resets all snip countersto 0.

sys up time() -> Time
Types:
Time = int()
Gets the system up time in hundredth of a second.

Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP) | 173

snmp_target mib

snmp_target mib

Erlang module

The module snnp_t ar get _ni b implements the instrumentation functions for the SNMP-TARGET-MIB, and
functions for configuring the database.

The configuration files are described in the SNMP User's Manual.

Legacy API functions add_addr/ 10 that does not specify transport domain, and add_addr/ 11 that has got
separate | pAddr and Por t Nunber arguments still work as before for backwards compatibility reasons.

DATA TYPES
Seethedatatypesin snnpa_conf.

Exports

configure(ConfDir) -> void()
Types:
ConfDir = string()
Thisfunction is called from the supervisor at system start-up.

Inserts all data in the configuration files into the database and destroys al old rows with StorageType vol ati | e.
The rows created from the configuration file will have StorageType nonVol at i | e.

All snnp counters are set to zero.

If an error is found in the configuration file, it is reported using the function confi g_err/ 2 of the error report
module, and the function fails with the reason conf i gur ati on_error.

Conf Di r isastring which pointsto the directory where the configuration files are found.
The configuration filesread are: t ar get _addr . conf andt ar get _par ans. conf .

reconfigure(ConfDir) -> void()
Types:
ConfDir = string()

Insertsall datainthe configuration filesinto the database and destroysall old data, including therowswith StorageType
nonVol at i | e. Therows created from the configuration file will have StorageType nonVol at i | e.

Thus, the datain the SNMP-TARGET-MIB, after thisfunction has been called, isthe datafrom the configuration files.
All snnp counters are set to zero.

If an error isfound in the configuration file, it isreported using the functionconf i g_er r/ 2 of the, and the function
failswith thereason conf i gurati on_error.

Conf Di r isastring which pointsto the directory where the configuration files are found.
The configuration filesread are: t ar get _addr . conf andt ar get _par ans. conf .

set target engine id(TargetAddrName, EngineId) -> boolean()

Types:
Tar get Addr Nane = string()

174 | Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP)

snmp_target mib

Engi neld = string()

Changes the engine id for atarget in the snnpTar get Addr Tabl e. If notifications are sent as Inform requests to
atarget, its engine id must be set.

add addr(Name, Domain, Addr, Timeout, Retry, TaglList, Params, Engineld,
TMask, MMS) -> Ret

Types:
Narme string()
Domai n = transport Donai n()
Addr transport Address() % Default port is 162
Ti meout = integer()
Retry = integer()
TagLi st = string()
ParansNane = string()
Engi neld = string()
TMask = transport AddressMask() % Depends on Domai n
MVS = integer()
Ret {ok, Key} | {error, Reason}

Key term)
Reason = term()

Adds atarget address definition to the agent config. Equivalent to onelineinthet ar get _addr . conf file.

delete addr(Key) -> Ret

Types:
Key = term)
Ret = ok | {error, Reason}
Reason = term()

Delete atarget address definition from the agent config.

add params(Name, MPModel, SecModel, SecName, SecLevel) -> Ret
Types:

Name = string()

MPModel = v1 | v2c | v3

SecMbdel = v1 | v2c | usm

SecName = string()

SecLevel = noAuthNoPriv | authNoPriv | authPriv

Ret = {ok, Key} | {error, Reason}

Key = term)

Reason = term()

Adds atarget parameter definition to the agent config. Equivalent to onelineinthet ar get _par ans. conf file.

delete params(Key) -> Ret
Types:

Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP) | 175

snmp_target mib

Key term)
Ret ok | {error, Reason}

Reason = term()

Delete atarget parameter definition from the agent config.

176 | Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP)

snmp_user_based sm_mib

snmp_user_based _sm_mib

Erlang module

The module snnp_user _based_sm nmi b implements the instrumentation functions for the SNMP-USER-
BASED-SM-MIB, and functions for configuring the database.

The configuration files are described in the SNMP User's Manual.

Exports

configure(ConfDir) -> void()
Types:
ConfDir = string()
Thisfunction is called from the supervisor at system start-up.

Inserts all data in the configuration files into the database and destroys all old rows with StorageType vol ati | e.
The rows created from the configuration file will have StorageType nonVol ati | e.

All snnp counters are set to zero.

If an error is found in the configuration file, it is reported using the function confi g_err/ 2 of the error report
module, and the function failswith the reason conf i gurati on_error.

Conf Di r isastring which pointsto the directory where the configuration files are found.
The configuration fileread is: usm conf .

reconfigure(ConfDir) -> void()
Types:
ConfDir = string()
Insertsall datainthe configuration filesinto the database and destroysall old data, including therowswith StorageType
nonVol at i | e. Therows created from the configuration file will have StorageType nonVol ati | e.

Thus, the data in the SNMP-USER-BASED-SM-MIB, after this function has been called, is the data from the
configuration files.

All snnp counters are set to zero.

If an error is found in the configuration file, it is reported using the function conf i g_err/ 2 of the error report
module, and the function fails with the reason conf i gur ati on_error.

Conf Di r isastring which pointsto the directory where the configuration files are found.

The configuration fileread is; usm conf .

add user(EngineID, Name, SecName, Clone, AuthP, AuthKeyC, OwnAuthKeyC, PrivP,
PrivKeyC, OwnPrivKeyC, Public, AuthKey, PrivKey) -> Ret

Types.
Engi nel D = string()
Name = string()
SecName = string()
Clone = zeroDotZero | [integer()]

Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP) | 177

snmp_user_based sm_mib

Aut hP = usmNoAut hProt ocol | usnHVACVD5AuUt hProt ocol |
us mMHVACSHAAuUt hPr ot ocol

Aut hKeyC = string()

OmnAut hKeyC = string()

PrivP = usmNoPri vProtocol | usnDESPri vProtocol
PrivKeyC = string()

OwnPrivkeyC = string()

Public = string()

Aut hKey = string()

PrivKey = string()

Ret = {ok, Key} | {error, Reason}
Key = term)

Reason = term()

Adds aUSM security data (user) to the agent config. Equivalent to one lineintheusm conf file.

delete user(Key) -> Ret

Types:
Key = term)
Ret = ok | {error, Reason}

Reason = term)
Delete a USM security data (user) from the agent config.

178 | Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP)

snmp_view_based acm_mib

snmp_view _based acm_mib

Erlang module

The module snnp_vi ew_based_acm mi b implements the instrumentation functions for the SNMP-VIEW-
BASED-ACM-MIB, and functions for configuring the database.

The configuration files are described in the SNMP User's Manual.

Exports

configure(ConfDir) -> void()
Types:
ConfDir = string()
Thisfunction is called from the supervisor at system start-up.

Inserts all data in the configuration files into the database and destroys all old rows with StorageType vol ati | e.
The rows created from the configuration file will have StorageType nonVol ati | e.

All snnp counters are set to zero.

If an error is found in the configuration file, it is reported using the function confi g_err/ 2 of the error report
module, and the function failswith the reason conf i gurati on_error.

Conf Di r isastring which pointsto the directory where the configuration files are found.

The configuration fileread is: vacm conf .

reconfigure(ConfDir) -> void()
Types:
ConfDir = string()
Insertsall datainthe configuration filesinto the database and destroysall old data, including therowswith StorageType
nonVol at i | e. Therows created from the configuration file will have StorageType nonVol ati | e.

Thus, the data in the SNMP-VIEW-BASED-ACM-MIB, after this function has been called, is the data from the
configuration files.

All snnp counters are set to zero.

If an error isfound in the configuration file, it is reported using the function config_err/2 of the error report module,
and the function fails with the reason conf i gur ati on_error.

Conf Di r isastring which pointsto the directory where the configuration files are found.
The configuration fileread is: vacm conf .

add sec2group(SecModel, SecName, GroupName) -> Ret
Types.

SecMbdel = v1 | v2c | usm

SecNane = string()

G oupNanme = string()

Ret {ok, Key} | {error, Reason}

Key term))

Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP) | 179

snmp_view_based acm_mib

Reason = term()

Adds a security to group definition to the agent config. Equivalent to one vacmSecurityToGroup-line in the
vacm conf file

delete sec2group(Key) -> Ret
Types:
Key = term)
Ret = ok | {error, Reason}
Reason = term()

Delete a security to group definition from the agent config.

add access(GroupName, Prefix, SecModel, SeclLevel, Match, RV, WV, NV) -> Ret
Types:

GroupNanme = string()

Prefix = string()

SecMbdel = v1 | v2c | usm
SecLevel = string()

Match = prefix | exact

RV = string()

W/ = string()

NV = string()

Ret = {ok, Key} | {error, Reason}
Key = term)

Reason = term()

Adds a access definition to the agent config. Equivalent to one vacmAccess-lineinthevacm conf file.

delete access(Key) -> Ret

Types:
Key = term)
Ret = ok | {error, Reason}

Reason = term()

Delete a access definition from the agent config.

add view tree fam(ViewIndex, SubTree, Status, Mask) -> Ret
Types:

Vi el ndex = integer()

SubTree = oid()

Status = included | excluded

Mask = null | [integer()], where all values are either 0 or 1
Ret = {ok, Key} | {error, Reason}

Key = term)

Reason = term()

180 | Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP)

snmp_view_based acm_mib

Adds a view tree family definition to the agent config. Equivalent to one vacmViewTreeFamily-line in the
vacm conf file

delete view tree fam(Key) -> Ret

Types:
Key = term)
Ret = ok | {error, Reason}

Reason = term()

Delete aview tree family definition from the agent config.

Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP) | 181

snmpc

snmpc

Erlang module

The module snpc contains interface functions to the SNMP toolkit MIB compiler.

Exports

compile(File)
compile(File, Options) -> {ok, BinFileName} | {error, Reason}
Types:

File = string()
Options = [opt()]

opt() = db() | relaxed_row nane_assi gn_check() | deprecated() |
description() | reference() | group_check() | i() | il() | imports() |
nmodul e() | nodule_identity() | nodul e_conpliance() | agent_capabilities()
| outdir() | no_defs() | verbosity() | warnings() | warnings_as_errors()

db() = {db, volatil e| persistent]| mesia}

deprecated() = {deprecated, bool ()}

rel axed_row _nane_assi gn_check() = rel axed_row _nane_assi gn_check
description() = description

reference() = reference

group_check() = {group_check, bool ()}

i) =A{i, [dir()]}

e =A{il, [dir()1}

i nports() = inports

nmodul e() = {nodul e, aton()}

nodul e_identity() = nodule_identity

nodul e_conpl i ance() = nodul e_conpl i ance

agent _capabilities() = agent_capabilities

no_defs() = no_defs

outdir() = {outdir, dir()}

verbosity() = {verbosity, silence|warning|info|log|debug|trace}
war ni ngs() = {warnings, bool ()}

warni ngs_as_errors() = warnings_as_errors

dir() = string()

Bi nFi |l eNanme = string()

Compiles the specified MIB file<Fi | e>. m b. The compiled file Bi nFi | eNane iscalled <Fi | e>. bi n.

