ERLANG

Dialyzer

Copyright © 2006-2020 Ericsson AB. All Rights Reserved.
Dialyzer 4.2.1

September 22, 2020



Copyright © 2006-2020 Ericsson AB. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance
with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless
required by applicable law or agreed to in writing, software distributed under the License is distributed on an
"AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See

the License for the specific language governing permissions and limitations under the License. Ericsson AB. All
Rights Reserved..

September 22, 2020



1.1 Dialyzer

1 Dialyzer User's Guide

1.1 Dialyzer
1.1.1 Introduction

Scope

Dialyzer isastatic analysistool that i dentifies software discrepancies, such as definitetype errors, code that hasbecome
dead or unreachable because of programming error, and unnecessary tests, in single Erlang modules or entire (sets
of) applications.

Dialyzer can be called from the command line, from Erlang, and from a GUI.

Prerequisites
It is assumed that the reader is familiar with the Erlang programming language.

1.1.2 The Persistent Lookup Table

Dialyzer stores the result of an analysisin a Persistent Lookup Table (PLT). The PLT can then be used as a starting
point for later analyses. It is recommended to build a PLT with the Erlang/OTP applications that you are using, but
also to include your own applications that you are using frequently.

ThePLT isbuilt using option - - bui | d_pl t to Dialyzer. The following command builds the recommended minimal
PLT for Erlang/OTP:

dialyzer --build plt --apps erts kernel stdlib mnesia

Dialyzer looks if there is an environment variable called DI ALYZER _PLT and places the PLT at this location. If
no such variable is set, Dialyzer placesthe PLT at $HOVE/ . di al yzer _pl t . The placement can also be specified
using the options- - pl t or - - out put _pl t.

Information can be added to an existing PLT using option - - add_t o_pl t . If you also want to include the Erlang
compilerinthe PLT and placeit in anew PLT, then use the following command:

dialyzer --add to plt --apps compiler --output plt my.plt

Then you can add your favorite application my_app to the new PLT:
dialyzer --add to plt --plt my.plt -r my app/ebin

But you realize that it is unnecessary to have the Erlang compiler in this one:
dialyzer --remove from plt --plt my.plt --apps compiler

Later, when you have fixed a bug in your application my_app, you want to update the PLT so that it becomes fresh
the next time you run Dialyzer. In this case, run the following command:

dialyzer --check plt --plt my.plt

Dialyzer then reanalyzes the changed files and the files that depend on these files. Notice that this consistency check
is performed automatically the next time you run Dialyzer with this PLT. Option - - check_pl t isonly for doing
so without doing any other analysis.

Ericsson AB. All Rights Reserved.: Dialyzer | 1



1.1 Dialyzer

To get information about a PL T, use the following option:
dialyzer --plt info

To specify which PLT, use option- - pl t .

To get the output printed to afile, use option - - out put _fil e.

Notice that when manipulating the PLT, no warnings are emitted. To turn on warnings during (re)analysis of the PLT,
use option - - get _war ni ngs.

1.1.3 Using Dialyzer from the Command Line

Diayzer has acommand-line version for automated use. Seedi al yzer (3) .

1.1.4 Using Dialyzer from Erlang
Diayzer can aso be used directly from Erlang. Seedi al yzer (3) .

1.1.5 Using Dialyzer from the GUI

Choosing the Applications or Modules

The File window displays a listing of the current directory. Click your way to the directoriesmodules you want to
add or type the correct path in the entry.

Mark the directoriesymodules you want to analyze for discrepancies and click Add. You can either add the . beam
and . er| filesdirectly, or add directories that contain these kind of files. Notice that you are only allowed to add
the type of files that can be analyzed in the current mode of operation (see below), and that you cannot mix . beam
and. erl files.

Analysis Modes

Diayzer has two analysis modes. "Byte Code" and "Source Code". They are controlled by the buttons in the top-
middle part of the main window, under Analysis Options.

Controlling the Discrepancies Reported by Dialyzer

Under the War nings pull-down menu, there are buttons that control which discrepancies are reported to the user in the
War nings window. By clicking these buttons, you can enable/disable a whole class of warnings. Information about
the classes of warningsis found on the "Warnings' item under the Help menu (in the rightmost top corner).

If modules are compiled with inlining, spuriouswarnings can be emitted. Inthe Options menu you can choosetoignore
inline-compiled modules when analyzing byte code. When starting from source code, this is not a problem because
inlining isexplicitly turned off by Dialyzer. The option causes Dialyzer to suppress all warnings from inline-compiled
modules, asthereis currently no way for Dialyzer to find what parts of the code have been produced by inlining.