The option db specifies which database should be used for the default instrumentation.

Defaultisvol atil e.

Theoptiondepr ecat ed specifiesif adeprecated definition should be kept or not. If the optionisfalsethe MIB
compiler will ignore all deprecated definitions.

Defaultist r ue.

182 | Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP)

snmpc

Theoptionr el axed_r ow_nane_assi gn_check, if present, specifies that the row name assign check shall
not be done strictly according to the SMI (which allows only the value 1). With this option, all values greater than
zeroisallowed (>= 1). Thismeansthat the error will be converted to awarning.

By default it is not included, but if this option is present it will be.

Theoptiondescri pti on specifiesif the text of the DESCRIPTION field will be included or not.

By default it is not included, but if this option is present it will be.

The option r ef er ence specifies if the text of the REFERENCE field, when found in a table definition, will
be included or not.

By default it isnot included, but if thisoption is present it will be. Thereferencetext will be placed inthealocList
field of the mib-entry record (#me{}) for the table.

The option gr oup__check specifies whether the mib compiler should check the OBJECT-GROUP macro and
the NOTIFICATION-GROUP macro for correctness or not.

Defaultist r ue.

The option i specifies the path to search for imported (compiled) MIB files. The directories should be strings
with atrailing directory delimiter.

Defaultis["./"].

The option i | (include_lib) also specifies alist of directories to search for imported MIBs. It assumes that the
first element in the directory name correspondsto an OTP application. The compiler will find the current installed
version. For example, the value ["snmp/mibs/"] will be replaced by ["snmp-3.1.1/mibs/"] (or what the current
version may be in the system). The current directory and the <snnp- home>/ pri v/ m bs/ are dways listed
last in the include path.

The option i nports, if present, specifies that the IMPORT statement of the MIB shall be included in the
compiled mib.

The option nodul e, if present, specifies the name of a module which implements all instrumentation functions
for the MIB.

The name of all instrumentation functions must be the same as the corresponding managed object it implements.

Theoption nodul e_i dent i ty, if present, specifies that the info part of the MODULE-IDENTITY statement
of the MIB shall beincluded in the compiled mib.

The option nodul e_conpl i ance, if present, specifies that the MODULE-COMPLIANCE statement of the
MIB shall be included (with a mib-entry record) in the compiled mib. The mib-entry record of the module-
compliance will contain r ef er ence and nodul e part(s) thisinfointheassocLi st field).

The option agent _capabi | i ti es, if present, specifies that the AGENT-CAPABILITIES statement of the
MIB shall beincluded (with amib-entry record) in the compiled mib. The mib-entry record of the agent-capabilitie
will containr ef er ence and nodul es part(s) thisinfointheassocLi st field).

The option no_def s, if present, specifies that if a managed object does not have an instrumentation function,
the default instrumentation function should NOT be used, instead thisis reported as an error, and the compilation
aborts.

Theoptionver bosi ty specifies the verbosity of the SNMP mib compiler. |.e. if warning, info, log, debug and
trace messages shall be shown.

Defaultissi | ence.

Note that if the option war ni ngs ist r ue and the option ver bosi ty issi | ence, warning messages will
still be shown.

The option war ni ngs specifies whether warning messages should be shown.

Default ist r ue.
Theoptionwar ni ngs_as_err or s, if present, specifies whether warnings should be treated as errors.

Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP) | 183

snmpc

TheMIB compiler understandsboth SMIv1and SMIv2 MIBs. It usesthe MODULE- | DENTI TY statement to determine
if the MIB isversion 1 or 2.

The MIB compiler can be invoked from the OS command line by using the command er | c. er | ¢ recognizes the
extension. m b, and invokesthe SNMP MIB compiler for fileswith that extension. The optionsdb, gr oup_check,
deprecat ed, descri ption,verbosity,inports andnodul e_i dentity haveto be specifiedtoer| c
using the syntax +t er m Seeer | c(1) for details.

is consistent(Mibs) -> ok | {error, Reason}
Types:

M bs = [M bNane]

M bName = string()

Checks for multiple usage of object identifiers and traps between MIBs.

mib to hrl(MibName) -> ok | {error, Reason}
Types:
M bNanme = string()

Generates a . hrl file with definitions of Erlang constants for the objects in the MIB. The . hrl file is called
<M bNane>. hr | . The MIB must be compiled, and present in the current directory.

The mi b_to_hrl| generator can be invoked from the OS command line by using the command erl c. erl ¢
recoghizes the extension . bi n, and invokes this function for files with that extension.

See Also
erlc(1)

184 | Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP)

snmpc(command)

snmpc(command)

Command

The snnpc program provides away to run the SNMP MIB compiler of the Erlang system.

Exports

snmpc [options] file.mib | file.bin
snnpc compileaSNMP MIB file, see compile/1,2 for more info.

It can also be used to generate a header file (.hrl) with definitions of Erlang constants for the objects in the MIB, see
mib_to_hrl/1.

Compiler options
The following options are supported (note that most of these relate to the compilation of the MIB file):
--help
Prints help info.
--version
Prints application and mib format version.
--verbosity verbosity
Print debug info.
verbosity =trace |debug|log|info|silence
Defaultsto si | ence.
--warnings | --wW
Print warning messages.
--wae | --Werror
Warnings as errors. Indicates that warnings shall be treated as errors.
--o directory

The directory where the compiler should place the output files. If not specified, output fileswill be placed in the
current working directory.

--i Directory
Specifiesthe path to search for imported (compiled) MIB files. By default, the current working directory isalways
included.
This option can be present several times, each time specifying one path.

--il Directory

This option (include _lib), specifies a list of directories to search for imported MIBs. It assumes that the first
element in the directory name corresponds to an OTP application. The compiler will find the current installed
version. For example, the value ["snmp/mibs/"] will be replaced by ["snmp-3.1.1/mibs/"] (or what the current
version may be in the system). The current directory and the "snmp-home"/priv/imibs/ are always listed last in
the include path.

Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP) | 185

snmpc(command)

_-%C

This option (skip group check), if present, disables the group check of the mib compiler. That is, should the
OBJECT-GROUP and the NOTIFICATION-GROUP macro(s) be checked for correctness or not.

--dep
K eep deprecated definition(s). If not specified the compiler will ignore deprecated definitions.
--desc
The DESCRIPTION field will be included.
--ref
The REFERENCE field will be included.
--imp
The IMPORTS field will be included.
--mi
The MODULE-IDENTITY field will be included.
--mc
The MODULE-COMPLIANCE field will beincluded.
--ac
The AGENT-CAPABILITIES field will be included.
--mod module
The module which implements all the instrumentation functions.
The name of al instrumentation functions must be the same as the corresponding managed object it implements.
--nd

The default instrumentation functions will not be used if a managed object have no instrumentation function.
Instead this will be reported as an error, and the compilation aborts.

--rrnac

This option, if present, specifies that the row name assign check shall not be done strictly according to the SMI
(which alows only the value 1).

With this option, all values greater than zero is allowed (>= 1). This means that the error will be converted to
awarning.

By default it is not included, but if this option is present it will be.

SEE ALSO
erlc(1), compile(3), snmpce(3)

186 | Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP)

snmpm

snmpm

Erlang module

The module snmpmcontains interface functions to the SNMP manager.

Common Data Types
The following data types are used in the functions below:

oid() = [byte()] - The oid() type is used to represent an ASN.1 OBJECT IDENTIFIER
snmp_reply() = {error status(), error _index(), varbinds()}
error_status() = noError | atom()
error_index() = integer()
varbinds () [varbind()]
atl type() read | write | read write
target name() = string() - Is a unique *non-empty* string
vars_and vals() = [var_and val()]
var_and val() = {oid(), value type(), value()} | {oid(), value()}
value type() = o ('OBJECT IDENTIFIER') |
i ('"INTEGER') |
u ('Unsigned32') |
g ('Unsigned32') |
s ('OCTET SRING') |
b ('BITS') |
ip ('IpAddress') |
op ('Opaque') |
c32 ('Counter32') |
c64 ('Counter64') |
tt ('TimeTicks')

value() = term()

community() = string()

sec_model() = any | vl | v2c | usm

sec_name() = string()

sec_level() = noAuthNoPriv | authNoPriv | authPriv

See dso the datatypesin snnpa_conf .

Exports

monitor() -> Ref
Types:
Ref = reference()

Monitor the SNMP manager. In case of a crash, the calling (monitoring) process will get a'DOWN' message (see the
erlang module for more info).

demonitor(Ref) -> void()
Types:

Ref = reference()
Turn off monitoring of the SNM P manager.

notify started(Timeout) -> Pid

Types:
Ti meout = integer()

Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP) | 187

snmpm

Pid = pid()
Request a notification (message) when the SNMP manager has started.
TheTi meout isthetime the request isvalid. The value has to be greater then zero.

The Pi d is the process handling the supervision of the SNMP manager start. When the manager has started a
completion message will be sent to the client from thisprocess: { snnpm st art ed, Pi d}. If the SNMP manager
was not started in time, a timeout message will be sent to theclient; { snmpm start _ti meout, Pid}.

A client application that is dependent on the SNMP manager will use this function in order to be notified of when the
manager has started. There are two situations when thisis useful:

» During the start of a system, when a client application could start prior to the SNMP manager but is dependent
upon it, and therefor has to wait for it to start.

e When the SNMP manager has crashed, the dependent client application has to wait for the SNM P manager to be
restarted before it can reconnect.

The function returns the pid() of a handler process, that does the supervision on behalf of the client application. Note
that the client application is linked to this handler.

Thisfunction is used in conjunction with the monitor function.

cancel notify started(Pid) -> void()
Types:
Pid = pid()
Cancel a previous regquest to be notified of SNMP manager start.

register user(Id, Module, Data) -> ok | {error, Reason}
register user(Id, Module, Data, DefaultAgentConfig) -> ok | {error, Reason}
Types:
Id = tern()
Modul e = snnmpm_ user ()
Data = term)
Def aul t Agent Config = [default_agent _config()]
defaul t _agent_config() = {Item Val}
I[tem = comunity | tineout | nax_nessage_size | version | sec_nodel
sec_nane | sec_|eve

Val = term))
Reason = term()
snnpm_user () = Mdul e i npl enenting the snnpm user behavi our

Register the manager entity (=user) responsible for specific agent(s).

Modul e isthe callback module (snmpm_user behaviour) which will be called whenever something happens (detected
agent, incoming reply or incoming trap/notification). Note that this could have already been done as a consequence
of the node config. (see users.conf).

The argument Def aul t Agent Confi g isused as default values when this user register agents.
Thetype of Val dependsonltem

188 | Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP)

snmpm

community = string()

timeout = integer() | snmp_timer()

max_message size = integer()

version = vl | v2 | v3

sec_model = any | vl | v2c | usm

sec_name = string()

sec_level = noAuthNoPriv | authNoPriv | authPriv

register user _monitor(Id, Module, Data) -> ok | {error, Reason}

register user monitor(Id, Module, Data, DefaultAgentConfig) -> ok | {error,
Reason}

Types:
Id = term()
Modul e = snnpm_ user ()
Def aul t Agent Config = [default_agent config()]
defaul t _agent_config() = {Item Val}
Item = community | tineout | nax_nessage_size | version | sec_nodel |
sec_nane | sec_level
Val = term()
Data = term))
Reason = term()
snnpm_user () = Modul e i npl enenting the snnpm user behavi our

Register the monitored manager entity (=user) responsible for specific agent(s).

The process performing the registration will be monitored. Which means that if that process should die, al agents
registered by that user process will be unregistered. All outstanding requests will be canceled.

Modul e isthe callback module (snmpm_user behaviour) which will be called whenever something happens (detected
agent, incoming reply or incoming trap/notification). Note that this could have already been done as a consequence
of the node config. (see users.conf).

The argument Def aul t Agent Conf i g isused as default values when this user register agents.
Thetype of Val dependsonltem

community = string()

timeout = integer() | snmp_timer()

max_message size = integer()

version = vl | v2 | v3

sec_model = any | vl | v2c | usm

sec_name = string()

sec_level = noAuthNoPriv | authNoPriv | authPriv

unregister user(Id) -> ok | {error, Reason}

Types.
Id = term)
Unregister the user.

which users() -> Users
Types:
Users = [Userld]

Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP) | 189

snmpm

Userld = term)
Get alist of theidentities of all registered users.

register agent(UserIld, TargetName, Config) -> ok | {error, Reason}
Types:
Userld = term)
Target Name = target_nane()
Config = [agent _config()]
agent _config() = {lItem Val}
Item= engine_id | address | port | comunity | tinmeout | nmax_nessage_si ze
| version | sec_nodel | sec_nanme | sec_level | tdonain
Val = term)
Reason = term()

Explicitly instruct the manager to handle this agent, with User | d asthe responsible user.

Called to instruct the manager that this agent shall be handled. This function is used when the user knows in advance
which agents the manager shall handle. Note that there is an alternate way to do the same thing: Add the agent to the
manager config files (see agents.conf).
Tar get Name isanon-empty string, uniquely identifying the agent.
Thetype of Val dependsonltem

[mandatory] engine id = string()

[mandatory] tadress = transportAddress() % Depends on tdomain

[optional] port = inet:port number()

[optional] tdomain = transportDomain()

[optional] community = string()

[optional] timeout = integer() | snmp_ timer()

[optional] max message size = integer()

[optional] version = vl | v2 | v3

[optional] sec _model = any | vl | v2c | usm

[optional] sec name = string()
[optional] sec_level = noAuthNoPriv | authNoPriv | authPriv

Notethat if not domai n isgiven, the default value, t r anspor t Dormai nUdpl pv4, isused.
Notethat if no port isgivenandif t addr ess does not contain a port number, the default valueis used.

unregister agent(UserId, TargetName) -> ok | {error, Reason}
Types:

Userld = term)

Target Name = target_nane()

Unregister the agent.

agent info(TargetName, Item) -> {ok, Val} | {error, Reason}
Types.

Target Nane = target_nane()

Item = atom)

Reason = term()

Retrieve agent config.

190 | Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP)

snmpm

update agent info(UserId, TargetName, Info) -> ok | {error, Reason}
update agent info(UserId, TargetName, Item, Val) -> ok | {error, Reason}
Types:

Userld = term)

Tar get Nanme = target_nane()

Info = [{item), itemuvalue()}]

Iltem=item)

item) = atom)

Val = itemval ue()

itemvalue() = tern()

Reason = term()

Update agent config. The function updat e_agent _i nf o/ 3 should be used when several values needs to be
updated atomically.

See function register_agent for more info about what kind of items are allowed.

which agents() -> Agents
which_agents(UserId) -> Agents
Types:
Userld = term)
Agents = [Tar get Nane]
Tar get Nanme = target_nane()
Get alist of al registered agents or all agents registered by a specific user.

register usm user(EngineID, UserName, Conf) -> ok | {error, Reason}
Types:

Engi nel D = string()

User Nane string()

Conf = [usm. config()]

usmconfig() = {Item Val}

Item = sec_nane | auth | auth_key | priv | priv_key

Val = term))

Reason = term()

Explicitly instruct the manager to handle thisUSM user. Note that there is an alternate way to do the same thing: Add
the usm user to the manager config files (see usm.conf).

Thetype of Val dependsonltem

sec_name = string()
auth = usmNoAuthProtocol | usmHMACMD5AuthProtocol | usmHMACSHAAuthProtocoltimeout
auth key = [integer()] (length 16 if auth = usmHMACMD5AuthProtocol,
length 20 if auth = usmHMACSHAAuthProtocol)
priv = usmNoPrivProtocol | usmDESPrivProtocol | usmAesCfbl28Protocol
priv_key = [integer()] (length is 16 if priv = usmDESPrivProtocol | usmAesCfb128Protocol).

unregister usm user(EngineID, UserName) -> ok | {error, Reason}
Types:

Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP) | 191

snmpm

Engi nel D = string()
User Nane string()
Reason = term()

Unregister thisUSM user.

usm user info(EngineID, UserName, Item) -> {ok, Val} | {error, Reason}
Types.

Engi nel D = string()

UsnNanme = string()

Item = sec_nane | auth | auth_key | priv | priv_key

Reason = term()
Retrieve usm user config.

update usm user info(EngineID, UserName, Item, Val) -> ok | {error, Reason}
Types:

Engi nel D = string()

UsnNane = string()

Item = sec_nane | auth | auth_key | priv | priv_key

Val = term))

Reason = term()

Update usm user config.

which usm users() -> UsmUsers

Types:
UsmUsers = [{Engi nel D, User Nane}]
Engi nel D = string()

UsnNane = string()
Get alist of al registered usm users.

which usm users(EngineID) -> UsmUsers

Types:
UsmJsers = [User Nane]
User Nanme = string()

Get alist of al registered usm users with engine-id Engi nel D.

sync_get2(UserId, TargetName, 0ids) -> {ok, SnmpReply, Remaining} | {error,
Reason}
sync_get2(UserId, TargetName, 0ids, SendOpts) -> {ok, SnmpReply, Remaining} |
{error, Reason}
Types:

Userld = term)

Tar get Name = target_nane()

Qds = [oid()]

192 | Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP)

snmpm

SendOpts = send_opts()
send_opts() = [send_opt()]
send_opt () = {context, string()}

| {tineout, pos_integer()} | {extra,
term()} | {comunity, community()}
I(

|{ {sec_nodel, sec_nodel ()} | {sec_naneg,
string()} | {sec_level, sec_leve } | {max_nmessage_size, pos_integer()}
SnnpReply = snnp_repl y()
Remai ni ng i nteger ()
Reason = {send failed, Reqld, Actual Reason} | {invalid sec_info, Seclnfo,
Snnpl nfo} | tern()
Reqld = term()
Act ual Reason = term))
Seclnfo = [sec_info()]
sec_info() = {sec_tag(), ExpectedValue, ReceivedVal ue}
sec_tag() = aton()
Expect edVal ue = Recei vedVal ue = term()

Snnplnfo = term))

)

Synchronous get - r equest .
Remai ni ng isthe remaining time of the given (or default) timeout time.

When Reason is {send_failed, ...} it means that the net_if process failed to send the message. This could happen
because of any number of reasons, i.e. encoding error. ActualReason is the actual reason in this case.

The send option ext r a specifies an opaque data structure passed on to the net-if process. The net-if processincluded
in this application makes, with one exception, no use of thisinfo, so the only use for it in such a option (when using
the built in net-if) would be tracing. The one usage exception is: Any tuple withsnnpm extra_i nfo_t ag asits
first element isreserved for internal use.

Some of the send options (conmruni t y, sec_nodel ,sec_nhane, sec_| evel and max_nessage_si ze) are
override options.Thatis, for thisrequest, they override any configuration done when the agent was registered.

For Snnpl nf o, seethe user callback function handle_report.

async _get2(UserId, TargetName, 0ids) -> {ok, ReqId} | {error, Reason}

async_get2(UserId, TargetName, 0ids, SendOpts) -> {ok, ReqId} | {error,
Reason}

Types.
Userld = term)
Tar get Nane = target_nane()
Qds = [oid()]
SendOpts = send_opts()
send_opts() = [send_opt()]
send_opt () = {context, string()}

|
term()} | {comunity, comrmunity()}
string()} | {sec_level, sec_level(

Reqld = term()
Reason = term()

{tinmeout, pos_integer()} | {extra,
| {sec_nodel, sec_nodel ()} | {sec_naneg,
} | {max_nessage_size, pos_integer()}

)

Asynchronous get - r equest .

Thereply, if it arrives, will be delivered to the user through acall to the snmpm_user callback function handl e_pdu.

Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP) | 193

snmpm

Thesend optiont i meout specifies for how long the request is valid (after which the manager is free to delete it).

The send option ext r a specifies an opaque data structure passed on to the net-if process. The net-if process included
in this application makes, with one exception, no use of thisinfo, so the only use for it in such a option (when using
the built in net-if) would be tracing. The one usage exception is: Any tuple with snnpm extra_i nf o_t ag asits
first element isreserved for internal use.

Some of the send options (conmuni t y, sec_nodel , sec_nane, sec_| evel and max_nessage_si ze) are
override options.Thatis, for thisrequest, they override any configuration done when the agent was registered.

sync_get next2(UserId, TargetName, 0ids) -> {ok, SnmpReply, Remaining} |
{error, Reason}

sync_get next2(UserId, TargetName, 0ids, SendOpts) -> {ok, SnmpReply,
Remaining} | {error, Reason}

Types:
Userld = term)
Target Name = target_nane()
Qds = [oid()]
SendOpts = send_opts()
send_opts() = [send_opt()]
send_opt () = {context, string()}
term()} | {comunity, community()}
string()} | {sec_level, sec_level(
SnnpReply = snnp_reply()
Remai ni ng i nteger()
Reason = {send failed, Reqld, Actual Reason} | {invalid_sec_info, Seclnfo,
Snnplnfo} | term()
Reqld = tern()
Act ual Reason = tern()
Seclnfo = [sec_info()]
sec_info() = {sec_tag(), ExpectedVval ue, ReceivedVal ue}
sec_tag() = aton()
Expect edVal ue = Recei vedVal ue = term()
Snnplnfo = term()

{tinmeout, pos_integer()} | {extra,
| {sec_nodel, sec_nodel ()} | {sec_nane,
} | {max_nessage_size, pos_integer()}

)

Synchronous get - next - r equest .
Remai ni ng isthe remaining time of the given (or default) timeout time.