Running the Analysis

Once you have chosen the modules or directories you want to analyze, click the Run button to start the analysis. If
you for some reason want to stop the analysis while it is running, click the Stop button.

The information from the analysisis displayed in the L og window and the W ar nings window.

Include Directories and Macro Definitions

When analyzing from source, you might haveto supply Dialyzer with alist of include directories and macro definitions
(asyou can do withtheer | ¢ flags-1 and - D). This can be done either by starting Dialyzer with these flags from
the command line asin:

2 | Ericsson AB. All Rights Reserved.: Dialyzer



1.1 Dialyzer

dialyzer -I my includes -DDEBUG -Dvsn=42 -I one more dir

or by adding these explicitly using submenu Manage Macro Definitions or Manage Include Directories in the
Options menu.

Saving the Information on the Log and Warnings Windows

The File menu includes options to save the contents of the L og window and the War nings window. Simply choose
the options and enter the file to save the contentsin.

There are a so buttons to clear the contents of each window.

Inspecting the Inferred Types of the Analyzed Functions

Diayzer storestheinformation of the analyzed functionsin aPersistent Lookup Table (PLT), see section The Persistent
Lookup Table.

After an analysis, you can inspect this information. In the PLT menu you can choose to either search the PLT or
inspect the contents of the whole PLT. The information is presented in EDoc format.

1.1.6 Feedback and Bug Reports

Wevery much welcome user feedback - even wishlists! If you notice anything weird, especialy if Dialyzer reportsany
discrepancy that is afalse positive, please send an error report describing the symptoms and how to reproduce them.

Ericsson AB. All Rights Reserved.: Dialyzer | 3



1.1 Dialyzer

2 Reference Manual

4 | Ericsson AB. All Rights Reserved.: Dialyzer



dialyzer

dialyzer

Erlang module

Didyzer isastatic analysistool that i dentifies software discrepancies, such as definitetype errors, code that hasbecome
dead or unreachable because of programming error, and unnecessary tests, in single Erlang modules or entire (sets
of) applications.

Dialyzer starts its analysis from either debug-compiled BEAM bytecode or from Erlang source code. The file and
line number of adiscrepancy is reported along with an indication of what the discrepancy is about. Dialyzer bases its
analysis on the concept of success typings, which alows for sound warnings (no false positives).

Using Dialyzer from the Command Line

Diayzer has acommand-line version for automated use. This section provides a brief description of the options. The
same information can be obtained by writing the following in a shell:

dialyzer --help

For more details about the operation of Dialyzer, see section Using Dialyzer from the GUI in the User's Guide.

Exit status of the command-line version:

0

No problems were found during the analysis and no warnings were emitted.
1

Problems were found during the analysis.
2

No problems were found during the analysis, but warnings were emitted.
Usage:

dialyzer [--add to plt] [--apps applications] [--build plt]
[--check plt] [-Ddefinel* [-Dname] [--dump callgraph file]
[files or dirs] [--fullpath] [--get warnings] [--gui] [--help]
[-I include dir]* [--no check plt] [--no indentation] [--no native]
[--no native cache] [-o0 outfile] [--output plt file] [-pa dir]*
[--plt plt] [--plt_infol [--plts plt*] [--quiet] [-r dirs]
[--raw] [--remove from plt] [--shell] [--src] [--statistics]
[--verbose] [--version] [-Wwarn]*

* denotes that multiple occurrences of the option are possible. ‘

Options:
--add to_plt

ThePLT isextended to also include thefiles specified with- ¢ and - r . Use- - pl t to specify which PLT to start
from, and - - out put _pl t to specify whereto put the PLT. Notice that the analysis possibly can include files
from the PLT if they depend on the new files. This option only works for BEAM files.

--apps applications
Thisoption istypically used when building or modifyingaPLT asin:

Ericsson AB. All Rights Reserved.: Dialyzer | 5



dialyzer

dialyzer --build plt --apps erts kernel stdlib mnesia ...

to refer conveniently to library applications corresponding to the Erlang/OTP installation. However, this option
is general and can also be used during analysisto refer to Erlang/OTP applications. File or directory names can
also beincluded, asin:

dialyzer --apps inets ssl ./ebin ../other lib/ebin/my module.beam

-~ build_plt

Theanalysis startsfrom an empty PLT and creates anew one from thefiles specified with - ¢ and - r . Thisoption
only works for BEAM files. To override the default PLT location, use- - pl t or - -out put _plt.