When Reason is {send_failed, ...} it means that the net_if process failed to send the message. This could happen
because of any number of reasons, i.e. encoding error. ActualReason isthe actual reason in this case.

The send option ext r a specifies an opague data structure passed on to the net-if process. The net-if processincluded
in this application makes, with one exception, no use of thisinfo, so the only use for it in such a option (when using
the built in net-if) would be tracing. The one usage exception is: Any tuple with snnpm extra_i nf o_t ag asits
first element isreserved for internal use.

Some of the send options (conmuni t y, sec_nodel , sec_nane, sec_| evel and max_nessage_si ze) are
override options.Thatis, for thisrequest, they override any configuration done when the agent was registered.

For Snnpl nf o, see the user callback function handle_report.

194 | Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP)

snmpm

async_get next2(UserId, TargetName, 0ids) -> {ok, ReqId} | {error, Reason}

async_get next2(UserId, TargetName, 0ids, SendOpts) -> {ok, Reqld} | {error,
Reason}

Types:
Userld = term)
Tar get Nanme = target_nane()
Gds = [oid()]
send_opt () = {context, string()}

I
term()} | {comunity, community()}
string()} | {sec_level, sec_level(

Regld = integer()
Reason = term()

{tinmeout, pos_integer()} | {extra,
| {sec_nodel, sec_nodel ()} | {sec_nane,
} | {max_nessage_size, pos_integer()}

)

Asynchronous get - next - r equest .
Thereply will be delivered to the user through a call to the snmpm_user callback function handl e_pdu.
Thesend optiont i meout specifies for how long the request is valid (after which the manager is free to delete it).

The send option ext r a specifies an opaque data structure passed on to the net-if process. The net-if process included
in this application makes, with one exception, no use of thisinfo, so the only use for it in such a option (when using
the built in net-if) would be tracing. The one usage exception is: Any tuple withsnnpm extra_i nf o_t ag asits
first element isreserved for internal use.

Some of the send options (conmruni t y, sec_nodel , sec_nane, sec_| evel and max_nessage_si ze) are
override options.Thatis, for thisrequest, they override any configuration done when the agent was registered.

sync_set2(UserId, TargetName, VarsAndVals) -> {ok, SnmpReply, Remaining} |
{error, Reason}

sync_set2(UserId, TargetName, VarsAndVals, SendOpts) -> {ok, SnmpReply,
Remaining} | {error, Reason}

Types:
Userld = term))
Target Nanme = target_nane()
VarsAndVal s = vars_and_val s()
SendOpts = send_opts()
send_opts() = [send_opt()]
send_opt () = {context, string()}

| {tineout, pos_integer()} | {extra,
term()} | {comunity, community()}
| I (

{
| {sec_nodel, sec_nodel ()} | {sec_nane,
}

string()} {sec_level, sec_level()} | {max_nessage_size, pos_integer()}
SnnpRepl y snnp_reply()
Remai ni ng = i nteger()

Reason = {send _failed, Reqld, Actual Reason} | {invalid_sec_info, Seclnfo,
Snnplnfo} | term()

Reqld = term()

Act ual Reason = term))

Seclnfo = [sec_info()]

sec_info() = {sec_tag(), ExpectedVal ue, ReceivedVal ue}

sec_tag() = aton()

Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP) | 195

snmpm

Expect edVal ue = ReceivedValue = term()
Snnmplnfo = term))

Synchronous set - r equest .
Remai ni ng isthe remaining time of the given (or default) timeout time.

When Reason is {send_failed, ...} it means that the net_if process failed to send the message. This could happen
because of any number of reasons, i.e. encoding error. ActualReason isthe actual reason in this case.

When var_and_val() is{oid(), valug()}, the manager makes an educated guess based on the loaded mibs.

The send option ext r a specifies an opaque data structure passed on to the net-if process. The net-if processincluded
in this application makes, with one exception, no use of thisinfo, so the only use for it in such a option (when using
the built in net-if) would be tracing. The one usage exception is: Any tuple withsnnpm extra_i nfo_t ag asits
first element isreserved for internal use.

Some of the send options (conmruni t y, sec_nodel , sec_nhane, sec_| evel and max_nessage_si ze) are
override options.Thatis, for thisrequest, they override any configuration done when the agent was registered.

For Snnpl nf o, seethe user callback function handle_report.

async_set2(UserId, TargetName, VarsAndVals) -> {ok, ReqId} | {error, Reason}

async set2(UserId, TargetName, VarsAndVals, SendOpts) -> {ok, ReqId} |
{error, Reason}

Types.
Userld = term)
Target Name = target_nane()
VarsAndVal s = vars_and_val s()
SendOpts = send_opts()
send_opts() = [send_opt ()]
send_opt () = {context, string()}

|
term()} | {comunity, community()}
string()} | {sec_level, sec_level(

Reqld = tern()
Reason = term()

{tinmeout, pos_integer()} | {extra,
| {sec_nodel, sec _nodel ()} | {sec_nane,
} | {max_nessage_size, pos_integer()}

)

Asynchronous set - r equest .

Thereply will be delivered to the user through a call to the snmpm_user callback function handl e_pdu.
Thesend optiont i meout specifies for how long the request is valid (after which the manager isfree to delete it).
When var_and_val() is{oid(), valug()}, the manager makes an educated guess based on the loaded mibs.

The send option ext r a specifies an opaque data structure passed on to the net-if process. The net-if processincluded
in this application makes, with one exception, no use of thisinfo, so the only use for it in such a option (when using
the built in net-if) would be tracing. The one usage exception is: Any tuple with snnpm extra_i nfo_t ag asits
first element isreserved for internal use.

Some of the send options (conmuni t y, sec_nodel ,sec_nane, sec_| evel and max_nessage_si ze) are
override options.Thatis, for thisrequest, they override any configuration done when the agent was registered.

196 | Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP)

snmpm

sync_get bulk2(UserId, TragetName, NonRep, MaxRep, 0ids) -> {ok, SnmpReply,
Remaining} | {error, Reason}

sync_get bulk2(UserId, TragetName, NonRep, MaxRep, 0ids, SendOpts) -> {ok,
SnmpReply, Remaining} | {error, Reason}

Types:
Userld = term)
Tar get Nanme = target_nane()
NonRep = integer()
MaxRep = integer()
Ads = [oid()]
SendOpts = send_opts()
send_opts() = [send_opt()]
send_opt () = {context, string()}

| {timeout, pos_integer()} | {extra,
term()} | {community, comunity()}
| I(

{
| {sec_nodel, sec_nodel ()} | {sec_nane,
}

string()} {sec_l evel, sec_level ()} | {max_nessage_size, pos_integer()}
SnnmpRepl y snnp_reply()
Remai ni ng = i nteger()

Reason = {send_failed, Reqld, Actual Reason} | {invalid_sec_info, Seclnfo,

Snnmplnfo} | term()

Reqld = ternm()

Act ual Reason = term()

Seclnfo = [sec_info()]

sec_info() = {sec_tag(), ExpectedVal ue, ReceivedVal ue}
sec_tag() = atom()

Expect edVal ue = Recei vedVal ue = term)

Snmplnfo = term))

Synchronous get - bul k- r equest (See RFC1905).
Remai ni ng isthe remaining time of the given (or default) timeout time.

When Reason is {send_failed, ...} it means that the net_if process failed to send the message. This could happen
because of any number of reasons, i.e. encoding error. ActualReason isthe actual reason in this case.

The send option ext r a specifies an opaque data structure passed on to the net-if process. The net-if process included
in this application makes, with one exception, no use of thisinfo, so the only use for it in such a option (when using
the built in net-if) would be tracing. The one usage exception is: Any tuple withsnnpm extra_i nf o_t ag asits
first element is reserved for internal use.

Some of the send options (conmruni t y, sec_nodel , sec_nane, sec_| evel and max_nessage_si ze) are
override options.Thatis, for thisrequest, they override any configuration done when the agent was registered.

For Snnpl nf o, seethe user callback function handle report.

async_get bulk2(UserId, TargetName, NonRep, MaxRep, 0ids) -> {ok, ReqId} |
{error, Reason}

async get bulk2(UserId, TargetName, NonRep, MaxRep, 0ids, SendOpts) -> {ok,
ReqId} | {error, Reason}

Types:

Userld = term))

Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP) | 197

snmpm

Tar get Nane = target_nane()
NonRep = integer()

MaxRep = integer()

Qds = [oid()]

SendOpts = send_opts()
send_opts() = [send_opt()]
send_opt () = {context, string()}

I
term()} | {comunity, community()}
string()} | {sec_level, sec_level(

Regld = integer()
Reason = term()
Asynchronous get - bul k- r equest (See RFC1905).

Thereply will be delivered to the user through a call to the snmpm_user callback function handl e_pdu.

{tinmeout, pos_integer()} | {extra,
| {sec_nodel, sec_nodel ()} | {sec_nane,
} | {max_nessage_size, pos_integer()}

)

Thesend optiont i meout specifies for how long the request is valid (after which the manager is free to delete it).

The send option ext r a specifies an opaque data structure passed on to the net-if process. The net-if process included
in this application makes no use of this info, so the only use for it in such a configuration (when using the built in
net-if) would be tracing.

Some of the send options (conmruni t y, sec_nodel ,sec_nane, sec_| evel and max_nessage_si ze) are
override options.Thatis, for thisrequest, they override any configuration done when the agent was registered.

cancel async request(UserId, Reqld) -> ok | {error, Reason}
Types.

Userld = term)

Regld = term))

Reason = term()
Cancel a previous asynchronous request.

log to txt(LogDir)
log to txt(LogDir, Block | Mibs)
log to txt(LogDir, Mibs, Block | OutFile) -> ok | {ok, Cnt} | {error, Reason}
log to txt(LogDir, Mibs, OutFile, Block | LogName) -> ok | {ok, Cnt} |
{error, Reason}
log to txt(LogDir, Mibs, OutFile, LogName, Block | LogFile) -> ok | {ok, Cnt}
| {error, Reason}
log to txt(LogDir, Mibs, OutFile, LogName, LogFile, Block | Start) -> ok |
{ok, Cnt} | {error, Reason}
log to txt(LogDir, Mibs, OutFile, LogName, LogFile, Block, Start) -> ok |
{ok, Cnt} | {error, Reason}
log to txt(LogDir, Mibs, OutFile, LogName, LogFile, Start, Stop) -> ok | {ok,
Cnt} | {error, Reason}
log to txt(LogDir, Mibs, OutFile, LogName, LogFile, Block, Start, Stop) -> ok
| {ok, Cnt} | {error, Reason}
Types:

LogDir = string()

198 | Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP)

snmpm

M bs = [M bNane]

M bNane = string()
Bl ock = bool ean()
QutFile = string()

LogName = string()
LogFile = string()
Start = Stop = null | calendar:datetinme() | {local _tine,

cal endar:datetinme()} | {universal _tinme, calendar:datetinme()}
Cnt = {NunOK, NunERR}

NumOK = non_neg_i nteger ()

NUnERR = pos_i nt eger ()

Reason = disk_log open_error() | file_open_error() | term()
di sk_l og_open_error() = {LogNane, term()}

file open_error() = {QutFile, term)}

Converts an Audit Trail Log to a readable text file. Qut Fi | e defaults to "./snmpm_log.txt". LogNane defaults to

"snmpm_log". LogFi | e defaultsto "snmpm.log".

TheBl ock argument indicatesif thelog should be blocked during conversion. This could be usefull when converting

large logs (when otherwise the log could wrap during conversion). Defaultstot r ue.
See snmp:log_to_txt for more info.

log to io(LogDir) -> ok | {ok, Cnt} | {error, Reason}

log to io(LogDir, Block | Mibs) -> ok | {ok, Cnt} | {error, Reason}
log to io(LogDir, Mibs) -> ok | {error, Reason}

log to io(LogDir, Mibs, Block | LogName) -> ok | {ok, Cnt} | {error, Reason}
(

log to io(LogDir, Mibs, LogName, Block | LogFile) -> ok | {ok, Cnt} | {error,

Reason}
log to io(LogDir, Mibs, LogName, LogFile, Block | Start) -> ok | {ok, Cnt} |
{error, Reason}
log to io(LogDir, Mibs, LogName, LogFile, Block, Start) -> ok | {ok, Cnt} |
{error, Reason}
log to io(LogDir, Mibs, LogName, LogFile, Start, Stop) -> ok | {ok, Cnt} |
{error, Reason}
log to io(LogDir, Mibs, LogName, LogFile, Block, Start, Stop) -> ok | {ok,
Cnt} | {error, Reason}
Types:

LogDir = string()

M bs = [M bNane]

M bNane = string()

Bl ock = bool ean()

LogNane = string()

LogFile = string()

Start = Stop = null | calendar:datetinme() | {local _tine,

cal endar:datetinme()} | {universal tinme, calendar:datetinme()}

Cnt = {Nun®X, NunERR}

Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP) | 199

snmpm

NumOK = non_neg_i nteger ()

NumERR = pos_integer ()

Reason = disk | og open_error() | file_ open_error() | term)

disk_Iog open_error() = {LogNane, term)}

file_open_error() = {QutFile, term()}
Convertsan Audit Trail Logto areadableformat and printsit on stdio. LogNane defaultsto"snmpm_log". LogFi | e
defaultsto "snmpm.log".

TheBl ock argument indicatesif thelog should be blocked during conversion. This could be usefull when converting
large logs (when otherwise the log could wrap during conversion). Defaultstot r ue.

See snmp:log_to_io for more info.

change log size(NewSize) -> ok | {error, Reason}
Types:

NewSi ze = {MaxBytes, MaxFil es}

MaxByt es = integer ()

MaxFil es = integer()

Reason = term()

Changes the log size of the Audit Trail Log. The application must be configured to use the audit trail log function.
Please refer to disk_log(3) in Kernel Reference Manual for a description of how to change the log size.

The change is permanent, as long as the log is not deleted. That means, the log size is remembered across reboots.

set log type(NewType) -> {ok, 0ldType} | {error, Reason}
Types:

NewType = O dType = atl _type()

Reason = term()
Changes the run-time Audit Trail log type.

Note that this has no effect on the application configuration as defined by configuration files, so a node restart will
revert the config to whatever isin those files.

This function is primarily useful in testing/debugging scenarios.

load mib(Mib) -> ok | {error, Reason}
Types.

Mb = M bNane

M bNane = string()

Reason = term()

Load aM b into the manager. The M bNane is the name of the Mib, including the path to where the compiled mib
isfound. For example,

Dir = code:priv _dir(my_app) ++ "/mibs/",

snmpm: load mib(Dir ++ "MY-MIB").

unload mib(Mib) -> ok | {error, Reason}
Types:
Mb = M bNane

200 | Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP)

snmpm

M bNane = string()
Reason = term()

Unload a M b from the manager. The M bNane is the name of the Mib, including the path to where the compiled
mib is found. For example,

Dir = code:priv _dir(my _app) ++ "/mibs/",
snmpm:unload mib(Dir ++ "MY-MIB").

which mibs() -> Mibs

Types.
Mbs = [{MbNarme, M bFile}]
M bNane = atom()
MbFile = string()

Get alist of al the mib'sloaded into the manager.

name to oid(Name) -> {ok, 0ids} | {error, Reason}
Types.

Nare atom)

Q ds [oid()]
Transform a adlias-nametoitsoid.

Note that an alias-name is only unique within the mib, so when loading several mib's into a manager, there might be
severa instances of the same aiasname.

oid to name(0id) -> {ok, Name} | {error, Reason}
Types:

Qd = oid()

Name = atom()

Reason = term()

Transform aoid to its aliasname.

oid to type(0id) -> {ok, Type} | {error, Reason}

Types:
ad = oid()
Type = atom()

Reason = term()
Retreive the type (asnl bertype) of an oid.

backup (BackupDir) -> ok | {error, Reason}
Types:
BackupDir = string()
Backup persistent data handled by the manager.
BackupDir cannot be identical to DbDir.

Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP) | 201

snmpm

info() -> [{Key, Value}l
Types.

Key = atom()

Value = term)

Returns a list (a dictionary) containing information about the manager. Information includes statistics counters,
miscellaneous info about each process (e.g. memory allocation), and so on.

verbosity(Ref, Verbosity) -> void()

Types:
Ref = server | config | net_if | note_store | al
Verbosity = verbosity()
verbosity() = silence | info | log | debug | trace

Sets verbosity for the designated process. For the lowest verbosity si | ence, nothing is printed. The higher the
verbosity, the moreis printed.

restart(Ref) -> void()
Types:
Ref = net if

Restart the indicated process (Ref). Note that its not without risk to restart a process, and should therefor be used
with care.

format reason(Reason) -> string()
format reason(Prefix, Reason) -> string()

Types.
Reason = term()
Prefix = integer() | string()

This utility function is used to create a formatted (pretty printable) string of the error reason received from either:

 The Reason returned value if any of the sync/async get/get-next/set/get-bulk functions returns { err or,
Reason}

e TheReason parameter in the handle_error user callback function.

Pr ef i x should either be an indention string (e.g. alist of spaces) or a positive integer (which will be used to create
the indention string of that length).

202 | Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP)

snmpm_conf

snmpm_conf

Erlang module

The module snmpm_conf contains various utility functions to used for manipulating (write/append/read) the config
files of the SNMP manager.

Exports

manager _entry(Tag, Val) -> manager entry()

Types:
Tag = address | port | engine_id | max_nessage_si ze
Val = term))

manager _entry() = tern()
Create an entry for the manager config file, manager . conf .
Thetype of Val depends on the value of Tag, see Manager Information for more info.

write manager config(Dir, Conf) -> ok
write manager config(Dir, Hdr, Conf) -> ok
Types:

Dir = string()

Hdr = string()

Conf = [manager _entry()]

Write the manager config to the manager config file.
Di r isthe path to the directory where to store the config file.
Hdr isan optional file header (note that this text iswritten to the file asis).

See Manager Information for more info.

append manager config(Dir, Conf) -> ok
Types:
Dir = string()
Conf = [rmanager _entry()]
Append the config to the current manager config file.
Di r isthe path to the directory where to store the config file.

See Manager Information for moreinfo.

read manager config(Dir) -> Conf
Types:

Dir = string()

Conf = [manager_entry()]
Read the current manager config file.

Di r isthe path to the directory where to store the config file.

Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP) | 203

snmpm_conf

See Manager Information for moreinfo.

users_entry(UserId) -> users entry()
users_entry(UserId, UserMod) -> users entry()
users entry(UserId, UserMod, UserData) -> users entry()
Types:

Userld = term)

User Mod = at on()

UserData = term)

standard_entry() = term))

Create an entry for the manager users config file, user s. conf.

users_entry(Userld) tranglates to the

snmpm user _defaul t).

following cal:

users_entry(Userld,

users_entry(Userld, UserMd) trandatesto thefollowingcal: users_entry(Userld, User Mod,

undefi ned).
See Users for more info.

write users config(Dir, Conf) -> ok
write users config(Dir, Hdr, Conf) -> ok
Types:

Dir = string()

Hdr = string()

Conf = [users_entry()]

Write the manager users config to the manager users config file.
Di r isthe path to the directory where to store the config file.
Hdr isan optional file header (note that this text iswritten to the file asis).

See Users for moreinfo.

append users config(Dir, Conf) -> ok
Types:
Dir = string()
Conf = [users_entry()]
Append the users config to the current manager users config file.
Di r isthe path to the directory where to store the config file.

See Users for more info.

read users config(Dir) -> Conf
Types:

Dir = string()

Conf = [users_entry()]
Read the current manager users config file.

Di r isthe path to the directory where to store the config file.

204 | Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP)

snmpm_conf

See Users for moreinfo.

agents entry(UserId, TargetName, Comm, Domain, Addr, EngineID, Timeout,
MaxMessageSize, Version, SecModel, SecName, SecLevel) -> agents entry()

Types:
Userld = term)
Target Name = string()
Comm = string()
Domai n = transport Donai n()
Addr = transport Address()
Engi nel D = string()
Ti meout = integer()
MaxMessageSi ze = i nteger ()
Version = vl | v2 | v3
SecMbdel = vl | v2c | usm
SecName = string()
SecLevel = noAut hNoPriv | authNoPriv | authPriv
agents_entry() = term()

Create an entry for the manager agents config file, agent s. conf .

See Agents for moreinfo.

write agents config(Dir, Conf) -> ok
write agents config(Dir, Hdr, Conf) -> ok

Types:
Dir = string()
Hdr = string()

Conf = [_entry()]
Write the manager agents config to the manager agents config file.
Di r isthe path to the directory where to store the config file.
Hdr isan optional file header (note that thistext iswritten to the file asis).

See Agents for moreinfo.

append agents config(Dir, Conf) -> ok
Types:
Dir = string()
Conf = [agents_entry()]
Append the agents config to the current manager agents config file.
Di r isthe path to the directory where to store the config file.

See Agents for moreinfo.

read agents config(Dir) -> Conf
Types:

Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP) | 205

snmpm_conf

Dir = string()

Conf = [agents_entry()]
Read the current manager agents config file.
Di r isthe path to the directory where to store the config file.
See Agents for moreinfo.

usm entry(EngineID, UserName, AuthP, AuthKey, PrivP, PrivKey) -> usm _entry()

usm_entry(EngineID, UserName, SecName, AuthP, AuthKey, PrivP, PrivKey) ->
usm _entry()

Types:
Engi nel D = string()
User Nane = string()
SecName = string()

Aut hP = usmNoAut hProt ocol | usnHMACVD5AuUt hProt ocol |
us mHVACSHAAuUt hPr ot ocol

Aut hKey = [integer()]
PrivP = usmNoPrivProtocol | usnDESPrivProtocol | usmAesCf b128Pr ot ocol
PrivKey = [integer()]
usmentry() = term)
Create an entry for the agent community config file, comuni ty. conf .