--check_plt

Check the PLT for consistency and rebuild it if it is not up-to-date.
- Dnan® (or - Dnane=val ue)

When analyzing from source, pass the define to Dialyzer. (**)
--dunp_cal Il graph file

Dump the call graph into the specified file whose format is determined by the filename extension. Supported
extensionsare: r aw, dot , and ps. If something elseis used as filename extension, default format . r awis used.

files_or_dirs (for backward compatibility alsoas-c files_or_dirs)

Use Dialyzer from the command line to detect defects in the specified files or directories containing . er| or
. beamfiles, depending on the type of the analysis.

--fullpath
Display the full path names of files for which warnings are emitted.
--get _warni ngs

Make Dialyzer emit warnings even when manipulating the PLT. Warnings are only emitted for files that are
analyzed.

- - gui

Usethe GUI.
--hel p (or-h)

Print this message and exit.
-1 include_ dir

When analyzing from source, passthei ncl ude_di r to Dialyzer. (**)
--no_check _plt

Skip the PLT check when running Dialyzer. Thisis useful when working with installed PLTs that never change.
--no_i ndentation

Do not insert line breaks in types, contracts, and Erlang Code when formatting warnings.
--no_native (or-nn)

Bypass the native code compilation of some key filesthat Dialyzer heuristically performs when dialyzing many
files. This avoids the compilation time, but can result in (much) longer analysistime.

6 | Ericsson AB. All Rights Reserved.: Dialyzer



dialyzer

--no_native_cache

By default, Dialyzer caches the results of native compilation in directory $XDG_CACHE_HOVE/ er | ang/
di al yzer _hi pe_cache. XDG_CACHE_HOVE defaults to $HOVE/ . cache. Use this option to disable
caching.

-o outfile(or--output outfile)

When using Dialyzer from the command line, send the analysis results to the specified outfile rather than to
st dout .

--output_plt file

Storethe PLT at the specified file after building it.
-pa dir

Includedi r inthe path for Erlang. Thisis useful when analyzing filesthat have- i ncl ude_I i b() directives.
--plt plt

Usethe specified PLT astheinitial PLT. If the PLT was built during setup, the files are checked for consistency.
--plt_info

Make Diayzer print information about the PLT and then quit. The PLT can be specified with - - pl t ( S) .
--plts plt*

Merge the specified PLTs to create theinitial PLT. This requires that the PLTs are digoint (that is, do not have
any module appearing in more than one PLT). The PLTs are created in the usual way:

dialyzer --build plt --output plt plt 1 files to_include
éiélyzer --build plt --output plt plt n files to_include

They can then be used in either of the following ways:

dialyzer files to analyze --plts plt 1 ... plt n
or
dialyzer --plts plt 1 ... plt n -- files to analyze

Noticethe - - delimiter in the second case.
--qui et (or-q)

Make Dialyzer a bit more quiet.
-r dirs

Sameasfil es_or_dirs, but the specified directories are searched recursively for subdirectories containing
. erl or. beamfilesinthem, depending on the type of analysis.

--raw

When using Dialyzer from the command line, output the raw analysis results (Erlang terms) instead of the
formatted result. The raw format is easier to post-process (for example, to filter warnings or to output HTML
pages).

--renove_fromplt

The information from the files specified with - ¢ and - r isremoved from the PLT. Notice that this can cause a
reanaysis of the remaining dependent files.

Ericsson AB. All Rights Reserved.: Dialyzer | 7



dialyzer

--shel |

Do not disable the Erlang shell while running the GUI.
--src

Override the default, which isto analyze BEAM files, and analyze starting from Erlang source code instead.
--statistics

Print information about the progress of execution (anaysis phases, time spent in each, and size of the relative
input).

--verbose

Make Dialyzer a bit more verbose.
--version (or-v)

Print the Dialyzer version and some more information and exit.
- Whar n

A family of options that selectively turn on/off warnings. (For help on the names of warnings, use di al yzer
- Whel p.) Notice that the options can also be specified in the file with a- di al yzer () attribute. For details,
see section Requesting or Suppressing Warnings in Source Files.

** options- Dand - | work both from the command line and in the Dialyzer GUI; the syntax of definesand includes
isthe same as that used by erlc(1).

Warning options:
-Werror _handl i ng (***)

Include warnings for functions that only return by an exception.
-Who_behavi our s

Suppress warnings about behavior callbacks that drift from the published recommended interfaces.
-Who_contracts

Suppress warnings about invalid contracts.
-Who_fail _call

Suppress warnings for failing calls.
-Who_fun_app

Suppress warnings for fun applications that will fail.
-Who_i nproper _lists

Suppress warnings for construction of improper lists.
-Who_nmt ch

Suppress warnings for patterns that are unused or cannot match.
-Who_nmi ssing_calls

Suppress warnings about calls to missing functions.
- Who_opaque

Suppress warnings for violations of opacity of data types.