See Security datafor USM for more info.

write usm config(Dir, Conf) -> ok
write usm config(Dir, Hdr, Conf) -> ok
Types:
Dir = string()
Hdr = string()
Conf = [usmentry()]
Write the manager usm config to the manager usm config file.
Di r isthe path to the directory where to store the config file.
Hdr isan optional file header (note that thistext iswritten to thefile asis).

See Security datafor USM for more info.

append usm config(Dir, Conf) -> ok
Types:
Dir = string()
Conf = [usmentry()]
Append the usm config to the current manager usm config file.
Di r isthe path to the directory where to store the config file.

See Security datafor USM for more info.

206 | Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP)

snmpm_conf

read usm config(Dir) -> Conf
Types:
Dir = string()
Conf = [usmentry()]
Read the current manager usm config file.
Di r isthe path to the directory where to store the config file.

See Security datafor USM for more info.

Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP) | 207

snmpm_mpd

snmpm_mpd

Erlang module

The module snmpm_npd implements the version independent Message Processing and Dispatch functionality in
SNMP for the manager. It is supposed to be used from a Network Interface process (Definition of Manager Net if).

Legacy API function pr ocess_nsg/ 7 that has got separate | pAddr and Por t Nunber arguments still works as
before for backwards compatibility reasons.

Exports

init(Vsns) -> mpd state()
Types:
Vsns = [Vsn]
Vsn = vl | v2 | v3
This function can be called from the net_if process at start-up. The options list defines which versionsto use.
It also initializes some SNMP counters.

process msg(Msg, Domain, Addr, State, NoteStore, Logger) -> {ok, Vsn, Pdu,
PduMS, MsgData} | {discarded, Reason}

Types:
Msg = binary()
Domai n = transport Domai nUdpl pv4 | transport Domai nUdpl pv6
Addr = {inet:ip_address(), inet:port_nunber()}
State = npd_state()
Not eStore = pid()
Logger = function()
Vsn = 'version-1' | 'version-2' | 'version-3
Pdu = #pdu
PduMs = integer()
MsgData = term()
Processes an incoming message. Performs authentication and decryption as necessary. The return values should be
passed the manager server.
Not eSt or e isthe pi d() of the note-store process.
Logger isthefunction used for audit trail logging.

In the case when the pdu typeisr eport , MsgDat aiseither ok or{error, Reqld, Reason}.

generate msg(Vsn, NoteStore, Pdu, MsgData, Logger) -> {ok, Packet} |
{discarded, Reason}

Types:
Vsn = 'version-1' | 'version-2' | 'version-3
Not eStore = pid()
Pdu = #pdu

208 | Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP)

snmpm_mpd

MsgData = term))
Logger function()
Packet = binary()
Reason = term()

Generates a possibly encrypted packet to be sent to the network.
Not eSt or e isthe pi d() of the note-store process.

MsgDat a is the message specific data used in the SNMP message. In SNMPv1 and SNMPv2c, this message data is
the community string. In SNMPV3; it is the context information.

Logger isthefunction used for audit trail logging.

generate response msg(Vsn, Pdu, MsgData, Logger) -> {ok, Packet} |
{discarded, Reason}

Types:
Vsn = 'version-1' | 'version-2' | 'version-3
Pdu = #pdu

MsgData = term)
Logger = function()
Packet bi nary()
Reason term)

Generates a possibly encrypted response packet to be sent to the network.

MsgDat a is the message specific data used in the SNMP message. This value is received from the process msg
function.

Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP) | 209

snmpm_network_interface

snmpm_network_interface

Erlang module

This modul e defines the behaviour of the manager network interface. A snnpm _net wor k_i nt er f ace compliant
module must export the following functions:

o start_link/2
e stop/l
e send_pdu/7

* inform_response/4

e note store/2

e info/l

e get log type/l

e st log type/2

e verbosity/2

The semantics of them and their exact signatures are explained below.

Legacy API functionsend_pdu/ 7 that hasgot separate| pAddr and Por t Nunber argumentsstill worksasbefore
for backwards compatibility reasons.

Exports

start link(Server, NoteStore) -> {ok, Pid} | {error, Reason}
Types:
Server = pid()
Not eStore = pid()
Start-link the network interface process.
Ser ver isthe pid of the managing process.

Not eSt or e isthe pid of the note-store process.

stop(Pid) -> void()
Types:

Pid = pid()
Stop the network interface process.

send pdu(Pid, Pdu, Vsn, MsgData, Domain, Addr, ExtraInfo) -> void()

Types:
Pid = pid()
Pdu = pdu()
Vsn = 'version-1' | 'version-2' | 'version-3

MsgData = term)

Domai n = transport Domai nUdpl pv4 | transport Domai nUdpl pv6
Addr = {inet:ip_address(), inet:port_nunber()}

Extralnfo = term)

210 | Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP)

snmpm_network_interface

Request the network interface process (Pi d) to send this pdu (Pdu).

Ext r al nf o issome opaque data that is passed to the net-if process. It originates from the Ext r al nf o parameter in
the calls to the synchronous get-request, asynchronous get-request, synchronous get-next-reguest, asynchronous get-
next-request, synchronous set-request and asynchronous set-request functions. Whether the net-if process chooses to
use thisisimplementation dependent. The net-if processincluded in this application ignoresiit.

inform response(Pid, Ref, Addr, Port) -> void()

Types:
Pid = pid()
Ref = term()
Addr = address()
Port = integer()

Instruct the network interface process to send the response (acknowledgment) to an inform-request.
Ref issomething that can be used to identify the inform-request, e.g. request-id of the inform-request.
Addr and Por t identifies the agent, from which the inform-request originated.

note store(Pid, NoteStore) -> void()
Types:
Pid = pid()
Not eStore = pid()
Change the pid of the note-store process. Thisis used when the server re-starts the note_store (e.g. after acrach).

info(Pid) -> [{Key, Value}]
Types:
Pid = pid()
The info returned is basically up to the implementer to decide. The implementation provided by this application
provides info about memory allocation and various socket information.

Theinfo returned by thisfunction isreturned together with other info collected by the manager when the info function
iscalled (tagged with thekey net _i f).

verbosity(Pid, Verbosity) -> void()
Types:

Pid = pid()

Verbosity = verbosity()
Change the verbosity of the network interface process.

get log type(Pid) -> {ok, LogType} | {error, Reason}
Types:
Pid = pid()
LogType = atl _type()
Reason = term()
The Audit Trail Log is managed by the network interface process. So, it is this process that has to return the actual
log-type.

Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP) | 211

snmpm_network_interface

set log type(Pid, NewType) -> {ok, OldType} | {error, Reason}
Types.

Pid = pid()

NewType = A dType = atl _type()

Reason = term()

TheAudit Trail Logismanaged by the network interface process. So, it isthisprocessthat hasto do the actual changing
of the type.

See set_log_type for more info.

212 | Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP)

snmpm_user

snmpm_user

Erlang module

Thismodule defines the behaviour of the manager user. A snnpm _user compliant module must export the following
functions:

e handle error/3

e handle_agent/4

e handle_pdu/4

e handle trap/3

e handle_inform/3

e handle_report/3

e handle invalid_result/2

The semantics of them and their exact signatures are explained bel ow.

Some of the function has no defined return value (voi d()), they can of course return anything. But the functions that
do have specified return value(s) must adhere to this. None of the functions can use exit of throw to return.

If the manager is not configured to use any particular transport domain, the behaviour handl e_agent / 4 will for
backwards copmpatibility reasons be called with the old | pAddr and Por t Nunber arguments

DATA TYPES
snmp_gen info() = {ErrorStatus :: atom(),
ErrorIndex :: pos integer(),
Varbinds :: [snmp:varbind()1}
snmp vl trap info() :: {Enteprise :: snmp:oid(),
Generic :: integer(),
Spec :: integer(),
Timestamp :: integer(),
Varbinds :: [snmp:varbind()]}

Exports

handle error(Reqld, Reason, UserData) -> void()
Types:
Regld = netif | integer()
Reason = {unexpected_pdu,
Snnpl nfo} | {enpty_nessage,
Snnpl nfo = snnp_gen_i nfo()
Seclnfo = term)
Addr i p_address()
Por t i nteger()
UserData = term)
Thisfunctioniscalled when the manager needsto communicate an "asynchronous' error to the user: e.g. failureto send
an asynchronous message (i.e. encoding error), a received message was discarded due to security error, the manager

failed to generate a response message to a received inform-request, or when receiving an unexpected PDU from an
agent (could be an expired async request).

{invalid_sec_info, Seclnfo,

term))

Snnpl nf o} |
Addr, Port} |

Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP) | 213

snmpm_user

If Reqgl d islessthen O, it means that this information was not available to the manager (that info was never retrieved
before the message was discarded).

For Snnpl nf o see handle_agent below.

Notethat thereisaspecial case when the value of Reql d hasthevalue of theatomnet i f . Thismeansthat the NetlF
process has suffered a"fatal” error and been restarted. With possible loss of trafficl

handle agent(Domain, Addr, Type, SnmpInfo, UserData) -> Reply
Types.
Domai n = transport Domai nUdpl pv4 | transport Donai nUdpl pv6
Addr {inet:ip_address(), inet:port_nunber()}
Type pdu | trap | report | inform
Snnpl nfo = SnnpPdul nfo | SnnpTraplnfo | SnnpReportinfo | Snnplnform nfo
SnnpPdul nfo = snnp_gen_i nfo()
SnnpTraplnfo = snnp_v1 trap_info()
SnnpReportinfo = snnp_gen_i nfo()
Snnpl nform nfo = snnp_gen_i nfo()
UserData = term()
Reply = ignore | {register, Userld, TargetNane, AgentConfi g}
Userld = term)
Target Name = target_nane()
Agent Config = [agent _config()]

Thisfunction is called when amessage is received from an unknown agent.
Note that this will aways be the default user that is called.

For moreinfo about theagent _confi g(), seeregister_agent.

The arguments Ty pe and Snnpl nf o relatesin the following way:

e pdu - SnnmpPdul nf o (see handle pdu for moreinfo).

e trap-SnnpTrapl nf o (seehandle _trap for more info).

* report - SnnmpReport | nf o (see handle_report for more info).
e i nform-Snnpl nforn nf o (seehandle_inform for more info).

Theonly user whichwouldreturn{r egi st er, Userld, Target Name, Agent Confi g} isthedefault user.

handle pdu(TargetName, ReqId, SnmpPduInfo, UserData) -> void()
Types:

Tar get Name = target_nane()

Reqld = tern()

SnnmpPdul nfo = snnp_gen_i nfo()

UserData = term)

Handle the reply to an asynchronous request, such asasync_get, async_get_next or async_set.
It could also be alate reply to a synchronous request.
Reql d isreturned by the asynchronous request function.