8 | Ericsson AB. All Rights Reserved.: Dialyzer



dialyzer

-Who_return
Suppress warnings for functions that will never return avalue.
-Who_undefined_cal | backs
Suppress warnings about behaviors that have no - cal | back attributes for their callbacks.

-Who_unused
Suppress warnings for unused functions.
-Wace_condi tions (***)

Include warnings for possible race conditions. Notice that the analysis that finds data races performs intra-
procedural data flow analysis and can sometimes explode in time. Enable it at your own risk.

- Winder specs (***)
Warn about underspecified functions (the specification is strictly more allowing than the success typing).

- Winknown (***)

L et warnings about unknown functions and types affect the exit status of the command-line version. The default

isto ignore warnings about unknown functions and types when setting the exit status. When using Dialyzer from

Erlang, warnings about unknown functions and types are returned; the default is not to return these warnings.
-Winmat ched_r et ur ns (***)

Include warnings for function calls that ignore a structured return value or do not match against one of many
possible return value(s).

The following options are also available, but their use is not recommended (they are mostly for Dialyzer developers
and internal debugging):

-Wover specs (***)

Warn about overspecified functions (the specification is strictly less allowing than the success typing).
-Wspecdi ffs (***)

Warn when the specification is different than the success typing.

*** denotes options that turn on warnings rather than turning them off. ‘

Using Dialyzer from Erlang

Diayzer can be used directly from Erlang. Both the GUI and the command-line versionsare also avail able. The options
are similar to the ones given from the command line, see section Using Dialyzer from the Command Line.

Requesting or Suppressing Warnings in Source Files

Attribute- di al yzer () canbeusedfor turning off warningsin amodul e by specifying functions or warning options.
For example, to turn off al warnings for the function f / 0, include the following line:

-dialyzer({nowarn function, f/0}).

To turn off warnings for improper lists, add the following line to the source file;
-dialyzer(no_improper lists).

Attribute - di al yzer () isallowed after function declarations. Lists of warning options or functions are allowed:

Ericsson AB. All Rights Reserved.: Dialyzer | 9



dialyzer

-dialyzer([{nowarn function, [f/0]}, no improper lists]).
Warning options can be restricted to functions:

-dialyzer({no _improper lists, g/0}).

-dialyzer({[no_return, no match], [g/0, h/0]1}).

For help on the warning options, use di al yzer - Whel p. The options are also enumerated, see function gui / 1
below (War nOpt s).

| Warning option - W ace_condi t i ons has no effect when set in sourcefiles. |

Attribute- di al yzer () canalsobeused for turning on warnings. For example, if amodule has been fixed regarding
unmatched returns, adding the following line can help in assuring that no new unmatched return warnings are
introduced:

-dialyzer(unmatched returns).
Exports

format warning(Msg) -> string()

Types.
Msg = {Tag, Id, nsg()}
Seerun/ 1.

Get a string from warnings as returned by r un/ 1.

format warning(Msg, Options) -> string()

Types:
Msg = {Tag, Id, msg()}
Seerun/ 1.

Options = [{indent_opt, bool ean()}]
Get a string from warnings as returned by r un/ 1.

If i ndent _opt issettotrue (default), line breaks are inserted in types, contracts, and Erlang code to improve
readability.

gui() -> ok | {error, Msg}
gui(OptList) -> ok | {error, Msg}
Types.

Opt Li st

See below.

Dialyzer GUI version.

10 | Ericsson AB. All Rights Reserved.: Dialyzer



dialyzer

OptList
Option

WarnOpts ::
|
I
I
I

[Option]
{files,
{files rec,
{defines,
{from,

{init plt,
{plts,

{include dirs,
{output file,
{output_plt,
{check plt,
{analysis_ type,

{warnings,
{get warnings,
{native,

{native cache,

error_handling
no_behaviours
no_contracts
no fail call
no_fun_app

no_improper lists

no_match

| no missing calls

no_opaque

| no_return
no_undefined callbacks

plt info(string()) -> {'ok',

no_unused

race_conditions

underspecs
unknown

unmatched returns

overspecs
specdiffs

[Filename :: string()]}
[DirName :: string()]1}
[{Macro :: atom(), Value :: term()}1}
src_code | byte code}

%% Defaults to byte code
FileName :: string()}

%% If changed from default
[FileName :: string()]}

%% If changed from default
[DirName :: string()]1}
FileName :: string()}
FileName :: string()}
boolean()},

'succ_typings' |
'plt_add' |

'plt build' |
'plt check' |
'plt _remove'}
[WarnOpts]}
boolean()}
boolean()}

%% Defaults to false when invoked from Erlang
boolean()}

[{atom(), any()}1} | {'error', atom()}

Returns information about the specified PLT.

run(OptList) -> Warnings

Types:
Opt Li st

Seequi /0, 1.
Wr ni ngs

See below.