214 | Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP)

snmpm_user

handle trap(TargetName, SnmpTrapInfo, UserData) -> Reply
Types.
Tar get Nane = Target Name2 = target _nane()
SnmpTraplnfo = snnp_vl_trap_info() | snnmp_gen_info()
UserData = term)
Reply = ignore | unregister | {register, Userld, TargetNane2, Agent Confi g}
Userld = term)
Agent Config = [agent_config()]

Handle a trap/notification message from an agent.
For moreinfo about theagent _confi g(), seeregister_agent

The only user whichwould return { r egi ster, Userld, Target Nane2, agent info()} isthedefault
user.

handle _inform(TargetName, SnmpInformInfo, UserData) -> Reply
Types.

Tar get Nane = Target Name2 = target _nane()

Snnpl nform nfo = snnp_gen_i nfo()

UserData = term)

Reply = ignore | no_reply | unregister | {register, Userld, TargetNane2,
Agent Confi g}

Userld = term)
Agent Config = [agent_config()]
Handle ainform message.
For moreinfo about theagent _confi g(), seeregister_agent

The only user which would return { r egi ster, Userld, TargetNane2, Agent Confi g} isthe default
user.

If the inform request behaviour configuration option is set to user or {user, integer()}, the response
(acknowledgment) to thisinform-request will be sent when this function returns.

handle report(TargetName, SnmpReportInfo, UserData) -> Reply
Types:
Tar get Nanme = Target Name2 = target_nane()
Addr = i p_address()
Port = integer()
SnnpReportinfo = snnp_gen_i nfo()
UserData = term)
Reply = ignore | unregister | {register, Userld, TargetNane2, Agent Confi g}
Userld = term)
Agent Config = [agent _config()]
Handle a report message.

For moreinfo about theagent _confi g(), seeregister_agent

Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP) | 215

snmpm_user

The only user which would return { r egi ster, Userld, TargetNane2, Agent Confi g} isthe default
user.

handle invalid result(IN, OUT) -> void()
Types:
IN = {Func, Args}
Func = atom()
Args = list()
QUT = {crash, Crashinfo} | {result, InvalidResult}
Crashlnfo = {ErrorType, Error, Stacktrace}
Error Type = atom()
Error = term)
Stacktrace = list()
I nvali dResult = term)
If any of the other callback functions crashes (exit, throw or a plain crash) or return an invalid result (if avalid return

has been specified), this function is called. The purpose is to alow the user handle this error (for instance to issue
an error report).

I N reprecents the function called (and its arguments). OUT represents the unexpected/invalid result.

216 | Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP)

snmpm_network_interface_filter

snmpm_network_interface_filter

Erlang module

This module defines the behaviour of the manager network interface filter. A
snnmpm networ k_i nterface_filter compliant module must export the following functions:

e accept_recv/2

e accept_send/2

e accept_recv_pdu/3

e accept_send pdu/2

The semantics of them and their exact signatures are explained below.

The purpose of the network interface filter is to allow for filtering of messages (accept or reject) receive and send.
Thisisdone on two levels:

* Thefirstlevel isat the UDPentry / exit point, i.e. immediately after the receipt of the message, before any message
processing is done (accept_recv) and immediately before sending the message, after all message processing is
done (accept_send).

e The second level is a the MPD entry / exit point, i.e. immediately after the basic message processing
(accept_recv_pdu) / immediately before the basic message processing (accept_send_pdu).

Note that the network interface filter is something which is used by the network interface implementation provided by

the application (snmpm net _i f andsnnpm net _i f _nt). The default filter accepts all messages.

A network interface filter can e.g. be used during testing or for load regulation.

Legacy network interface filter modules used arguments on the form (| pAddr, Port Nunber, . ..) instead of
(Domai n, Addr, ...),andif the SNMP manager isrun without changing the configuration to use transport
domains the network interface filter will till get the old arguments and work as before.
DATA TYPES
port() = integer() > 0
pdu type() = 'get-request' | 'get-next-request' | 'get-response' |
'set-request' | trap | 'get-bulk-request' | 'inform-request' |

report | trappdu

See also the datatypesin snnpa_conf .

Exports

accept recv(Domain, Addr) -> boolean()
Types:
Domai n = transport Domai n()
Addr = transport AddressWthPort ()
Called at the reception of a message (before any processing has been done).

For the message to be rejected, the function must return false.
accept send(Domain, Addr) -> boolean()

Types:
Domai n = transport Domai n()

Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP) | 217

snmpm_network_interface_filter

Addr = transport AddressWt hPort ()
Called before the sending of a message (after all processing has been done).
For the message to be rejected, the function must return false.

accept recv pdu(Domain, Addr, PduType) -> boolean()
Types.
Domai n = transport Domai n()
Addr = transport AddressWt hPort ()
PduType = pdu_type()
Called after the basic message processing (MPD) has been done, but before the pdu is handed over to the server for
primary processing.
For the pdu to be rejected, the function must return false.

accept send pdu(Domain, Addr, PduType) -> boolean()
Types:
Domai n = transport Domai n()
Addr = transport AddressWthPort ()
PduType = pdu_type() > 0
Called before the basic message processing (MPD) is done, when a pdu has been received from the master-agent.
For the message to be rejected, the function must return false.

218 | Ericsson AB. All Rights Reserved.: Simple Network Management Protocol (SNMP)

	Simple Network Management Protocol (SNMP)
	SNMP User's Guide
	SNMP Introduction
	Scope and Purpose
	Prerequisites
	Definitions
	About This Manual
	Where to Find More Information

	Agent Functional Description
	Features
	SNMPv1, SNMPv2 and SNMPv3
	Operation
	Sub-agents and MIB Loading
	Contexts and Communities
	Management of the Agent
	STANDARD-MIB and SNMPv2-MIB
	Data Types

	SNMP-FRAMEWORK-MIB and SNMP-MPD-MIB
	SNMP-TARGET-MIB and SNMP-NOTIFICATION-MIB
	snmpNotifyTable
	snmpTargetAddrTable
	snmpTargetParamsTable

	SNMP-VIEW-BASED-ACM-MIB
	vacmContextTable
	vacmSecurityToGroupTable
	vacmAccessTable
	vacmViewTreeFamilyTable
	MIB View Semantics

	SNMP-COMMUNITY-MIB
	SNMP-USER-BASED-SM-MIB
	OTP-SNMPEA-MIB

	Notifications
	Notification Sending
	Notification Filters
	Sub-agent Path

	Discovery

	Manager Functional Description
	Features
	Operation
	MIB loading

	The MIB Compiler
	Operation
	Importing MIBs
	MIB Consistency Checking
	.hrl File Generation
	Emacs Integration
	Compiling from a Shell or a Makefile
	Deviations from the Standard

	Running the application
	Configuring the application
	Modifying the Configuration Files
	Starting the application
	Debugging the application

	Definition of Agent Configuration Files
	Agent Information
	Contexts
	System Information
	Communities
	MIB Views for VACM
	Security data for USM
	Notify Definitions
	Target Address Definitions
	Target Parameters Definitions

	Definition of Manager Configuration Files
	Manager Information
	Users
	Agents
	Security data for USM

	Agent Implementation Example
	MIB
	Default Implementation
	Manual Implementation
	Code
	Association File
	Transcript
	Trap Sending

	Manager Implementation Example
	The example manager
	A simple standard test

	Instrumentation Functions
	Instrumentation Functions
	New / Delete Operations
	Get Operation
	Set Operation
	Is-set-ok Operation
	Undo Operation
	GetNext Operation
	GetNext Example

	Using the ExtraArgument
	Default Instrumentation
	Table Operations

	Atomic Set

	Definition of Instrumentation Functions
	Variable Instrumentation
	f(new [, ExtraArgs])
	f(delete [, ExtraArgs])
	f(get [, ExtraArgs])
	Valid Return Values

	f(is_set_ok, NewValue [, ExtraArgs])
	Valid return values

	f(undo, NewValue [, ExtraArgs])
	Valid return values

	f(set, NewValue [, ExtraArgs])
	Valid return values

	Table Instrumentation
	f(new [, ExtraArgs])
	f(delete [, ExtraArgs])
	f(get, RowIndex, Cols [, ExtraArgs])
	Arguments
	Valid Return Values

	f(get_next, RowIndex, Cols [, ExtraArgs])
	Arguments
	Valid Return Values

	f(is_set_ok, RowIndex, Cols [, ExtraArgs])
	Arguments
	Valid Return Values

	f(undo, RowIndex, Cols [, ExtraArgs])
	Arguments
	Valid Return Values

	f(set, RowIndex, Cols [, ExtraArgs])
	Arguments
	Valid Return Values

	Definition of Agent Net if
	Mandatory Functions
	Messages
	Outgoing Messages
	Incoming Messages
	Notes

	Definition of Manager Net if
	Mandatory Functions
	Messages
	Outgoing Messages
	Incoming Messages

	Notes

	Audit Trail Log
	Agent Logging
	Manager Logging

	Advanced Agent Topics
	When to use a Sub-agent
	Special Set Transaction Mechanism
	Process Communication
	Frequent Loading of MIBs
	Interaction With Other SNMP Agent Toolkits

	Agent Semantics
	Sub-agents and Dependencies
	Distributed Tables
	Fault Tolerance
	Using the SNMP Agent in a Distributed Environment

	Using Mnesia Tables as SNMP Tables
	Creating the Mnesia Table
	Instrumentation Functions
	Adding Own Actions
	Extending the Mnesia Table

	Deviations from the Standard

	SNMP Appendix A
	Appendix A

	SNMP Appendix B
	Appendix B
	RowStatus (from RFC1903)

	Reference Manual
	snmp
	config/0
	start/0
	start/1
	start_agent/0
	start_agent/1
	start_manager/0
	start_manager/1
	date_and_time/0
	date_and_time_to_universal_time_dst/1
	date_and_time_to_string/1
	date_and_time_to_string/2
	date_and_time_to_string2/1
	local_time_to_date_and_time_dst/1
	universal_time_to_date_and_time/1
	validate_date_and_time/1
	validate_date_and_time/2
	passwd2localized_key/3
	octet_string_to_bits/1
	bits_to_octet_string/1
	read_mib/1
	log_to_txt/5
	log_to_txt/6
	log_to_txt/7
	log_to_txt/8
	log_to_io/4
	log_to_io/5
	log_to_io/6
	log_to_io/7
	change_log_size/2
	print_version_info/0
	print_version_info/1
	versions1/0
	versions2/0
	print_versions/1
	print_versions/2
	enable_trace/0
	disable_trace/0
	set_trace/1
	reset_trace/1
	set_trace/2

	SNMP
	snmpa
	add_agent_caps/2
	del_agent_caps/1
	get_agent_caps/0
	get/2
	get/3
	get_next/2
	get_next/3
	backup/1
	backup/2
	info/0
	info/1
	load_mib/1
	load_mib/2
	load_mibs/1
	load_mibs/2
	load_mibs/2
	load_mibs/3
	unload_mib/1
	unload_mib/2
	unload_mibs/1
	unload_mibs/2
	unload_mibs/2
	unload_mibs/3
	which_mibs/0
	which_mibs/1
	whereis_mib/1
	whereis_mib/2
	current_request_id/0
	current_context/0
	current_community/0
	current_address/0
	enum_to_int/2
	enum_to_int/3
	int_to_enum/2
	int_to_enum/3
	name_to_oid/1
	name_to_oid/2
	oid_to_name/1
	oid_to_name/2
	which_aliasnames/0
	which_tables/0
	which_variables/0
	which_notifications/0
	log_to_txt/1
	log_to_txt/2
	log_to_txt/3
	log_to_txt/4
	log_to_txt/5
	log_to_txt/6
	log_to_txt/7
	log_to_txt/7
	log_to_txt/8
	log_to_io/1
	log_to_io/2
	log_to_io/3
	log_to_io/4
	log_to_io/5
	log_to_io/6
	log_to_io/6
	log_to_io/7
	change_log_size/1
	set_log_type/1
	set_log_type/2
	mib_of/1
	mib_of/2
	me_of/1
	me_of/2
	invalidate_mibs_cache/0
	invalidate_mibs_cache/1
	enable_mibs_cache/0
	enable_mibs_cache/1
	disable_mibs_cache/0
	disable_mibs_cache/1
	which_mibs_cache_size/0
	which_mibs_cache_size/1
	gc_mibs_cache/0
	gc_mibs_cache/1
	gc_mibs_cache/1
	gc_mibs_cache/2
	gc_mibs_cache/2
	gc_mibs_cache/3
	enable_mibs_cache_autogc/0
	enable_mibs_cache_autogc/1
	disable_mibs_cache_autogc/0
	disable_mibs_cache_autogc/1
	update_mibs_cache_age/1
	update_mibs_cache_age/2
	update_mibs_cache_gclimit/1
	update_mibs_cache_gclimit/2
	register_notification_filter/3
	register_notification_filter/4
	register_notification_filter/4
	register_notification_filter/5
	unregister_notification_filter/1
	unregister_notification_filter/2
	which_notification_filter/0
	which_notification_filter/1
	set_request_limit/1
	set_request_limit/2
	register_subagent/3
	unregister_subagent/2
	send_notification2/3
	send_notification/3
	send_notification/4
	send_notification/5
	send_notification/6
	send_notification/7
	discovery/2
	discovery/3
	discovery/3
	discovery/4
	discovery/4
	discovery/5
	discovery/6
	convert_config/1
	restart_worker/0
	restart_worker/1
	restart_set_worker/0
	restart_set_worker/1
	print_mib_info/0
	print_mib_tables/0
	print_mib_variables/0
	verbosity/2

	snmpa_conf
	agent_entry/2
	write_agent_config/2
	write_agent_config/3
	append_agent_config/2
	read_agent_config/1
	standard_entry/2
	write_standard_config/2
	write_standard_config/3
	append_standard_config/2
	read_standard_config/1
	context_entry/1
	write_context_config/2
	write_context_config/3
	append_context_config/2
	read_context_config/1
	community_entry/1
	community_entry/5
	write_community_config/2
	write_community_config/3
	append_community_config/2
	read_community_config/1
	target_addr_entry/6
	target_addr_entry/7
	target_addr_entry/8
	target_addr_entry/10
	write_target_addr_config/2
	write_target_addr_config/3
	append_target_addr_config/2
	read_target_addr_config/1
	target_params_entry/2
	target_params_entry/4
	target_params_entry/5
	write_target_params_config/2
	write_target_params_config/3
	append_target_params_config/2
	read_target_params_config/1
	vacm_s2g_entry/3
	vacm_acc_entry/8
	vacm_vtf_entry/2
	vacm_vtf_entry/4
	write_vacm_config/2
	write_vacm_config/3
	append_vacm_config/2
	read_vacm_config/1
	usm_entry/1
	usm_entry/13
	write_usm_config/2
	write_usm_config/3
	append_usm_config/2
	read_usm_config/1
	notify_entry/3
	write_notify_config/2
	write_notify_config/3
	append_notify_config/2
	read_notify_config/1

	snmpa_discovery_handler
	stage1_finish/3

	snmpa_error_report
	config_err/2
	user_err/2

	snmpa_error
	config_err/2
	user_err/2

	snmpa_error_io
	config_err/2
	user_err/2

	snmpa_error_logger
	config_err/2
	user_err/2

	snmpa_local_db
	dump/0
	match/2
	print/0
	print/1
	print/2
	table_create/1
	table_create_row/3
	table_delete/1
	table_delete_row/2
	table_exists/1
	table_get_row/2

	snmpa_mib_data
	Module:new/1
	Module:close/1
	Module:sync/1
	Module:load_mib/4
	Module:unload_mib/2
	Module:lookup/2
	Module:next/3
	Module:register_subagent/3
	Module:unregister_subagent/2
	Module:dump/2
	Module:which_mib/2
	Module:which_mibs/1
	Module:whereis_mib/2
	Module:info/1
	Module:backup/2
	Module:code_change/4

	snmpa_mib_storage
	Module:open/5
	Module:close/1
	Module:read/2
	Module:write/2
	Module:delete/1
	Module:delete/2
	Module:match_object/2
	Module:match_delete/2
	Module:tab2list/1
	Module:info/1
	Module:sync/1
	Module:backup/2

	snmpa_mpd
	init/1
	process_packet/5
	process_packet/6
	generate_response_msg/5
	generate_response_msg/6
	generate_msg/5
	generate_msg/6
	process_taddrs/1
	discarded_pdu/1

	snmpa_network_interface
	start_link/4
	info/1
	verbosity/2
	get_log_type/1
	set_log_type/2

	snmpa_network_interface_filter
	accept_recv/2
	accept_send/2
	accept_recv_pdu/3
	accept_send_pdu/2

	snmpa_notification_delivery_info_receiver
	delivery_targets/3
	delivery_info/4

	snmpa_notification_filter
	handle_notification/2

	snmpa_supervisor
	start_sub_sup/1
	start_master_sup/1
	start_sub_agent/3
	stop_sub_agent/1

	snmp_community_mib
	configure/1
	reconfigure/1
	add_community/5
	add_community/6
	delete_community/1

	snmp_framework_mib
	configure/1
	init/0
	add_context/1
	delete_context/1

	snmp_generic
	get_status_col/2
	get_status_col/2
	get_index_types/1
	get_table_info/2
	table_func/2
	table_func/4
	table_get_elements/3
	table_next/2
	table_row_exists/2
	table_set_elements/3
	variable_func/2
	variable_func/3
	variable_get/1
	variable_set/2

	snmp_index
	delete/1
	delete/2
	get/2
	get_last/1
	get_next/2
	insert/3
	key_to_oid/2
	new/1

	snmp_notification_mib
	configure/1
	reconfigure/1
	add_notify/3
	delete_notify/1

	snmp_pdus
	dec_message/1
	dec_message_only/1
	dec_pdu/1
	dec_scoped_pdu/1
	dec_scoped_pdu_data/1
	dec_usm_security_parameters/1
	enc_message/1
	enc_message_only/1
	enc_pdu/1
	enc_scoped_pdu/1
	enc_usm_security_parameters/1

	snmp_standard_mib
	configure/1
	inc/1
	inc/2
	reconfigure/1
	reset/0
	sys_up_time/0

	snmp_target_mib
	configure/1
	reconfigure/1
	set_target_engine_id/2
	add_addr/10
	delete_addr/1
	add_params/5
	delete_params/1

	snmp_user_based_sm_mib
	configure/1
	reconfigure/1
	add_user/13
	delete_user/1

	snmp_view_based_acm_mib
	configure/1
	reconfigure/1
	add_sec2group/3
	delete_sec2group/1
	add_access/8
	delete_access/1
	add_view_tree_fam/4
	delete_view_tree_fam/1

	snmpc
	compile/1
	compile/2
	is_consistent/1
	mib_to_hrl/1

	snmpc(command)
	snmpm
	monitor/0
	demonitor/1
	notify_started/1
	cancel_notify_started/1
	register_user/3
	register_user/4
	register_user_monitor/3
	register_user_monitor/4
	unregister_user/1
	which_users/0
	register_agent/3
	unregister_agent/2
	agent_info/2
	update_agent_info/3
	update_agent_info/4
	which_agents/0
	which_agents/1
	register_usm_user/3
	unregister_usm_user/2
	usm_user_info/3
	update_usm_user_info/4
	which_usm_users/0
	which_usm_users/1
	sync_get2/3
	sync_get2/4
	async_get2/3
	async_get2/4
	sync_get_next2/3
	sync_get_next2/4
	async_get_next2/3
	async_get_next2/4
	sync_set2/3
	sync_set2/4
	async_set2/3
	async_set2/4
	sync_get_bulk2/5
	sync_get_bulk2/6
	async_get_bulk2/5
	async_get_bulk2/6
	cancel_async_request/2
	log_to_txt/1
	log_to_txt/2
	log_to_txt/3
	log_to_txt/4
	log_to_txt/5
	log_to_txt/6
	log_to_txt/7
	log_to_txt/7
	log_to_txt/8
	log_to_io/1
	log_to_io/2
	log_to_io/2
	log_to_io/3
	log_to_io/4
	log_to_io/5
	log_to_io/6
	log_to_io/6
	log_to_io/7
	change_log_size/1
	set_log_type/1
	load_mib/1
	unload_mib/1
	which_mibs/0
	name_to_oid/1
	oid_to_name/1
	oid_to_type/1
	backup/1
	info/0
	verbosity/2
	restart/1
	format_reason/1
	format_reason/2

	snmpm_conf
	manager_entry/2
	write_manager_config/2
	write_manager_config/3
	append_manager_config/2
	read_manager_config/1
	users_entry/1
	users_entry/2
	users_entry/3
	write_users_config/2
	write_users_config/3
	append_users_config/2
	read_users_config/1
	agents_entry/12
	write_agents_config/2
	write_agents_config/3
	append_agents_config/2
	read_agents_config/1
	usm_entry/6
	usm_entry/7
	write_usm_config/2
	write_usm_config/3
	append_usm_config/2
	read_usm_config/1

	snmpm_mpd
	init/1
	process_msg/6
	generate_msg/5
	generate_response_msg/4

	snmpm_network_interface
	start_link/2
	stop/1
	send_pdu/7
	inform_response/4
	note_store/2
	info/1
	verbosity/2
	get_log_type/1
	set_log_type/2

	snmpm_user
	handle_error/3
	handle_agent/5
	handle_pdu/4
	handle_trap/3
	handle_inform/3
	handle_report/3
	handle_invalid_result/2

	snmpm_network_interface_filter
	accept_recv/2
	accept_send/2
	accept_recv_pdu/3
	accept_send_pdu/3