Diayzer command-line version.

Ericsson AB. All Rights Reserved.: Dialyzer | 11



dialyzer

Warnings :: [{Tag, Id, Msg}]

Tag 11 'warn_behaviour!'
‘warn_bin construction’
‘warn_callgraph'
'warn_contract not equal'
'warn_contract_ range'
'warn_contract_subtype'
'warn_contract supertype'
'warn_contract_syntax'
'warn_contract_ types'
‘'warn_failing call'
‘warn_fun_app'
‘warn_matching'

‘warn_non proper list'
‘warn_not called'
‘warn_opaque'

'warn_race condition'
‘warn_return no exit'
‘warn_return only exit'
'warn_umatched return'
‘warn_undefined callbacks'
‘warn_unknown'

{File :: string(), Line :: integer()}
msg() -- Undefined

Id
Msg

12 | Ericsson AB. All Rights Reserved.: Dialyzer



typer

typer

Command

TypEr showstypeinformation for Erlang modules to the user. Additionally, it can annotate the code of files with such
type information.
Using TypEr from the Command Line

TypEr isused from the command-line. This section provides a brief description of the options. The same information
can be obtained by writing the following in a shell:

typer --help
Usage:
typer [--help] [--version] [--plt PLT] [--edoc]
[--show | --show-exported | --annotate | --annotate-inc-files]

[-Ddefine]* [-I include dir]* [-pa dir]* [-pz dir]*
[-T application]* [-r] file*

* denotes that multiple occurrences of the option are possible.

Options:
-r
Search directories recursively for .erl files below them.
- - show
Print type specificationsfor all functionson stdout. (Thisisthe default behaviour; thisoptionisnot really needed.)
- -show export ed (or show_export ed)

Sameas - - show, but print specifications for exported functions only. Specs are displayed sorted a phabetically
on the function's name.

--annot ate
Annotate the specified files with type specifications.
--annotate-inc-files

Sameas- - annot at e but annotatesall - i ncl ude() filesaswell asall .erl files. (Usethisoption with caution
- it has not been tested much).

- - edoc

Print type information as Edoc @ pec comments, not as type Specs.
--plt

Use the specified dialyzer PLT file rather than the default one.
-T file*

The specified file(s) already contain type specifications and these are to be trusted in order to print specs for the
rest of thefiles. (Multiplefiles or dirs, separated by spaces, can be specified.)

Ericsson AB. All Rights Reserved.: Dialyzer | 13



typer

- Dnane (or - Dname=val ue)

Pass the defined name(s) to TypEr. (**)
-1

Pass the include _dir to TypEr. (**)
-pa dir

Includedi r inthe path for Erlang. Thisis useful when analyzing filesthat have- i ncl ude_1i b() directives
or use parse transforms.

-pz dir

Includedi r inthe path for Erlang. Thisis useful when analyzing filesthat have-i ncl ude_I i b() directives
or use parse transforms.

--version (or-v)

Print the TypEr version and some more information and exit.

** options- Dand - | work both from the command line and in the TypEr GUI; the syntax of defines and includes
isthe same as that used by erlc(1).

14 | Ericsson AB. All Rights Reserved.: Dialyzer



	Dialyzer
	Dialyzer User's Guide
	Dialyzer
	Introduction
	Scope
	Prerequisites

	The Persistent Lookup Table
	Using Dialyzer from the Command Line
	Using Dialyzer from Erlang
	Using Dialyzer from the GUI
	Choosing the Applications or Modules
	Analysis Modes
	Controlling the Discrepancies Reported by Dialyzer
	Running the Analysis
	Include Directories and Macro Definitions
	Saving the Information on the Log and Warnings Windows
	Inspecting the Inferred Types of the Analyzed Functions

	Feedback and Bug Reports


	Reference Manual
	dialyzer
	format_warning/1
	format_warning/2
	gui/0
	gui/1
	plt_info/1
	run/1

	typer



